JP3814401B2 - Dielectric porcelain and multilayer ceramic capacitor - Google Patents

Dielectric porcelain and multilayer ceramic capacitor Download PDF

Info

Publication number
JP3814401B2
JP3814401B2 JP01883498A JP1883498A JP3814401B2 JP 3814401 B2 JP3814401 B2 JP 3814401B2 JP 01883498 A JP01883498 A JP 01883498A JP 1883498 A JP1883498 A JP 1883498A JP 3814401 B2 JP3814401 B2 JP 3814401B2
Authority
JP
Japan
Prior art keywords
dielectric
crystal phase
peak
plane
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01883498A
Other languages
Japanese (ja)
Other versions
JPH11219844A (en
Inventor
明宏 金内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01883498A priority Critical patent/JP3814401B2/en
Publication of JPH11219844A publication Critical patent/JPH11219844A/en
Application granted granted Critical
Publication of JP3814401B2 publication Critical patent/JP3814401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体磁器および積層セラミックコンデンサに関するものであり、特に、高周波領域で好適に使用され、かつ高誘電率、低損失の誘電体磁器およびこれを用いた積層セラミックコンデンサに関するものである。
【0002】
【従来技術】
近年のエレクトロニクスの発展に伴い電子回路の高周波化、小型化が急速に進行し、電子部品も高周波化、小型化が要求されるようになってきている。特に、高周波大電流回路では、損失による自己加熱が問題となる場合があり、この場合には低損失のコンデンサが使用されていた。
【0003】
従来、このようなコンデンサとしては、低損失で、温度特性、電圧依存性が小さい等の特性を有するフィルムコンデンサが用いられている。しかしながら、フィルムコンデンサはモールドタイプが殆どであり、小型化、表面実装に対応できない。
【0004】
また、低損失高容量の領域に用いられる誘電体磁器組成物として、特公昭57−37963号公報および特公平7−45337号公報に開示されるようなものが知られている。
【0005】
特公昭57−37963号公報に開示された誘電体磁器組成物は、Sr、Ti、Bi、PbおよびCaからなる基本成分と、Cu、Mnからなる添加成分とから構成されている。そして、SrTiO3 、Bi2 3 、TiO2 、PbTiO3 、CaTiO3 、CuO、MnCO3 を混合し、930℃で仮焼し、1200〜1400℃で焼成して作製されている。この誘電体磁器組成物では、測定周波数1kHzでの比誘電率が500〜1500、誘電損失tanδが0.15〜0.5%であった。
【0006】
また、特公平7−45337号公報に開示された誘電体磁器組成物は、Sr、Ti、Bi、Pb、CaおよびSnからなる基本成分と、希土類酸化物と、ガラス成分とから構成されている。そして、SrCO3 、Pb3 4 、CaCO3 、Bi2 3 、TiO2 、SnO2 、希土類元素酸化物を混合し、950℃で仮焼し、940〜1240℃で焼成して作製されている。この誘電体磁器組成物では、測定周波数1kHzでの比誘電率が1240〜1470、誘電損失tanδが0.25〜0.36%であった。
【0007】
【発明が解決しようとする課題】
しかしながら、特公昭57−37963号公報および特公平7−45337号公報に開示された誘電体磁器組成物では、1500よりも高い比誘電率を有し、かつ0.2%以下の低損失を達成できなかった。
【0008】
即ち、一般的に比誘電率が高い誘電体磁器組成物は誘電損失が大きくなる傾向があり、比誘電率を上げれば誘電損失が大きくなり、例えば、上記したように、高周波大電流回路では損失による自己加熱が問題となっていた。
【0009】
本発明は、1500よりも高い比誘電率εrを有し、かつ誘電損失tanδが0.2%以下の誘電体磁器を提供することを目的とするもので、フィルムコンデンサと同等の特性を有し、良好な比誘電率の温度特性を有し、特に高周波領域において有用な誘電体磁器および積層セラミックコンデンサを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の誘電体磁器では、金属元素として少なくともSr、Ba、Pb、Bi、Tiを含有し、これらの金属元素の原子比による組成式を
(Sr1−v−w−x−yBaCaPbBi)Ti3+a
と表した時、前記v、w、x、yおよびzが
0.01≦v≦0.05
0 ≦w≦0.20
0.05≦x≦0.20
0.01≦y≦0.30
1.00≦z≦1.20
v+w+x+y≦0.50
aは過剰酸素量を満足するものを主成分とし、この主成分100重量部に対して、LiおよびBのうち少なくとも1種を含有するガラス成分を0.1〜10.0重量部の割合で含有し、かつペロブスカイト型結晶相を主結晶相とする誘電体磁器であって、X線回折における前記ペロブスカイト型結晶相の(110)面の主ピークと、前記ペロブスカイト型結晶相の(100)面の主ピークとの間に、Biを含有する結晶のピークが存在し、該Bi含有結晶相のピーク強度が、前記(110)面の主ピークの強度の3%以下であり、かつ測定周波数1kHzでの比誘電率が1500よりも大きく、誘電損失が0.2%以下であることを特徴とする。
【0011】
また、本発明の積層セラミックコンデンサは、誘電体層と内部電極層とを交互に積層してなる積層セラミックコンデンサであって、前記誘電体層が請求項2記載の誘電体磁器からなり、内部電極層が、Pdの含有率が40重量%以下のAg−Pd合金からなることを特徴とする。
【0012】
【作用】
本発明の誘電体磁器では、ペロブスカイト型結晶相の(110)面の主ピークと(100)面の主ピークとの間の、Biを含有する異相のピークの強度が、(110)面の主ピークの強度の3%以下であるため、Biの殆どはペロブスカイト型結晶相に固溶することになり、高誘電率のペロブスカイト型結晶相が増加し、低誘電率で誘電損失の大きなBiを含有する異相が減少することになり、このため、測定周波数1kHzでの比誘電率を1500より大きく、誘電損失を0.2%以下とすることができる。
【0013】
従来の特公昭57−37963号公報および特公平7−45337号公報に開示された誘電体磁器は、基本成分を950℃程度で仮焼し、高誘電率のペロブスカイト相を析出させているが、仮焼温度が低いためBiがペロブスカイト相中に固溶せず、あるいは固溶してもその固溶量は少なく、本願で言うBiを含有するBi含有結晶相(異相)として存在していると考えられ、このため比誘電率が1500以下と小さく、しかも誘電損失も大きいと考えられる。
【0014】
本願では、Biをペロブスカイト相中に固溶させるために、1100℃以上の仮焼温度で反応させている。このため、Biが高誘電率のペロブスカイト相中に大量に固溶し、Biを含有する異相のピークの強度が(110)面の主ピークの強度の3%以下となり上記したような作用効果を有するのである。
【0015】
さらに、本発明の誘電体磁器では、Baを含有することにより、比誘電率(静電容量)の温度特性を大きく向上できる。
【0016】
さらに、誘電体磁器として、主成分100重量部に対して、LiおよびBのうち少なくとも1種を含有するガラス成分を0.1〜10重量部含有することにより、1000〜1150℃の低温焼成化が可能となる。このため、内部電極として、Pd含有量の少ない、AgPd電極材料を用いることができ、PdとBiとの反応を抑えることが可能となり、内部電極との同時焼成が可能となる。
【0017】
【発明の実施の形態】
本発明の誘電体磁器は、X線回折におけるペロブスカイト型結晶相の(110)面の主ピークと、ペロブスカイト型結晶相の(100)面の主ピークとの間に検出され、かつBiを含有するBi含有結晶相(異相)のピークの強度を、(110)面の主ピークの強度の3%以下としたものである。
【0018】
ここで、Biを含む異相の割合を(110)面の主ピークの強度の3%以下と限定した理由は、Biがペロブスカイ相中に固溶することにより、高誘電率、低損失、温度特性に優れた材料となるからであり、Biが固溶せずに、(110)面の主ピークの強度の3%よりも多く異相を形成すると、いずれの特性も劣化してしまうからである。この異相のピークは存在しない方が望ましいが、Biをペロブスカイト相中に固溶させるためにBiを添加するため、全く存在しないということはあり得ないと考えられる。異相のピーク強度は、(110)面の主ピークの強度の1%以下、特に0.5%以下が望ましい。
【0019】
尚、ペロブスカイト型結晶相の(110)面の主ピークと、ペロブスカイト型結晶相の(100)面の主ピークは、それぞれ単一のピークからなることが、高誘電率および低損失という観点から望ましい。
【0020】
ペロブスカイト型結晶相の(110)面のピークは、X線源としてCu−kα線を用いた場合、X線回析図において、2θ=32度付近に生じ、また、(100)面のピークは2θ=23度付近に生じる。そして、これらのピークの間にBiを含有する異相が生じるが、異相としては、Bi4 Ti3 12、Bi2 Ti2 7 、SrBi4 Ti4 13、Sr2 Bi4 Ti5 14、PbBi4 Ti4 13、Pb2 Bi4 Ti5 14等があり、これらは、主に2θ=30度付近に生じる。その他の結晶相としてTiO2 が析出する場合もある。
【0021】
また、本発明の誘電体磁器では、Mg、Zr、Nb、Al、Fe等の不純物が混入しても良いし、粉砕ボールからのボール成分が混入する場合もある。さらに、本発明の誘電体磁器組成物では、CuO、MnO2 、Al2 3 等を添加しても良い。
【0022】
本発明の誘電体磁器は、モル比による組成式を(Sr1-v-w-x-y Bav Caw Pbx Biy )Tiz 3+a と表した時、前記v、w、x、y、およびzが、0.01≦v≦0.05、0≦w≦0.20、0.05≦x≦0.20、0.01≦y≦0.30、1.00≦z≦1.20、v+w+x+y≦0.50を満足することが望ましい。
【0023】
ここで、Aサイト中のSrのBaによる置換量vを0.01〜0.05としたのは、vが0.01より小さい場合は、温度特性が悪く、0.05よりも大きい場合には誘電損失が大きくなるからである。vは、温度特性を向上するという観点から0.02≦v≦0.04であることが望ましい。
【0024】
また、Aサイト中のSrのCaによる置換量wを0〜0.2としたのは、wが0.2よりも大きい場合には比誘電率が低くなるからである。wは、比誘電率を向上するという観点から0.04≦w≦0.13であることが望ましい。
【0025】
また、Aサイト中のSrのPbによる置換量xを0.05〜0.2としたのは、xが0.05よりも小さい場合には比誘電率が低く、一方0.2よりも大きい場合には誘電損失が大きくなるからである。xは、比誘電率および誘電損失の点から、0.10≦x≦0.17が望ましい。
【0026】
さらに、Aサイト中のSrのBiによる置換量yを0.01〜0.3としたのは、yが0.01よりも小さい場合には誘電損失が悪く、yが0.30よりも大きくなると比誘電率が低くなるからである。yは、比誘電率および誘電損失の点から、0.13≦y≦0.24が望ましい。
【0027】
また、B/A比を示すzを1〜1.2としたのは、zが1よりも小さい場合には比誘電率が低く、誘電損失が悪く、zが1.20よりも大きくなると比誘電率が低くなる傾向にあるからである。zは、比誘電率および誘電損失の点から、1.1≦z≦1.2が望ましい。
【0028】
さらに、Aサイト中のSrのBa、Ca、Pb、Biによる置換量v+w+x+yを0.50以下としたのは、0.5よりも多い場合には誘電損失が大きくなるからである。特に、比誘電率向上という観点から、0.30≦v+w+x+y≦0.40が望ましい。また、上記組成式におけるaは、過剰酸素量を示しており、aは0〜0.55であり、0.15〜0.4であることが望ましい。
【0029】
そして、本発明の誘電体磁器では、上記主成分100重量部に対して、LiおよびBのうち少なくとも1種を含有するガラス成分を0.1〜10.0重量部の割合で含有することが重要である。ガラス成分の量が0.1重量部未満では添加効果が無く、10重量部以上では比誘電率が低下し、誘電損失も増大するからである。添加成分にLiおよびBのうち少なくとも一種を含有せしめたのは、Li、Bを含まないと誘電特性を劣化させずに、焼成温度が1150℃以下とならないからである。添加量は、誘電損失を小さくするという観点から0.5〜5重量部が望ましい。
【0030】
本発明の誘電体磁器は、例えば、SrCO3 、BaCO3 、CaCO3 、PbO、Bi2 3 、TiO2 の各原料粉末を所定量となるように秤量し、混合粉砕し、これを1100〜1200℃の温度で大気中で1〜3時間仮焼する。仮焼温度は、Biのペロブスカイト相への固溶を促進するという観点から1150℃以上が望ましい。
【0031】
得られた仮焼物と、所望により所定量の添加成分を秤量し、混合粉砕し、例えば、ドクターブレード法等の公知手段により成形し、大気中等の酸化性雰囲気において1000〜1200℃において0.5〜2時間焼成を行い、本発明の誘電体磁器が得られる。
【0032】
また、本発明の積層セラミックコンデンサは、誘電体層と内部電極層を交互に積層してなる積層セラミックコンデンサであって、前記誘電体層が上記の誘電体磁器からなり、内部電極層が、Pdの含有率が40重量%以下、特に30重量%以下のAg−Pd合金からなるものである。
【0033】
このような積層セラミックコンデンサは、上記のように、SrCO3 、BaCO3 、CaCO3 、PbO、Bi2 3 、TiO2 の各原料粉末を混合し、これらを仮焼して得られた仮焼物と、Liおよび/またはBを含有するガラス成分を所定量秤量し、混合粉砕し、例えば、ドクターブレード法によりフィルム状シートを作製する。
【0034】
このフィルム状シートの上面に、Pdの含有率が40重量%以下のAg−Pd合金からなる内部電極ペーストをスクリーン印刷法等により印刷した後、内部電極ペーストが塗布されたフィルム状シートを複数積層、熱圧着プレス、カットし、脱バインダー処理後、1050〜1200℃において0.5〜2時間焼成を行い、タンブリング後、端子電極の焼き付け、メッキ後、本発明の積層セラミックコンデンサが得られる。
【0035】
【実施例】
参考例
先ず、純度99%以上のSrCO、BaCO、CaCO、PbO、Bi、TiOの各原料粉末を表1に示す割合で秤量し、該原料粉末に媒体として純水を加えて24時間ZrOボールを用いたボールミルにて混合した後、該混合物を乾燥し、次いで、該乾燥物を1150℃の温度で大気中2時間仮焼した。得られた仮焼物を、分散剤、分散媒とともに24時間ボールミルにて混合粉砕し、原料スラリーを調整した。尚、No.18、23、24、28については、仮焼温度を950℃とした。
【0036】
このスラリーに有機バインダー、可塑剤を加え、十分撹拌後ドクターブレード法により45μmのフィルム状シートに成形した。このフィルム状シートを33層積層し、熱圧着後切断して試料を得た。この試料を大気中、300℃の温度で4時間加熱して脱バインダー処理し、引き続いて1200℃で大気中で2時間焼成し、直径10mm×1mmの試料を得た。この試料の両面にIn−Ga電極を塗布し、評価試料を作製した。
【0037】
次にこれらの評価試料を、LCRメーター4284Aを用いて、周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量を測定した。静電容量から比誘電率を算出した。また、得られた磁器を乳鉢で粉末状に解砕し、Cu−Kα線を用いたX線回折の測定を行い、ペロブスカイト型結晶相の主ピーク(110)の強度に対する、ペロブスカイト型結晶相の主ピーク(110)と、ペロブスカイト型結晶相のピーク(100)との間に検出される、Biを含む異相のピークの強度比を測定した。この結果を表2に示す。
【0038】
また、Sr、Ba、Ca、Pb、Biの合計モル数をAとし、Tiのモル数をBとした時B/A(表1のz)を求め、この値も記載した。
【0039】
さらに、−25〜85℃の範囲において|△C/C|max で表される最大容量変化率を求め、これについて表2に記載した。ここで、△Cは25℃の時の静電容量(C)を基準として−25〜85℃の範囲において最も変化が大きい場合の静電容量変化を示しており、最大容量変化率(%)は、△C/Cの値の絶対値により表される。これらの結果を表2に記載した。
【0040】
【表1】

Figure 0003814401
【0041】
【表2】
Figure 0003814401
【0042】
これらの表1、2によれば、本発明の誘電体磁器は、比誘電率εrが1500より高く、測定周波数1kHzでの誘電損失が0.20%以下を満足する優れた特性を有することが判る。また、Baを含有しない試料No1では最大容量変化率が16%であるのに対して、本願発明の試料では10%未満であり、温度特性が大きく向上していることが判る。なお試料No.2、24のX線回折チャートを図1及び図2に示す。
【0043】
実施例
先ず、純度99%以上のSrCO、BaCO、CaCO、PbO、Bi、TiOの各原料粉末を表3に示す割合で秤量し、該原料粉末に媒体として純水を加えて24時間ボールミルにて混合した後、該混合物を乾燥し、次いで、該乾燥物を1150℃の温度で大気中2時間仮焼した。得られた仮焼物に表5に示すガラス成分の内1種を表3に示す所定量の割合で加え、分散剤、分散媒とともに24時間ボールミルにて混合粉砕し、原料スラリーを調整した。尚、No.51、52、56については、仮焼温度を950℃とした。
【0044】
このスラリーに有機バインダー、可塑剤を加え、十分撹拌後ドクターブレード法によりフィルム状に成形した。このフィルムを積層、熱圧着後切断して試料を得た。この試料を大気中、300℃の温度で4時間加熱して脱バインダー処理し、引き続いて1100℃で大気中で2時間焼成し、直径10mm×1mmの試料を得た。この試料の両面にIn−Ga電極を塗布し、評価試料を作製した。また得られた試料を平面研磨を行い厚み100μmの試料を得た。この両面にAuを蒸着し、電極とした。
【0045】
次にこれらの評価試料を、LCRメーター4274Aを用いて、周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量を測定した。静電容量から比誘電率を算出した。また、厚み100μmの試料にDC200Vを印可し、無印可時との容量から、変化率を算出した(DCバイアス特性)。また、得られた磁器を乳鉢で粉末状に解砕し、Cu−Kα線を用いたX線回折の測定を行い、参考例と同様にBiを含む異相のピークの強度比を測定した。これらの結果を表4に示す。また、Sr、Ba、Ca、Pb、Biの合計モル数をAとし、Tiのモル数をBとした時B/A(表3のz)を求め、この値も記載した。
【0046】
また、最大容量変化率についても、参考例と同様にして求め、その結果も表4に示した。
【0047】
【表3】
Figure 0003814401
【0048】
【表4】
Figure 0003814401
【0049】
【表5】
Figure 0003814401
【0050】
これらの表3〜5によれば、本発明の誘電体磁器は、比誘電率εrが1500より高く、1kHzでの誘電損失が0.20%以下、DCバイアス特性が±10%以内(DC2kV/mm)の優れた特性を有することがわかる。尚また、Baを含有しない試料No29では最大容量変化率が16%であるのに対して、本願発明の試料では、10%未満であり、温度特性が向上していることが判る。
【0051】
実施例2
先ず、純度99%以上のSrCO、BaCO、CaCO、PbO、Bi、TiOの各原料粉末を表6に示す割合で秤量し、該原料粉末に媒体として純水を加えて24時間ボールミルにて混合した後、該混合物を乾燥し、次いで、該乾燥物を1150℃の温度で大気中2時間仮焼した。得られた仮焼物に表5に示すガラス成分を表6に示す量だけ加え、分散剤、分散媒とともに24時間ボールミルにて混合粉砕し、原料スラリーを調整した。尚、No.87、88、92については、仮焼温度を950℃とした。
【0052】
このスラリーに有機バインダー、可塑剤を加え、十分攪拌後ドクターブレード法により厚み45μmのフィルム状シートに成形した。このフィルム状シートに、内部電極用に調整したAg−Pdペースト(Ag70重量%、Pd30重量%)をスクリーン印刷法により印刷した後、ダミー層を加えて20層積層し、熱圧着後、切断した。
【0053】
これを大気中、300℃の温度で4時間加熱して脱バインダー処理し、引き続いて1100℃で大気中で2時間焼成した。タンブリング後、端子電極用に調整したAgペーストを端面に塗布、700℃、大気中で焼き付け、メッキを行い端子電極とし、磁器の寸法3.2mm×1.6mm、有効電極面積2.0×1.0mm、誘電体厚み30μm×10層の積層コンデンサを作製した。
【0054】
次にこれらのコンデンサを、LCRメーター4274Aを用いて、周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量を測定した。静電容量から比誘電率を算出した。また、試料にDC60Vを印可し、無印可時との容量から、変化率を算出した(DCバイアス特性)。また、内部電極を印刷しない磁器を乳鉢で粉末状に解砕し、Cu−Kα線を用いたX線回折の測定を行い、参考例と同様にBiを含む異相のピークの強度比を測定した。これらの結果を表7に示す。
【0055】
また、Sr、Ba、Ca、Pb、Biの合計モル数をAとし、Tiのモル数をBとした時B/A(表6のz)を求め、この値も記載した。また、最大容量変化率についても、参考例と同様にして求め、その結果も表7に示した。
【0056】
【表6】
Figure 0003814401
【0057】
【表7】
Figure 0003814401
【0058】
これらの表6、7によれば、本発明の積層セラミックコンデンサは、焼成温度1100℃で焼成可能であり、Agリッチの内部電極と同時焼成可能であり、比誘電率εrが1500より高く、測定周波数1kHzでの誘電損失が0.20%以下、DCバイアス特性が±10%以内(DC2kV/mm)の優れた特性を有することがわかる。また、最大容量変化率が10%未満であり、温度特性に優れたコンデンサが得られる。
【0059】
【発明の効果】
以上詳述した通り、本発明の誘電体磁器は、1500より高い比誘電率を有するとともに、誘電損失が0.2%以下と小さく、かつ静電容量の電圧依存性(DCバイアス特性)にも優れ、フィルムコンデンサと同等の特性を有し、特に高周波領域において有用な誘電体磁器及び積層セラミックコンデンサを得ることができる。そしてBaを特定範囲で含有せしめることにより、温度特性を大きく向上できる。
【図面の簡単な説明】
【図1】試料No.2のX線回折図である。
【図2】比較例の試料No.24のX線回折図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic and a multilayer ceramic capacitor, and more particularly to a dielectric ceramic that is preferably used in a high frequency region and has a high dielectric constant and low loss, and a multilayer ceramic capacitor using the dielectric ceramic.
[0002]
[Prior art]
With the recent development of electronics, the frequency and size of electronic circuits are rapidly increasing, and electronic components are also required to have high frequency and size. In particular, in a high-frequency, high-current circuit, self-heating due to loss may be a problem, and in this case, a low-loss capacitor is used.
[0003]
Conventionally, as such a capacitor, a film capacitor having characteristics such as low loss, temperature characteristics, and low voltage dependence has been used. However, most film capacitors are of the mold type and cannot cope with downsizing and surface mounting.
[0004]
As dielectric ceramic compositions used in the low loss and high capacity region, those disclosed in Japanese Patent Publication No. 57-37963 and Japanese Patent Publication No. 7-45337 are known.
[0005]
The dielectric ceramic composition disclosed in JP-B-57-37963 is composed of a basic component composed of Sr, Ti, Bi, Pb and Ca and an additive component composed of Cu and Mn. Then, SrTiO 3 , Bi 2 O 3 , TiO 2 , PbTiO 3 , CaTiO 3 , CuO, and MnCO 3 are mixed, calcined at 930 ° C., and calcined at 1200 to 1400 ° C. In this dielectric ceramic composition, the relative dielectric constant at a measurement frequency of 1 kHz was 500 to 1500, and the dielectric loss tan δ was 0.15 to 0.5%.
[0006]
The dielectric ceramic composition disclosed in Japanese Patent Publication No. 7-45337 is composed of a basic component composed of Sr, Ti, Bi, Pb, Ca and Sn, a rare earth oxide, and a glass component. . Then, SrCO 3 , Pb 3 O 4 , CaCO 3 , Bi 2 O 3 , TiO 2 , SnO 2 , rare earth element oxide are mixed, calcined at 950 ° C., and calcined at 940 to 1240 ° C. Yes. In this dielectric ceramic composition, the relative dielectric constant at a measurement frequency of 1 kHz was 1240 to 1470, and the dielectric loss tan δ was 0.25 to 0.36%.
[0007]
[Problems to be solved by the invention]
However, the dielectric ceramic composition disclosed in Japanese Patent Publication Nos. 57-37963 and 7-45337 has a relative dielectric constant higher than 1500 and achieves a low loss of 0.2% or less. could not.
[0008]
That is, in general, dielectric ceramic compositions having a high relative dielectric constant tend to have a large dielectric loss. Increasing the relative dielectric constant increases the dielectric loss. For example, as described above, the loss is lost in a high-frequency high-current circuit. Self-heating due to was a problem.
[0009]
The present invention aims to provide a dielectric ceramic having a relative dielectric constant εr higher than 1500 and a dielectric loss tan δ of 0.2% or less, and has the same characteristics as a film capacitor. An object of the present invention is to provide a dielectric ceramic and a multilayer ceramic capacitor which have a temperature characteristic of a good relative dielectric constant and are particularly useful in a high frequency region.
[0010]
[Means for Solving the Problems]
In the dielectric ceramic according to the present invention, at least Sr, Ba, Pb, Bi, and Ti are contained as metal elements, and a composition formula according to an atomic ratio of these metal elements is represented by (Sr 1−vw−xy Ba v Ca w Pb x Bi y ) Ti z O 3 + a
And v, w, x, y and z are 0.01 ≦ v ≦ 0.05.
0 ≤ w ≤ 0.20
0.05 ≦ x ≦ 0.20
0.01 ≦ y ≦ 0.30
1.00 ≦ z ≦ 1.20
v + w + x + y ≦ 0.50
The main component is a material that satisfies the excess oxygen amount, and the glass component containing at least one of Li and B in a proportion of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the main component. A dielectric ceramic containing a perovskite crystal phase as a main crystal phase, the main peak of the (110) plane of the perovskite crystal phase in X-ray diffraction, and the (100) plane of the perovskite crystal phase There is a peak of a crystal containing Bi between the main peak and the peak intensity of the Bi-containing crystal phase is 3% or less of the intensity of the main peak of the (110) plane, and the measurement frequency is 1 kHz. The dielectric constant is greater than 1500 and the dielectric loss is 0.2% or less.
[0011]
The multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor formed by alternately laminating dielectric layers and internal electrode layers, wherein the dielectric layer comprises the dielectric ceramic according to claim 2, The layer is made of an Ag—Pd alloy having a Pd content of 40% by weight or less.
[0012]
[Action]
In the dielectric ceramic according to the present invention, the intensity of the peak of the different phase containing Bi between the main peak of the (110) plane and the main peak of the (100) plane of the perovskite crystal phase is the main peak of the (110) plane. Since it is 3% or less of the peak intensity, most of Bi is dissolved in the perovskite type crystal phase, and the perovskite type crystal phase with a high dielectric constant increases and contains Bi with a low dielectric constant and a large dielectric loss. Therefore, the relative dielectric constant at the measurement frequency of 1 kHz can be larger than 1500 and the dielectric loss can be 0.2% or less.
[0013]
The dielectric ceramics disclosed in the conventional Japanese Examined Patent Publication Nos. 57-37963 and 7-45337 are calcined at about 950 ° C. to precipitate a perovskite phase having a high dielectric constant. Since the calcining temperature is low, Bi does not dissolve in the perovskite phase, or even if it dissolves, the amount of the solid solution is small, and it exists as a Bi-containing crystal phase (heterogeneous phase) containing Bi as used herein. Therefore, it is considered that the relative dielectric constant is as small as 1500 or less and the dielectric loss is also large.
[0014]
In the present application, in order to dissolve Bi in the perovskite phase, the reaction is performed at a calcination temperature of 1100 ° C. or higher. For this reason, Bi is solid-dissolved in a large amount in the perovskite phase having a high dielectric constant, and the intensity of the peak of the heterogeneous phase containing Bi is 3% or less of the intensity of the main peak on the (110) plane. Have.
[0015]
Furthermore, in the dielectric ceramic according to the present invention, the temperature characteristic of relative permittivity (capacitance) can be greatly improved by containing Ba.
[0016]
Furthermore, as a dielectric ceramic, by containing 0.1 to 10 parts by weight of a glass component containing at least one of Li and B with respect to 100 parts by weight of the main component, low-temperature firing at 1000 to 1150 ° C. Is possible. For this reason, an AgPd electrode material with a low Pd content can be used as the internal electrode, the reaction between Pd and Bi can be suppressed, and simultaneous firing with the internal electrode is possible.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric ceramic of the present invention is detected between the main peak of the (110) plane of the perovskite crystal phase and the main peak of the (100) plane of the perovskite crystal phase in X-ray diffraction, and contains Bi. The intensity of the peak of the Bi-containing crystal phase (heterophase) is 3% or less of the intensity of the main peak on the (110) plane.
[0018]
Here, the reason why the ratio of the heterogeneous phase containing Bi is limited to 3% or less of the intensity of the main peak of the (110) plane is that Bi is solid-dissolved in the perovskite phase, resulting in high dielectric constant, low loss, and temperature characteristics. This is because if Bi is not dissolved, and if a different phase is formed in an amount larger than 3% of the intensity of the main peak of the (110) plane, all the characteristics will be deteriorated. Although it is desirable that this heterogeneous peak does not exist, it is considered impossible to exist at all because Bi is added to dissolve Bi in the perovskite phase. The peak intensity of the heterophase is preferably 1% or less, particularly 0.5% or less of the intensity of the main peak on the (110) plane.
[0019]
The main peak of the (110) plane of the perovskite type crystal phase and the main peak of the (100) plane of the perovskite type crystal phase are each preferably a single peak from the viewpoint of high dielectric constant and low loss. .
[0020]
The peak of the (110) plane of the perovskite type crystal phase occurs near 2θ = 32 degrees in the X-ray diffraction diagram when Cu-kα ray is used as the X-ray source, and the peak of the (100) plane is It occurs around 2θ = 23 degrees. A heterogeneous phase containing Bi is produced between these peaks. Examples of the heterogeneous phase include Bi 4 Ti 3 O 12 , Bi 2 Ti 2 O 7 , SrBi 4 Ti 4 O 13 , and Sr 2 Bi 4 Ti 5 O 14. , PbBi 4 Ti 4 O 13 , Pb 2 Bi 4 Ti 5 O 14, etc., which mainly occur around 2θ = 30 degrees. In some cases, TiO 2 precipitates as another crystal phase.
[0021]
In the dielectric ceramic according to the present invention, impurities such as Mg, Zr, Nb, Al, and Fe may be mixed, or a ball component from a pulverized ball may be mixed. Furthermore, CuO, MnO 2 , Al 2 O 3 or the like may be added to the dielectric ceramic composition of the present invention.
[0022]
The dielectric ceramic of the present invention, when expressed the composition formula by molar ratio (Sr 1-vwxy Ba v Ca w Pb x Bi y) Ti z O 3 + a, wherein v, w, x, y, and z 0.01 ≦ v ≦ 0.05, 0 ≦ w ≦ 0.20, 0.05 ≦ x ≦ 0.20, 0.01 ≦ y ≦ 0.30, 1.00 ≦ z ≦ 1.20, It is desirable to satisfy v + w + x + y ≦ 0.50.
[0023]
Here, the substitution amount v of Sr in the A site with Ba is set to 0.01 to 0.05 when the temperature characteristic is bad when v is smaller than 0.01 and larger than 0.05. This is because the dielectric loss increases. v is preferably 0.02 ≦ v ≦ 0.04 from the viewpoint of improving temperature characteristics.
[0024]
The reason why the substitution amount w of Sr in the A site by Ca is set to 0 to 0.2 is that the relative dielectric constant is lowered when w is larger than 0.2. w is preferably 0.04 ≦ w ≦ 0.13 from the viewpoint of improving the relative permittivity.
[0025]
The reason why the substitution amount x of Sr in the A site by Pb is set to 0.05 to 0.2 is that when x is smaller than 0.05, the relative dielectric constant is low, while it is larger than 0.2. This is because the dielectric loss increases in some cases. x is preferably 0.10 ≦ x ≦ 0.17 in terms of relative permittivity and dielectric loss.
[0026]
Furthermore, the substitution amount y of Sr in the A site by Bi is set to 0.01 to 0.3 because the dielectric loss is poor when y is smaller than 0.01 and y is larger than 0.30. This is because the relative dielectric constant becomes low. y is preferably 0.13 ≦ y ≦ 0.24 from the viewpoint of relative permittivity and dielectric loss.
[0027]
Also, z indicating the B / A ratio was set to 1 to 1.2 when the z is smaller than 1, the relative dielectric constant is low, the dielectric loss is poor, and the z is larger than 1.20. This is because the dielectric constant tends to be low. z is preferably 1.1 ≦ z ≦ 1.2 in terms of relative permittivity and dielectric loss.
[0028]
Furthermore, the reason why the substitution amount v + w + x + y of Sr in the A site by Ba, Ca, Pb, and Bi is set to 0.50 or less is that when it exceeds 0.5, the dielectric loss increases. In particular, 0.30 ≦ v + w + x + y ≦ 0.40 is desirable from the viewpoint of improving the dielectric constant. Further, a in the above composition formula represents the amount of excess oxygen, and a is 0 to 0.55, and preferably 0.15 to 0.4.
[0029]
And in the dielectric ceramic of this invention, it contains 0.1 to 10.0 weight part of glass components containing at least one of Li and B with respect to 100 weight parts of the main component. Is important . This is because if the amount of the glass component is less than 0.1 parts by weight, there is no effect of addition, and if it is 10 parts by weight or more, the relative dielectric constant decreases and the dielectric loss also increases. The reason why at least one of Li and B is contained in the additive component is that the firing temperature does not become 1150 ° C. or lower without deteriorating the dielectric characteristics unless Li and B are contained. The addition amount is preferably 0.5 to 5 parts by weight from the viewpoint of reducing dielectric loss.
[0030]
In the dielectric ceramic of the present invention, for example, each raw material powder of SrCO 3 , BaCO 3 , CaCO 3 , PbO, Bi 2 O 3 and TiO 2 is weighed to a predetermined amount, mixed and pulverized, Calcination is performed at a temperature of 1200 ° C. in the air for 1 to 3 hours. The calcination temperature is preferably 1150 ° C. or higher from the viewpoint of promoting solid solution of Bi in the perovskite phase.
[0031]
The obtained calcined product and, if desired, a predetermined amount of additional components are weighed, mixed and pulverized, and molded by a known means such as a doctor blade method, and 0.5 at 1000 to 1200 ° C. in an oxidizing atmosphere such as the air. The dielectric ceramic of the present invention is obtained by firing for ˜2 hours.
[0032]
The multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor in which dielectric layers and internal electrode layers are alternately stacked, wherein the dielectric layer is composed of the above dielectric ceramic, and the internal electrode layer is Pd. Is made of an Ag—Pd alloy having a content of 40 wt% or less, particularly 30 wt% or less.
[0033]
Such a multilayer ceramic capacitor is obtained by mixing raw material powders of SrCO 3 , BaCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 and calcining them as described above. Then, a predetermined amount of a glass component containing Li and / or B is weighed, mixed and pulverized, and a film-like sheet is produced by, for example, a doctor blade method.
[0034]
On the upper surface of the film-like sheet, an internal electrode paste made of an Ag—Pd alloy having a Pd content of 40% by weight or less is printed by a screen printing method or the like, and then a plurality of film-like sheets coated with the internal electrode paste are laminated. After the thermocompression pressing, cutting and debinding treatment, firing is carried out at 1050 to 1200 ° C. for 0.5 to 2 hours, tumbling, terminal electrode baking and plating, and then the multilayer ceramic capacitor of the present invention is obtained.
[0035]
【Example】
Reference example First, each raw material powder of SrCO 3 , BaCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 having a purity of 99% or more was weighed in the proportions shown in Table 1, and a medium was added to the raw material powder. After adding pure water and mixing in a ball mill using ZrO 2 balls for 24 hours, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 2 hours. The obtained calcined product was mixed and ground in a ball mill for 24 hours together with a dispersant and a dispersion medium to prepare a raw material slurry. No. For 18, 23, 24 and 28, the calcining temperature was 950 ° C.
[0036]
An organic binder and a plasticizer were added to this slurry, and after sufficient stirring, it was formed into a 45 μm film-like sheet by the doctor blade method. 33 layers of this film-like sheet were laminated and cut after thermocompression bonding to obtain a sample. This sample was heated in the atmosphere at a temperature of 300 ° C. for 4 hours to remove the binder, and subsequently baked in the atmosphere at 1200 ° C. for 2 hours to obtain a sample having a diameter of 10 mm × 1 mm. An In—Ga electrode was applied to both surfaces of this sample to prepare an evaluation sample.
[0037]
Next, the capacitance of these evaluation samples was measured at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms using an LCR meter 4284A. The relative dielectric constant was calculated from the capacitance. Further, the obtained porcelain was crushed into a powder form in a mortar, and X-ray diffraction was measured using Cu-Kα rays. The perovskite crystal phase was intensified with respect to the intensity of the main peak (110) of the perovskite crystal phase. The intensity ratio of the peak of the different phase containing Bi, detected between the main peak (110) and the peak (100) of the perovskite crystal phase, was measured. The results are shown in Table 2.
[0038]
Further, B / A (z in Table 1) was obtained when the total number of moles of Sr, Ba, Ca, Pb and Bi was A, and the mole number of Ti was B, and this value was also described.
[0039]
Furthermore, the maximum capacity change rate represented by | ΔC / C | max in the range of −25 to 85 ° C. was determined and described in Table 2. Here, ΔC indicates the change in capacitance when the change is greatest in the range of −25 to 85 ° C. with reference to the capacitance (C) at 25 ° C., and the maximum change rate (%) Is represented by the absolute value of ΔC / C. These results are shown in Table 2.
[0040]
[Table 1]
Figure 0003814401
[0041]
[Table 2]
Figure 0003814401
[0042]
According to Tables 1 and 2, the dielectric ceramic according to the present invention has excellent characteristics that the relative dielectric constant εr is higher than 1500 and the dielectric loss at the measurement frequency of 1 kHz is 0.20% or less. I understand. In addition, the sample No1 that does not contain Ba has a maximum capacity change rate of 16%, whereas the sample of the present invention is less than 10%, indicating that the temperature characteristics are greatly improved. Sample No. The X-ray diffraction charts of Nos. 2 and 24 are shown in FIGS.
[0043]
Example 1
First, each raw material powder of SrCO 3 , BaCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 with a purity of 99% or more is weighed in the ratio shown in Table 3, and pure water is added to the raw material powder as a medium. After mixing in a ball mill for 24 hours, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 2 hours. One kind of the glass components shown in Table 5 was added to the obtained calcined product at a ratio of a predetermined amount shown in Table 3, and mixed and ground in a ball mill for 24 hours together with a dispersant and a dispersion medium to prepare a raw material slurry. No. For 51, 52, and 56, the calcining temperature was 950 ° C.
[0044]
An organic binder and a plasticizer were added to this slurry, and after sufficient stirring, it was formed into a film by a doctor blade method. This film was laminated, thermocompression bonded, and then cut to obtain a sample. This sample was heated in air at a temperature of 300 ° C. for 4 hours to remove the binder, and subsequently baked in air at 1100 ° C. for 2 hours to obtain a sample having a diameter of 10 mm × 1 mm. An In—Ga electrode was applied to both surfaces of this sample to prepare an evaluation sample. Further, the obtained sample was subjected to planar polishing to obtain a sample having a thickness of 100 μm. Au was vapor-deposited on both sides to form electrodes.
[0045]
Next, the capacitance of these evaluation samples was measured at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms using an LCR meter 4274A. The relative dielectric constant was calculated from the capacitance. Also, DC200V was applied to a sample having a thickness of 100 μm, and the rate of change was calculated from the capacity with and without application (DC bias characteristics). Moreover, the obtained porcelain was pulverized into a powder form in a mortar, and X-ray diffraction measurement using Cu-Kα rays was performed, and the intensity ratio of the heterophasic peak containing Bi was measured as in the reference example . These results are shown in Table 4. Further, B / A (z in Table 3) was obtained when the total number of moles of Sr, Ba, Ca, Pb and Bi was A, and the mole number of Ti was B, and this value was also described.
[0046]
Further, the maximum capacity change rate was determined in the same manner as in the reference example, and the results are also shown in Table 4.
[0047]
[Table 3]
Figure 0003814401
[0048]
[Table 4]
Figure 0003814401
[0049]
[Table 5]
Figure 0003814401
[0050]
According to these Tables 3 to 5, the dielectric ceramic of the present invention has a relative dielectric constant εr higher than 1500, a dielectric loss at 1 kHz of 0.20% or less, and a DC bias characteristic within ± 10% (DC 2 kV / mm). In Sample No. 29 containing no Ba, the maximum capacity change rate is 16%, whereas in the sample of the present invention, it is less than 10%, indicating that the temperature characteristics are improved.
[0051]
Example 2
First, each raw material powder of SrCO 3 , BaCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 with a purity of 99% or more was weighed in the ratio shown in Table 6, and pure water was added to the raw material powder as a medium. After mixing in a ball mill for 24 hours, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 2 hours. The glass components shown in Table 5 were added to the obtained calcined material in the amounts shown in Table 6, and mixed and ground in a ball mill for 24 hours together with a dispersant and a dispersion medium to prepare a raw material slurry. No. For 87, 88 and 92, the calcining temperature was 950 ° C.
[0052]
An organic binder and a plasticizer were added to the slurry, and after sufficient stirring, a film-like sheet having a thickness of 45 μm was formed by a doctor blade method. On this film-like sheet, an Ag—Pd paste (Ag 70 wt%, Pd 30 wt%) adjusted for internal electrodes was printed by a screen printing method, a dummy layer was added, 20 layers were laminated, thermocompression bonded, and then cut. .
[0053]
This was heated in the atmosphere at a temperature of 300 ° C. for 4 hours to remove the binder, and subsequently calcined at 1100 ° C. in the atmosphere for 2 hours. After tumbling, Ag paste adjusted for the terminal electrode is applied to the end face, baked in the atmosphere at 700 ° C. and plated to form the terminal electrode, the porcelain dimensions 3.2 mm × 1.6 mm, effective electrode area 2.0 × 1 A multilayer capacitor having a thickness of 0.0 mm and a dielectric thickness of 30 μm × 10 layers was produced.
[0054]
Next, the capacitance of these capacitors was measured at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms using an LCR meter 4274A. The relative dielectric constant was calculated from the capacitance. Moreover, DC60V was applied to the sample, and the rate of change was calculated from the capacity when no voltage was applied (DC bias characteristics). Moreover, the porcelain without printing the internal electrode was crushed into a powder form with a mortar, and X-ray diffraction was measured using Cu-Kα rays, and the intensity ratio of the peaks of the different phases containing Bi was measured as in the reference example . . These results are shown in Table 7.
[0055]
Further, B / A (z in Table 6) was obtained when the total number of moles of Sr, Ba, Ca, Pb and Bi was A, and the mole number of Ti was B, and this value was also described. Further, the maximum capacity change rate was determined in the same manner as in the reference example, and the results are also shown in Table 7.
[0056]
[Table 6]
Figure 0003814401
[0057]
[Table 7]
Figure 0003814401
[0058]
According to Tables 6 and 7, the multilayer ceramic capacitor of the present invention can be fired at a firing temperature of 1100 ° C., can be fired simultaneously with an Ag-rich internal electrode, has a relative dielectric constant εr higher than 1500, and is measured. It can be seen that the dielectric loss at a frequency of 1 kHz is 0.20% or less and the DC bias characteristics are within ± 10% (DC 2 kV / mm). Further, the maximum capacity change rate is less than 10%, and a capacitor having excellent temperature characteristics can be obtained.
[0059]
【The invention's effect】
As described in detail above, the dielectric ceramic of the present invention has a dielectric constant higher than 1500, a dielectric loss as small as 0.2% or less, and also has a voltage dependency (DC bias characteristic) of capacitance. A dielectric ceramic and a multilayer ceramic capacitor which are excellent and have characteristics equivalent to those of a film capacitor and are particularly useful in a high frequency region can be obtained. And by making Ba contain in a specific range, the temperature characteristics can be greatly improved.
[Brief description of the drawings]
FIG. 2 is an X-ray diffraction diagram of FIG.
2 is a sample No. of a comparative example. FIG. 24 is an X-ray diffraction diagram of 24.

Claims (2)

金属元素として少なくともSr、Ba、Pb、Bi、Tiを含有し、これらの金属元素の原子比による組成式を
(Sr1−v−w−x−yBaCaPbBi)Ti3+a
と表した時、前記v、w、x、yおよびzが
0.01≦v≦0.05
0 ≦w≦0.20
0.05≦x≦0.20
0.01≦y≦0.30
1.00≦z≦1.20
v+w+x+y≦0.50
aは過剰酸素量を満足するものを主成分とし、この主成分100重量部に対して、LiおよびBのうち少なくとも1種を含有するガラス成分を0.1〜10.0重量部の割合で含有し、かつペロブスカイト型結晶相を主結晶相とする誘電体磁器であって、X線回折における前記ペロブスカイト型結晶相の(110)面の主ピークと、前記ペロブスカイト型結晶相の(100)面の主ピークとの間に、Biを含有する結晶のピークが存在し、該Bi含有結晶相のピーク強度が、前記(110)面の主ピークの強度の3%以下であり、かつ測定周波数1kHzでの比誘電率が1500よりも大きく、誘電損失が0.2%以下であることを特徴とする誘電体磁器。
Contains at least Sr, Ba, Pb, Bi, Ti as a metal element, a composition formula by the atomic ratio of these metal elements (Sr 1-v-w- x-y Ba v Ca w Pb x Bi y) Ti z O 3 + a
And v, w, x, y and z are 0.01 ≦ v ≦ 0.05.
0 ≤ w ≤ 0.20
0.05 ≦ x ≦ 0.20
0.01 ≦ y ≦ 0.30
1.00 ≦ z ≦ 1.20
v + w + x + y ≦ 0.50
The main component is a material that satisfies the excess oxygen amount, and the glass component containing at least one of Li and B in a proportion of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the main component. A dielectric ceramic containing a perovskite crystal phase as a main crystal phase, the main peak of the (110) plane of the perovskite crystal phase in X-ray diffraction, and the (100) plane of the perovskite crystal phase There is a peak of a crystal containing Bi between the main peak and the peak intensity of the Bi-containing crystal phase is 3% or less of the intensity of the main peak of the (110) plane, and the measurement frequency is 1 kHz. A dielectric ceramic having a relative dielectric constant of greater than 1500 and a dielectric loss of 0.2% or less.
誘電体層と内部電極層とを交互に積層してなる積層セラミックコンデンサであって、前記誘電体層が請求項1に記載の誘電体磁器からなり、内部電極層が、Pdの含有率が40重量%以下のAg−Pd合金からなることを特徴とする積層セラミックコンデンサ。A multilayer ceramic capacitor in which dielectric layers and internal electrode layers are alternately laminated, wherein the dielectric layer comprises the dielectric ceramic according to claim 1, and the internal electrode layer has a Pd content of 40. A multilayer ceramic capacitor comprising an Ag-Pd alloy in an amount of not more than% by weight.
JP01883498A 1998-01-30 1998-01-30 Dielectric porcelain and multilayer ceramic capacitor Expired - Fee Related JP3814401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01883498A JP3814401B2 (en) 1998-01-30 1998-01-30 Dielectric porcelain and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01883498A JP3814401B2 (en) 1998-01-30 1998-01-30 Dielectric porcelain and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH11219844A JPH11219844A (en) 1999-08-10
JP3814401B2 true JP3814401B2 (en) 2006-08-30

Family

ID=11982605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01883498A Expired - Fee Related JP3814401B2 (en) 1998-01-30 1998-01-30 Dielectric porcelain and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3814401B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934352B2 (en) * 2000-03-31 2007-06-20 Tdk株式会社 Multilayer ceramic chip capacitor and manufacturing method thereof
JP3503568B2 (en) 2000-04-07 2004-03-08 株式会社村田製作所 Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
JP5103761B2 (en) * 2005-08-26 2012-12-19 Tdk株式会社 Electronic component, dielectric ceramic composition and method for producing the same
JP2007084418A (en) * 2005-08-26 2007-04-05 Tdk Corp Electronic component, dielectric porcelain composition and its producing method
JP6102405B2 (en) 2013-03-27 2017-03-29 Tdk株式会社 Dielectric porcelain composition and dielectric element

Also Published As

Publication number Publication date
JPH11219844A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US7498285B2 (en) Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same
US6628502B2 (en) Multilayer ceramic chip capacitor and method for producing same
JP3470703B2 (en) Non-reducing dielectric ceramic, multilayer ceramic capacitor using the same, and method for producing non-reducing dielectric ceramic
JP3503568B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
CN1287366A (en) Dielectric ceramic composition and single-chip ceramic capacitor
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
JP2005022891A (en) Dielectric porcelain and laminated electronic component
JP2022145817A (en) ceramic capacitor
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
JPH10310469A (en) Production of powdery starting material for dielectric ceramic and dielectric ceramic composition
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3588210B2 (en) Dielectric porcelain composition
JP2002274937A (en) Dielectric ceramic excellent in temperature characteristics
JP3512587B2 (en) Multilayer ceramic capacitors
JPH1174144A (en) Laminated ceramic capacitor
JP3350326B2 (en) Multilayer capacitors
JP2002226263A (en) Dielectric ceramic and laminated ceramic capacitor
JP2000185971A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2002270455A (en) Ceramic layered chip capacitor
JP2001240465A (en) Porcelain of dielectrics
CN114853472A (en) Dielectric composition and electronic component
KR0165557B1 (en) Ceramic composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040315

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees