JPH05109533A - Co base soft magnetic thin film and magnetic head using it - Google Patents

Co base soft magnetic thin film and magnetic head using it

Info

Publication number
JPH05109533A
JPH05109533A JP3266698A JP26669891A JPH05109533A JP H05109533 A JPH05109533 A JP H05109533A JP 3266698 A JP3266698 A JP 3266698A JP 26669891 A JP26669891 A JP 26669891A JP H05109533 A JPH05109533 A JP H05109533A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
film
magnetic thin
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3266698A
Other languages
Japanese (ja)
Inventor
Shigekazu Suwabe
繁和 諏訪部
Fujio Tokida
富士夫 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3266698A priority Critical patent/JPH05109533A/en
Publication of JPH05109533A publication Critical patent/JPH05109533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To realize a magnetic head suitable for a magnetic disc apparatus by obtaining a magnetic film having a heat resistance at 700 deg.C or more, a high saturation flux density of 1.5T or more, high permeability, low magnetostriction constant, and corrosion resistance to constitute a magnetic head using it for at least one of a magnetic gap forming face. CONSTITUTION:A Co base soft magnetic thin film which has a composition expressed by CoxTauZrvCw (x, u, v, w are atom % each) where the compositional range is 75<=x<=89, 3<=u<=8, 1<=v<=6, 5<=w<=15, 6<=u+v<=10, 2/3<=(u+v)/w<=1.2, x+u+v+w=100. A magnetic thin film where particularly 0.8<=(u+v)<=1.4 with fcc structure Co or Co-Fe, Ta, and Zr carbide coexisting in the texture and with the (111) face of the fcc structure Co precedently oriented in parallel in a substrate face. Further, a Co base magnetic thin film replaced by Fe in a part of Co and a composite type levitated magnetic head using this magnetic film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ディスク装置に用い
る磁気ヘッドのコア材料にかかわり、特に高飽和磁束密
度、高透磁率、低保磁力、低磁歪定数、耐熱性、耐食性
を有する軟磁性薄膜とそれを用いたコンポジット型磁気
ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core material of a magnetic head used in a magnetic disk device, and particularly to a soft magnetic thin film having high saturation magnetic flux density, high magnetic permeability, low coercive force, low magnetostriction constant, heat resistance and corrosion resistance. And a composite type magnetic head using the same.

【0002】[0002]

【従来の技術】図8、図9はハードディスク装置用の磁
気コアとそれを用いた浮上式のコンポジット型の磁気ヘ
ッドを示す斜視図である。磁気コア6は、磁性薄膜4を
介して磁気コア半体1,2がガラス3により接合され、
ボンディングガラス5により補強されている。この磁気
コア6はスライダ−7に形成された溝にモ−ルディング
ガラス8により固定され、浮上式コンポジット型磁気ヘ
ッドが構成されている。このように、浮上式コンポジッ
ト型磁気ヘッドは、磁気コアを補強するボンディングガ
ラス5と、磁気コアをスライダ−に固定するモ−ルディ
ングガラス8の2種類のガラスを用いる必要がある。ガ
ラス5は信頼性を確保するために550℃程度まで加熱
する必要があり、ガラス8は700℃以上で処理する必
要性がある。そのために、磁性薄膜にもこの熱履歴が加
わるため700℃以上の耐熱性が要求される。従来、7
00℃以上の耐熱性を有する軟磁性薄膜としては、主と
してFe−Al−Si系合金薄膜(特開昭61−234
509号公報等)が用いられてきた。しかしながら、F
e−Al−Si系合金薄膜の飽和磁束密度は最大1.1
T程度であり、記録媒体の保磁力の向上にともない、よ
り高い飽和磁束密度Bs≧1.5Tを有する軟磁性薄膜
が必要となってきている。そのために、高い飽和磁束密
度を有し、かつ耐熱性に優れた軟磁性薄膜の探索が必要
となってきている。その一例として、記録媒体が高保磁
力化したVTR用のMIGヘッドとしてCo基軟磁性薄
膜のCo−M−C膜(MはTi,Zr,Hf,Nb,T
a,Mo,Wのうち少なくとも一種以上の元素)や、C
oの一部を元素Tで置き換えたCo−T−M−C膜(T
はFe,Ni,Mnのうち少なくとも一種以上の元素)
が特開平2−229406号公報に、その軟磁性薄膜を
用いた磁気ヘッドが特開平2−123507号公報等に
開示されている。
2. Description of the Related Art FIGS. 8 and 9 are perspective views showing a magnetic core for a hard disk device and a levitation type composite magnetic head using the magnetic core. In the magnetic core 6, the magnetic core halves 1 and 2 are joined by the glass 3 via the magnetic thin film 4,
It is reinforced by the bonding glass 5. The magnetic core 6 is fixed to a groove formed in the slider 7 by molding glass 8 to form a flying composite magnetic head. As described above, the floating composite magnetic head needs to use two kinds of glass: the bonding glass 5 for reinforcing the magnetic core and the molding glass 8 for fixing the magnetic core to the slider. The glass 5 needs to be heated to about 550 ° C. to ensure reliability, and the glass 8 needs to be processed at 700 ° C. or higher. Therefore, the thermal history is added to the magnetic thin film, so that heat resistance of 700 ° C. or higher is required. Conventionally, 7
As the soft magnetic thin film having heat resistance of 00 ° C. or higher, mainly Fe—Al—Si alloy thin film (Japanese Patent Laid-Open No. 61-234).
No. 509, etc.) has been used. However, F
The maximum saturation magnetic flux density of the e-Al-Si alloy thin film is 1.1.
Since the coercive force of the recording medium is improved, the soft magnetic thin film having a higher saturation magnetic flux density Bs ≧ 1.5T is required. Therefore, it is necessary to search for a soft magnetic thin film having a high saturation magnetic flux density and excellent heat resistance. As an example thereof, a Co-M-C film (M is Ti, Zr, Hf, Nb, T) of a Co-based soft magnetic thin film is used as an MIG head for a VTR whose recording medium has a high coercive force.
a, Mo, W, at least one element or more), or C
Co-T-M-C film (T
Is at least one element of Fe, Ni, Mn)
JP-A-2-229406 discloses a magnetic head using the soft magnetic thin film, and JP-A-2-123507 discloses the same.

【0003】[0003]

【発明が解決しようとする課題】前記Co−M−C膜
(MはTi,Zr,Hf,V,Nb,Ta,Mo、Wの
少なくとも一種以上の元素)は、高い飽和磁束密度を得
るための主元素Coに、アモルファス化を促進するため
の元素Mと、熱処理後のCoの粒成長を抑制して微結晶
化するためのCを添加して、良好な軟磁気特性とFe−
Al−Si膜より高い飽和磁束密度を有している。ま
た、更にCoの一部を元素Tで置き換えたCo−T−M
−C膜(TはFe,Ni,Mnのうち少なくとも一種以
上の元素)は、元素Tを添加することによりCoの磁性
を補い、磁歪を小さくするとができる。しかしながら、
VTR用のMIGヘッドは、一般にフェライトからなる
一対の磁気コア半体の間に軟磁性膜とギャップ部を介在
させ、ガラスボンディングにより接合した構造すなわち
図8に示した構造と類似の構造となっている。このガラ
スボィンデングの温度は500〜550℃前後でおこな
われるので、VTR用の軟磁性薄膜の耐熱性は、この5
00〜500℃の温度範囲内で、熱履歴による軟磁気特
性が劣化しない程度で十分であった。一方、コンポジッ
ト型の磁気ヘッドのガラスボンディングは前述したよう
に700℃以上で行う必要があり、磁性薄膜は700℃
以上の耐熱性を必要とする。そのために、従来知られて
いるCo−M−C膜(MはTi,Zr,Hf,V,N
b,Ta,Mo、Wの少なくとも一種以上の元素)をコ
ンポジット型磁気ヘッドに適用した場合には、必ずしも
優れた磁気ヘッドが実現できなかった。また、Co−M
−C膜においては、アモルファスを生成し易い程、耐熱
性は高く、軟磁性に優れるが、飽和磁束密度は低くなっ
てしまう。逆に、結晶が成長し易い程飽和磁束密度は高
くなるが、耐熱性は低くなる。これらの膜において軟磁
気特性が熱処理により劣化する原因は、Coの粒成長に
よるものである。特にhcp構造のCoが生成されると
結晶磁気異方性定数Kuが5×106erg/ccと大
きく、磁歪定数も−10×10-6の負の値を示すことに
より、軟磁性が急激に劣化する。そのために、1.5T
以上の飽和磁束密度と700℃以上の耐熱性を兼ね備え
た材料はなかった。本発明の目的は、結晶構造と結晶配
向を制御することにより、耐熱性と高い飽和磁束密度と
優れた軟磁気特性を有する最適組成のCo基軟磁性膜を
提供するものである。また、結晶構造と結晶配向を制御
することにより、上述した従来技術の欠点を解消し、飽
和磁束密度が高く、かつ耐熱温度が高く、耐食性にも優
れる磁性薄膜及びそれを用いたコンポジット型磁気ヘッ
ドを提供することである。
The Co-MC film (M is at least one element of Ti, Zr, Hf, V, Nb, Ta, Mo and W) has a high saturation magnetic flux density. The element M for promoting the amorphization and C for suppressing the grain growth of Co after heat treatment and microcrystallizing are added to the main element Co of Co to obtain good soft magnetic characteristics and Fe-
It has a higher saturation magnetic flux density than the Al-Si film. Further, Co-T-M in which a part of Co is replaced with the element T
The -C film (T is at least one element of Fe, Ni, and Mn) can supplement the magnetism of Co by adding the element T and reduce the magnetostriction. However,
An MIG head for a VTR generally has a structure in which a soft magnetic film and a gap portion are interposed between a pair of magnetic core halves made of ferrite and bonded by glass bonding, that is, a structure similar to the structure shown in FIG. There is. Since the temperature of this glass bonding is carried out at around 500 to 550 ° C, the heat resistance of the soft magnetic thin film for VTR is
Within the temperature range of 00 to 500 ° C., it was sufficient that the soft magnetic characteristics were not deteriorated by the heat history. On the other hand, the glass bonding of the composite type magnetic head needs to be performed at 700 ° C. or higher as described above, and the magnetic thin film is 700 ° C.
The above heat resistance is required. Therefore, conventionally known Co-MC films (M is Ti, Zr, Hf, V, N
When at least one element of b, Ta, Mo and W) is applied to the composite type magnetic head, an excellent magnetic head cannot always be realized. In addition, Co-M
In the -C film, the easier it is to form an amorphous material, the higher the heat resistance and the soft magnetism are, but the saturation magnetic flux density becomes low. On the contrary, as the crystals grow more easily, the saturation magnetic flux density increases, but the heat resistance decreases. The reason why the soft magnetic properties of these films are deteriorated by heat treatment is due to Co grain growth. Particularly large and Co is generated between the crystal magnetic anisotropy constant Ku is 5 × 10 6 erg / cc of the hcp structure, by a negative value of the magnetostriction constant is -10 × 10- 6, abruptly soft Deteriorates. Therefore, 1.5T
There is no material having both the saturation magnetic flux density and the heat resistance of 700 ° C. or higher. An object of the present invention is to provide a Co-based soft magnetic film having an optimum composition having heat resistance, high saturation magnetic flux density, and excellent soft magnetic characteristics by controlling the crystal structure and crystal orientation. Further, by controlling the crystal structure and the crystal orientation, the above-mentioned drawbacks of the prior art are eliminated, a magnetic thin film having a high saturation magnetic flux density, a high heat resistant temperature, and an excellent corrosion resistance, and a composite magnetic head using the same. Is to provide.

【0004】[0004]

【課題を解決するための手段】本発明はCo-M-C膜に
おいて、Coに添加した場合に最もアモルファスの生成
能力が高いZrにより、高い飽和磁束密度を有するCo
-Ta-CのTaに一部を置換することにより耐熱性と高
い飽和磁束密度と優れた軟磁気特性を有する最適組成の
Co基軟磁性膜を提供するものである。本発明は、Co
xTauZrvCw(ただし,x,u,v,wは各々組成比
を原子%で表す)で示される組成を有し,その組成範囲
が 75≦ x ≦89 3≦ u ≦8 1≦ v ≦6 5≦ w ≦15 6 ≦ u+v ≦10 2/3 ≦ (u+v)/w ≦1.2 x+u+v+w=100 であるCo基軟磁性薄膜を提供するものである。また、
Coの一部をFeで置換したCoxFeyTauZrvCw
(ただし、x,y,u,v,wは各々組成比を原子%で
表す)で示される組成を有し、その組成範囲が 65≦ x ≦89 0 ≦ y ≦10 3 ≦ u ≦8 1 ≦ v ≦6 5 ≦ w ≦15 6 ≦ u+v ≦10 2/3 ≦ (u+v)/w ≦1.2 x+y+u+v+w=100 であるCo基軟磁性薄膜を提供するものである。特に、
Co基軟磁性薄膜中のTaとZrの組成比(u/v)
は、 0.8 ≦(u/v)≦ 1.4 が望ましい。更に、Co基軟磁性薄膜の組織中には、実
質的にhcp構造のCoが存在せず、fcc構造のCo
またはCo−Feと、TaおよびZrの炭化物の結晶で
構成され、fcc構造のCoまたはCo−Feの(11
1)面が優先的に基板面に平行に配向され、Co基軟磁
性薄膜のCoの組織が平均粒径200Å以下の微細な結
晶粒よりなるものが望ましい。また、本発明は、このよ
うな好ましいCo基軟磁性薄膜を用いたコンポジット型
磁気ヘッドを提供するものである。
The present invention provides a Co-MC film having a high saturation magnetic flux density due to Zr, which has the highest amorphous forming ability when added to Co.
By substituting a part of Ta of -Ta-C, a Co-based soft magnetic film having an optimum composition having heat resistance, high saturation magnetic flux density, and excellent soft magnetic characteristics is provided. The present invention is based on Co
xTauZrvCw (where x, u, v, and w are composition ratios expressed in atomic%), and the composition range is 75 ≦ x ≦ 89 3 ≦ u ≦ 8 1 ≦ v ≦ 6 5 ≦ It is intended to provide a Co-based soft magnetic thin film in which w ≤15 6 ≤u + v ≤10 2/3 ≤ (u + v) / w ≤1.2 x + u + v + w = 100. Also,
CoxFeyTauZrvCw with a part of Co replaced by Fe
(Where x, y, u, v, and w are composition ratios expressed in atomic%), and the composition range is 65 ≦ x ≦ 89 0 ≦ y ≦ 10 3 ≦ u ≦ 8 1 The present invention provides a Co-based soft magnetic thin film having ≦ v ≦ 6 5 ≦ w ≦ 15 6 ≦ u + v ≦ 10 2/3 ≦ (u + v) / w ≦ 1.2 x + y + u + v + w = 100. In particular,
Composition ratio of Ta and Zr in Co-based soft magnetic thin film (u / v)
Is preferably 0.8 ≦ (u / v) ≦ 1.4. Further, in the texture of the Co-based soft magnetic thin film, Co of the hcp structure is substantially absent, and Co of the fcc structure is not present.
Alternatively, it is composed of Co—Fe and crystals of carbides of Ta and Zr and has a fcc structure of Co or Co—Fe (11
It is preferable that the 1) plane is preferentially oriented parallel to the substrate surface, and the Co structure of the Co-based soft magnetic thin film is composed of fine crystal grains having an average grain size of 200 Å or less. The present invention also provides a composite type magnetic head using such a preferable Co-based soft magnetic thin film.

【0005】[0005]

【作用】本発明はCo-Ta-CのTaの一部をZrによ
り置換することにより、耐熱性と高い飽和磁束密度とを
有するCo-Ta-Zr-C膜を得ることができる。これ
は、Coと、Ta,Zr炭化物の結晶が共存することに
より、Coの結晶粒が適度に微細化されるため、耐熱性
があり、高飽和磁束密度で高透磁率、低保磁力の良好な
軟磁気特性が得られる。この微結晶状態を実現するため
には次の2つの条件が必要である。 (1)熱処理後にCoと元素Mの炭化物に相分離し、C
o−M化合物やCo炭化物を生成しないこと。 このためには、Coよりも炭化物の生成エネルギ−の小
さいすなわちCとの親和力が強いM元素を用いることで
あり、このエネルギ−は次の順に小さい。 Hf<Zr<Ti<Ta<Nb<V<W<Mo 以上のことから、元素MとしてTaより微結晶化に適す
るのは、Zr,Hf,Tiであり、良好な軟磁性を得や
すい。しかし、Tiはアモルファス生成能力がTaより
小さいので元素Mとしては適当でない。この微結晶状態
は、元素MやCあるいは元素Mの炭化物がCoの粒成長
を抑制することにより実現されるが、この量が多すぎる
とCo粒間の磁気的結合が弱くなり、軟磁気特性が劣化
してしまう。また、高い耐熱性を有するには、CoとC
やCoと元素Mの化合物を生成させないために、Zr,
HfとC量はほぼ同量にする必要があるが、CがCoの
粒成長を抑制する効果を持つので、Cをわずかに多くす
る必要がある。Taの場合にはTaCとTa2Cという
2つの炭化物を生成し、その生成エネルギ−には大きな
差がない。従って、相分離していく過程でCが多少、少
なくても、Ta2Cを生成しTaがCoと化合物を作る
ことは少ない。Hf,Zrの場合は、C量をわずか多く
しておく必要があり、C量が少ないとHf,ZrとCo
との化合物を作ってしまう恐れがある。このように、T
2Cが存在するために、Co−Ta−C膜では、Z
r,Hfに比べて少ないC量(10at%程度)で、最
も良好な軟磁性が得られる。
According to the present invention, a part of Ta of Co-Ta-C is replaced with Zr to obtain a Co-Ta-Zr-C film having heat resistance and high saturation magnetic flux density. Since Co and Co crystals of Ta and Zr carbide coexist, the Co crystal grains are appropriately miniaturized, so that they have heat resistance, high saturation magnetic flux density, high magnetic permeability, and low coercive force. Excellent soft magnetic properties can be obtained. The following two conditions are necessary to realize this microcrystalline state. (1) After heat treatment, phase-separated into Co and carbide of element M, and C
Do not generate o-M compound or Co carbide. For this purpose, an M element having a smaller carbide formation energy than Co, that is, a stronger affinity with C is used, and the energy is smaller in the following order. Hf <Zr <Ti <Ta <Nb <V <W <Mo From the above, Zr, Hf, and Ti are more suitable for microcrystallization than Ta as the element M, and good soft magnetism is easily obtained. However, Ti is not suitable as the element M because it has an amorphous forming ability smaller than Ta. This microcrystalline state is realized by suppressing the grain growth of Co by the elements M and C or the carbide of the element M. However, if this amount is too large, the magnetic coupling between the Co grains becomes weak and the soft magnetic characteristics. Will deteriorate. Further, in order to have high heat resistance, Co and C
In order to prevent the formation of compounds of Co and element M with Co, Zr,
The amounts of Hf and C need to be almost the same, but since C has the effect of suppressing the grain growth of Co, it is necessary to increase C slightly. In the case of Ta, two carbides, TaC and Ta 2 C, are formed, and there is no great difference in the energy of formation. Therefore, in the process of phase separation, even if C is somewhat small, Ta 2 C is not generated and Ta rarely forms a compound with Co. In the case of Hf and Zr, it is necessary to increase the amount of C slightly, and when the amount of C is small, Hf, Zr and Co
There is a risk of making a compound with. Thus, T
Due to the presence of a 2 C, in the Co-Ta-C film, Z
The best soft magnetism can be obtained with a small amount of C (about 10 at%) as compared with r and Hf.

【0006】(2)成膜後の状態でアモルファスの生成
能力が高いこと。 Cを添加しているのでアモルファスを生成しやすいが、
Cを添加した場合でも少ない添加量でアモルファス化で
き、その後熱処理することにより微結晶化するほど耐熱
性が高く、軟磁気特性が良好となる。Cを添加しない場
合のアモルファスを生成するのに必要な元素Mの添加量
は次の通りであり、 Zr<Hf<Ta<Nb<W<Ti<Mo Zr,Hf,Taの場合には、Zr=5at%、Hf=
7at%、Ta=10at%である。Cを添加した場合
でも、Taよりもアモルファスを生成しやすい元素は、
ZrとHfのみである。従って、同じ元素量でCo-T
a-CのTaを置き換えて耐熱性が向上するのは、Zr
とHfのみであるが,Zrの方がアモルファス生成能力
が高いので、同じ耐熱温度を実現するためには添加量が
少なくてすみ、飽和磁束密度の低下が少ない。
(2) Amorphous generation ability is high after the film formation. Since C is added, it is easy to produce amorphous, but
Even if C is added, it can be made amorphous with a small amount of addition, and as it is further crystallized by heat treatment, the heat resistance becomes higher and the soft magnetic characteristics become better. The amount of addition of the element M necessary to generate an amorphous material when C is not added is as follows: Zr <Hf <Ta <Nb <W <Ti <Mo Zr, Hf, Ta, Zr = 5at%, Hf =
7 at% and Ta = 10 at%. Even when C is added, the elements that are more likely to produce amorphous than Ta are
Only Zr and Hf. Therefore, with the same elemental amount, Co-T
The reason why heat resistance is improved by replacing Ta in a-C is Zr.
However, since Zr has a higher amorphous forming ability, the addition amount is small and the saturation magnetic flux density does not decrease much in order to achieve the same heat-resistant temperature.

【0007】Co−Ta−C膜は、アモルファス状態で
はキュリ−温度が低いために、室温でのBsは1.1〜
1.2Tと低いが、結晶化によってTaとCが炭化物と
なって相分離するために、キュリ−点が上昇する。これ
に伴って飽和磁束密度が上昇して1.5T以上となる。
Co−Ta−C膜では、元素MとしてのTaがZr,H
f等に比べ結晶化しやすいため、同じ元素M,C量では
飽和磁束密度Bsが最も大きく、良好な軟磁性が得られ
る範囲でBs1.5T以上となるが、耐熱温度が600
℃が上限である。一方、元素MとしてZrを用いたもの
は、必要な700℃以上の耐熱温度を得ることができ
る。Zrは、Coに少量添加するだけでアモルファスを
生成できるため、膜を作製した状態でアモルファスを得
やすく、かつ熱処理によっても結晶化しても、結晶粒の
成長が緩やかであるため結晶粒径が200Å程度の微結
晶組織となる。このため、Co結晶粒間の交換結合力に
よって磁気異方性分散が低減され、軟磁性が得られる。
また元素MとしてのZrとの炭化物がCoの粒成長を抑
制することにより、耐熱温度が700℃以上と高い耐熱
性が得られるものと考えられる。しかし、700℃以上
の耐熱性を有するためには、Zrの量を10at%程度
とし、C量を15〜20at%とする必要があるため、
飽和磁束密度Bsの上限は1.4T程度であった。
Since the Co-Ta-C film has a low Curie temperature in an amorphous state, Bs at room temperature is 1.1 to.
Although it is as low as 1.2T, the Curie point rises because Ta and C become carbides due to crystallization and undergo phase separation. Along with this, the saturation magnetic flux density rises to 1.5 T or more.
In the Co-Ta-C film, Ta as the element M is Zr, H.
Since it is easier to crystallize than f etc., the saturation magnetic flux density Bs is the largest with the same amount of elements M and C, and Bs is 1.5 T or more in the range where good soft magnetism is obtained, but the heat resistant temperature is 600.
C is the upper limit. On the other hand, when Zr is used as the element M, the required heat resistant temperature of 700 ° C. or higher can be obtained. Since Zr can be made amorphous by adding a small amount to Co, it is easy to obtain amorphous in the state where the film is formed, and even if it is crystallized by heat treatment, the crystal grain growth is slow, so that the crystal grain size is 200Å. It has a degree of microcrystalline structure. Therefore, magnetic anisotropy dispersion is reduced by the exchange coupling force between Co crystal grains, and soft magnetism is obtained.
Further, it is considered that the carbide with Zr as the element M suppresses the grain growth of Co, so that the heat resistant temperature is as high as 700 ° C. or higher and high heat resistance can be obtained. However, in order to have heat resistance of 700 ° C. or higher, it is necessary to set the amount of Zr to about 10 at% and the amount of C to 15 to 20 at%.
The upper limit of the saturation magnetic flux density Bs was about 1.4T.

【0008】本発明は、Bs>1.5TのCo−Ta−
C膜のTaを、Coに添加した場合最も効果的にアモル
ファスを生成できるZrで置換することにより、耐熱性
を向上させようとするものである。耐熱性の向上する原
因はTaをZrで置換することにより、熱処理による結
晶粒の成長が緩やかになり、適度に微細化することに起
因すると考えられる。Bsを1.5T以上と大きくする
ため、Ta及びZrの添加量は各々8at%、6at%
が上限であり、その総量は10at%以下である必要が
ある。また、微結晶を生成し耐熱温度を高めるために、
Taは3at%以上、Zrは1at%以上添加する必要
がある。一方、C量(w)は少なすぎると炭化物の生成
が十分でなく、耐熱温度が低くなり、多すぎるとCやT
a,Zrの炭化物がCoの結晶粒界に多数析出して、C
o粒間の磁気的な結合が不十分となり、軟磁性が得られ
なくなる。そのために、Ta量(u)とZr量(v)に
対して、C量(W)が5≦w≦15(at%)の範囲
で、2/3≦(u+v)/w≦1.2を、更に、0.8
≦u/v≦1.4満たすことが望ましい。その結果飽和
磁束密度Bs≧1.5T、耐熱温度700℃以上が実現
できる。
According to the present invention, Co-Ta-of Bs> 1.5T
It is intended to improve the heat resistance by substituting Ta of the C film with Zr that can most effectively produce amorphous when added to Co. It is considered that the reason why the heat resistance is improved is that the substitution of Ta with Zr slows down the growth of crystal grains due to the heat treatment, resulting in appropriate miniaturization. To increase Bs to 1.5T or more, the amounts of Ta and Zr added are 8 at% and 6 at%, respectively.
Is the upper limit, and the total amount must be 10 at% or less. Further, in order to generate fine crystals and raise the heat resistant temperature,
It is necessary to add Ta at 3 at% or more and Zr at 1 at% or more. On the other hand, if the amount of C (w) is too small, the formation of carbides is insufficient and the heat resistant temperature becomes low, and if it is too large, C and T
A large number of carbides of a and Zr are precipitated at the Co grain boundaries, and C
o Magnetic coupling between grains becomes insufficient and soft magnetism cannot be obtained. Therefore, with respect to the Ta amount (u) and the Zr amount (v), 2/3 ≦ (u + v) /w≦1.2 when the C amount (W) is in the range of 5 ≦ w ≦ 15 (at%). To 0.8
It is desirable to satisfy ≦ u / v ≦ 1.4. As a result, a saturation magnetic flux density Bs ≧ 1.5T and a heat resistant temperature of 700 ° C. or higher can be realized.

【0009】また、この微結晶膜では、結晶粒径の小さ
いことが軟磁性を得る上で最も重要であるが微結晶膜と
はいえ結晶質であるので、結晶磁気異方性定数や磁歪定
数が小さいほど軟磁性は得やすい。Coは低温ではhc
p構造が安定であり、420℃以上でfcc構造に変態
することが知られている。fcc−Coのほうがhcp
−Coに比べて、結晶磁気異方性定数K1が小さいの
で、fcc-Coを生成したほうが軟磁性を得やすい。
スパッタリング法を用いて薄膜を作製する場合、その成
膜条件を最適化し制御することによりfcc構造のCo
を室温で得ることができる。また、ある特定の結晶格子
面内で磁化が回転することを考えると格子面によって磁
気異方性エネルギ−が異なることが知られているが(例
えば、近角聰信著、強磁性体の物理 下巻 P9)、f
cc−Coでは、(111)面内で磁化が回転する場合
が(100)面や(110)面の場合と比較して、磁気
異方性エネルギ−が最も小さい。したがって、fcc−
Coの(111)面が基板面に平行に配向した場合が、
膜面内での磁化回転に影響する見かけ上の結晶磁気異方
性定数K1'(111)が最も小さくなり、他の格子面が配向
した場合に比べて良好な軟磁性が得られる。またK1'(1
11)が小さいので熱処理によって結晶粒径が大きくなっ
ても軟磁性の劣化が少ない。本発明によれば、Taの一
部をZrで置換して複合添加することにより、C量の少
ない組成で軟磁性を得て、かつ耐熱温度も高くすること
ができ、さらにスパッタ条件の最適化によりfcc−C
oの(111)面を基板面に平行に配向させることによ
り、さらに良好な軟磁性を得ることができる。また,C
o−Ta−Zr−C膜のCoの一部をFeで置き換えた
Co−Fe−M−C膜は、Feを添加することによりC
oの磁性を補い、更に高い飽和磁束密度を得ることがで
き,かつ、FeはCoをfcc構造に安定させ、結晶異
方性が小さくなり、良好な軟磁性を得ることができる。
また、本発明のように、Co結晶間の磁気的な結合によ
って、軟磁性を得るためには、Coの結晶粒径が小さ
く、交換結合力が十分働くように、粒界等に多くの析出
物が存在しないことが重要である。Coの結晶磁気異方
定数はfcc構造であっても、104〜105erg/c
cのオ−ダ−なので、軟磁性を得るためには、その結晶
粒径は200Å以下にする必要がある。一方、Taや炭
化物が、Coの粒界に存在することによって、Coの粒
成長を抑制するが、その炭化物の粒径がCoの粒径と同
程度になると、Co粒間の磁気的な結合を妨げるように
なり、軟磁性が得られなくなる。
Further, in this microcrystalline film, a small crystal grain size is the most important for obtaining soft magnetism, but it is crystalline although it is a microcrystalline film. The smaller is, the easier it is to obtain soft magnetism. Co is hc at low temperature
It is known that the p structure is stable and transforms into an fcc structure at 420 ° C. or higher. fcc-Co is more hcp
Since the magnetocrystalline anisotropy constant K1 is smaller than that of -Co, it is easier to obtain soft magnetism by producing fcc-Co.
When a thin film is formed by using the sputtering method, the Co of fcc structure can be obtained by optimizing and controlling the film forming conditions.
Can be obtained at room temperature. In addition, it is known that the magnetic anisotropy energy differs depending on the lattice plane, considering that the magnetization rotates in a certain crystal lattice plane (see, for example, S. Shinkaku, Physics of Ferromagnets. P9), f
In cc-Co, the case where the magnetization rotates in the (111) plane has the smallest magnetic anisotropy energy as compared with the case where the magnetization is the (100) plane or the (110) plane. Therefore, fcc-
When the (111) plane of Co is oriented parallel to the substrate surface,
The apparent magnetocrystalline anisotropy constant K1 '(111) affecting the magnetization rotation in the film plane is the smallest, and good soft magnetism can be obtained as compared with the case where other lattice planes are oriented. Also K1 '(1
Since 11) is small, even if the crystal grain size is increased by heat treatment, soft magnetic deterioration is small. According to the present invention, by partially replacing Ta with Zr and adding them in combination, soft magnetism can be obtained with a composition having a small amount of C, and the heat resistance temperature can be increased, and the sputtering conditions can be optimized. Fcc-C
Even better soft magnetism can be obtained by orienting the (111) plane of o parallel to the substrate surface. Also, C
The Co-Fe-M-C film in which a part of Co in the o-Ta-Zr-C film is replaced with Fe is added by adding Fe to form a C-Fe-M-C film.
The magnetism of o can be supplemented and a higher saturation magnetic flux density can be obtained, and Fe stabilizes Co in the fcc structure, the crystal anisotropy becomes small, and good soft magnetism can be obtained.
In addition, as in the present invention, in order to obtain soft magnetism by magnetic coupling between Co crystals, the Co grain size is small, and a large amount of precipitation occurs at grain boundaries or the like so that the exchange coupling force works sufficiently. It is important that there is nothing. Even if the crystal magnetic anisotropy constant of Co is fcc structure, it is 10 4 to 10 5 erg / c.
Since it is of the order of c, its crystal grain size must be 200 Å or less in order to obtain soft magnetism. On the other hand, the presence of Ta and carbide in the grain boundaries of Co suppresses the grain growth of Co. However, when the grain size of the carbide is about the same as the grain size of Co, magnetic coupling between Co grains is generated. And soft magnetism cannot be obtained.

【0010】[0010]

【実施例】(実施例1)本発明の磁性膜の形成には通常
のRFマグネトロンスパッタ装置を用いた。Co−Ta
−Zr−CのターゲットをArとCH4の混合ガスを用
いてスパッタ後、印加磁界1KOe中で熱処理を行っ
た。スパッタ条件は以下の通りである。 排気到達真空度 1×10-6Torr以下 投入電力 2.0〜4.5W/cm2 ガス圧(全圧) 1〜8×10-3Torr 基板 結晶化ガラス 基板温度 加熱無し 以上の条件で作製した磁性膜の膜厚は2μmである。磁
性薄膜の組成は、EPMAによって分析した。膜の飽和
磁束密度および保磁力はVSM、透磁率はベクトルイン
ピーダンスメ−タ、磁歪定数は光てこ法により測定し
た。また、この磁性膜の耐熱温度はN2雰囲気中で所定
の温度に加熱後、室温で透磁率を測定し、5MHzで測
定した透磁率が1000以下となる温度とした。図1
に、Taの一部をZrで置換したCo82Ta8-aZraC
10(at%)膜におけるZr置換量と透磁率の関係を示
す。Zr量をa≧1at%にすることによって700℃
の熱処理後においても透磁率は1000以上の値を示し
ている。特に、TaとZrの組成比が0.8〜1.4の
範囲の組成においては、5MHにおける透磁率μが60
0℃熱処理後でμ≧2000、700℃熱処理後でμ≧
1500の良好な軟磁性を示した。一方、飽和磁束密度
Bsは、図2のようにZr量の増加とともに減少してい
るが、Zr量が6at%以下であれば1.5T以上の大
きな値を示す。図3、図4にはCo82Ta810,Co
82Zr810、Co82Ta4.5Zr3.510膜の透磁率及
び飽和磁束密度の熱処理温度依存性を示す。Co82Ta
4.5Zr3.510膜はCo82Ta810膜の大きな飽和磁
束密度と、Co82Zr810膜の高耐熱性を兼ね備えて
いることがわかる。Co82Ta4.5Zr3.510膜では、
700℃の熱処理後において、透磁率μ5MHz=160
0、飽和磁束密度Bs=1.52Tの特性を示した。表
1に、本発明の組成範囲のCo−Ta−Zr−C膜と元
素としてのTa,Zrを単独添加したCo−Ta−C
o、Co−Zr−C膜、および本発明の組成範囲外のC
o−Ta−Zr−C膜の700℃熱処理後の特性を示
す。本発明の組成範囲のCo−Ta−Zr−C膜はBs
≧1.5T、μ5MHz≧1000で軟磁気特性も優れてい
る。さらに本発明のCoをFeによって置換した場合に
ついての結果も示してあるが、Feで置換することによ
って飽和磁束密度は大きくなり1.6T以上の値を示す
ものもあった。またFeの添加により磁歪定数は正の側
に変化し、添加量を制御することによって零に近づける
ことができる。700℃熱処理により、Co−Ta−C
膜は耐熱温度が600℃前後であるために、飽和磁束密
度Bs≧1.5Tであるが、透磁率が低く保持力が高く
軟磁気特性が劣化する。また、Co−Zr−Cは、70
0℃以上の耐熱性を有する組成では、透磁率は高いがB
sは1.4Tが上限である。また、比較例に示すよう
に、C,Ta,Zrの量が本発明の組成範囲以外のもの
は、熱処理温度700℃以上では、Bs≧1.5T、μ
5MHz≧1000を同時に満たすことはできない。
EXAMPLES Example 1 An ordinary RF magnetron sputtering apparatus was used to form the magnetic film of the present invention. Co-Ta
After sputtering a target of —Zr—C using a mixed gas of Ar and CH 4 , heat treatment was performed in an applied magnetic field of 1 KOe. The sputtering conditions are as follows. Produced in the exhaust ultimate vacuum of 1 × 10- 6 Torr or less input power 2.0~4.5W / cm 2 gas pressure (total pressure) 1~8 × 10- 3 Torr substrate crystallized glass substrate temperature heating without the above conditions The thickness of the formed magnetic film is 2 μm. The composition of the magnetic thin film was analyzed by EPMA. The saturation magnetic flux density and coercive force of the film were measured by VSM, the magnetic permeability was measured by a vector impedance meter, and the magnetostriction constant was measured by an optical lever method. The heat resistant temperature of this magnetic film was set to a temperature at which the magnetic permeability measured at 5 MHz after heating to a predetermined temperature in an N 2 atmosphere was 1000 or less. Figure 1
In addition, Co 82 Ta 8 -aZr aC in which a part of Ta is replaced with Zr
The relationship between the Zr substitution amount and magnetic permeability in a 10 (at%) film is shown. By setting the Zr amount to a ≧ 1 at%, 700 ° C.
Even after the heat treatment, the magnetic permeability shows a value of 1000 or more. Particularly, in the composition in which the composition ratio of Ta and Zr is in the range of 0.8 to 1.4, the magnetic permeability μ at 5 MH is 60.
Μ ≧ 2000 after 0 ° C. heat treatment, μ ≧ after 700 ° C. heat treatment
It showed a good soft magnetism of 1500. On the other hand, the saturation magnetic flux density Bs decreases as the Zr amount increases as shown in FIG. 2, but shows a large value of 1.5 T or more if the Zr amount is 6 at% or less. 3 and 4 show Co 82 Ta 8 C 10 and Co.
8 shows the heat treatment temperature dependence of the magnetic permeability and the saturation magnetic flux density of the 82 Zr 8 C 10 and Co 82 Ta 4.5 Zr 3.5 C 10 films. Co 82 Ta
It can be seen that the 4.5 Zr 3.5 C 10 film has both the large saturation magnetic flux density of the Co 82 Ta 8 C 10 film and the high heat resistance of the Co 82 Zr 8 C 10 film. In the Co 82 Ta 4.5 Zr 3.5 C 10 film,
After heat treatment at 700 ℃, permeability μ5MHz = 160
0, the saturation magnetic flux density Bs = 1.52T. In Table 1, a Co-Ta-Zr-C film having the composition range of the present invention and a Co-Ta-C film in which Ta and Zr as elements are solely added.
o, Co-Zr-C film, and C outside the composition range of the present invention
The characteristics of the o-Ta-Zr-C film after heat treatment at 700 ° C are shown. The Co-Ta-Zr-C film having the composition range of the present invention is Bs.
≧ 1.5T, μ5MHz ≧ 1000, and excellent soft magnetic characteristics. Further, although the results of replacing Co of the present invention with Fe are also shown, the saturation magnetic flux density was increased by replacing Fe with some, and some showed values of 1.6 T or more. Further, the magnetostriction constant changes to the positive side by the addition of Fe, and it can be brought close to zero by controlling the addition amount. Co-Ta-C by heat treatment at 700 ° C
Since the heat-resistant temperature of the film is around 600 ° C., the saturation magnetic flux density Bs ≧ 1.5T, but the magnetic permeability is low, the coercive force is high, and the soft magnetic characteristics are deteriorated. Further, Co-Zr-C is 70
In a composition having a heat resistance of 0 ° C. or higher, the magnetic permeability is high, but B
The upper limit of s is 1.4T. Further, as shown in Comparative Examples, when the amounts of C, Ta, and Zr are outside the composition range of the present invention, Bs ≧ 1.5T, μ at a heat treatment temperature of 700 ° C. or higher.
5MHz ≧ 1000 cannot be satisfied at the same time.

【0011】また、TaとZr以外の組合せの例を表2
に示す。TaよりもCoに添加した場合に、アモルファ
スを生成しやすい元素はZr,Hfのみであり、また、
Taより炭化物生成しやすい元素もZr,Hf,Tiの
3元素のみである。従って、Co−Ta−C膜のTaの
一部を置換して耐熱性を向上できる元素は、Zr,Hf
のみである。また、Co−M−Zr−Cの元素MをTa
以外の元素に置き換えても、高い飽和磁束密度と、良好
な軟磁性を示すものはない。Co−Ta−Hf−Cも高
い耐熱性を有するが、Hfの方がZrよりもアモルファ
ス生成能力が低いので、Co−Ta−Zr−C膜と同じ
耐熱温度を実現するためには、Hfの添加量を多くする
必要があり、且つ、HfとCoとの化合物の生成を防ぐ
ためにC量を増やす必要があるので、Bs≧1.5T、
耐熱温度700℃以上は実現できず、また、軟磁性も低
下する。
Table 2 shows examples of combinations other than Ta and Zr.
Shown in. Zr and Hf are the only elements that tend to form amorphous when added to Co rather than Ta.
Zr, Hf, and Ti are the only elements that are more likely to form carbides than Ta. Therefore, elements that can improve the heat resistance by substituting a part of Ta of the Co-Ta-C film are Zr, Hf.
Only. Further, the element M of Co-M-Zr-C is Ta
Even if it is replaced with an element other than the above, none of them shows a high saturation magnetic flux density and good soft magnetism. Co-Ta-Hf-C also has high heat resistance, but since Hf has a lower amorphous-forming ability than Zr, in order to realize the same heat-resistant temperature as the Co-Ta-Zr-C film, Hf Since it is necessary to increase the addition amount and to increase the C amount in order to prevent the formation of the compound of Hf and Co, Bs ≧ 1.5T,
A heat-resistant temperature of 700 ° C. or higher cannot be realized, and soft magnetism also decreases.

【0012】[0012]

【表1】 i*印は特性の劣る項目、耐熱温度は5MHz透磁率が1000
以下となる温度)
[Table 1] Items marked with i * are inferior in characteristics, heat resistance temperature is 5MHz, magnetic permeability is 1000
Below temperature)

【0013】[0013]

【表2】 i*印は特性の劣る項目、耐熱温度は5MHz透磁率が1000
以下となる温度)
[Table 2] Items marked with i * are inferior in characteristics, heat resistance temperature is 5MHz, magnetic permeability is 1000
Below temperature)

【0014】(実施例2)図5にCo79Ta5Zr412
膜の700℃熱処理後のCo−Kα線を用いて測定した
X線回折パターンを示す。fcc−Coの(111)、
(200)面の回折ピークとTaC及びZrCの中間の
格子定数をもつピークが見られる。なお、fcc-Co
の(220)面の回折ピークは観察されなかった。この
場合のCoの結晶粒径をピークの半値幅より、Sche
rrerの式 D=0.94λ/Bcosθ (但し、D:結晶粒径、λ:X線の波長、B:回折ピーク
の半値幅、θ:回折角)を用いて結晶粒径を求めてみる
と、約100Åという微結晶であった。また、Ta、Z
rの炭化物の結晶粒は、電子顕微鏡観察の結果、Coよ
りもさらに小さいことがわかった。これに対して、Co
77Ta815膜の700℃熱処理後のX線回折ピークを
見ると、Co79Ta5Zr412に比べてピークが鋭く大
きくなっており、結晶粒が成長していることがわかる。
一方、Co74Zr818膜では、700℃の熱処理後で
もCoの回折ピークは小さく、結晶粒径も100Å以下
であった。このように、TaをZrで置換することによ
り結晶粒の成長を緩やかにすることができる。図6にf
cc−Coの(111)面と(200)面のX線回折強
度比I(200)/I(111)と透磁率の関係を700℃熱処理
後の場合について示す。これらの膜は、スパッタ条件を
変えることによって配向を変化させた。また、図7に図
6中のA,Bの試料につき熱処理温度と結晶粒径及び透
磁率の関係を示す。図中には、hcp−Coを含む場合
に付いても合せて示してある。この場合、X線回析ピ−
クにおけるfcc−Coの(111)面とhcp−Co
の(101)面のピ−ク強度比は、700℃熱処理後で
約3:1である。図よりわかるように、熱処理温度の上
昇に伴う結晶粒の成長はA、Bの試料およびhcp−C
oを含む場合の間で大きな差は見られなかった。透磁率
は、hcp−Coを含まないfcc−Coの場合ABの
方が高く、かつ(111)面配向の試料Aのほうが大き
いことがわかる。図6、図7に示すようにfcc−Co
の(111)面が基板面に平行に配向していたほうが透
磁率が高く、軟磁性が優れることがわかる。これは膜の
面内で磁化が回転する場合、(111)面が基板面に平
行に配向した場合が結晶磁気異方性が最も小さくなるこ
とに起因しているものと考えられる。
(Embodiment 2) FIG. 5 shows Co 79 Ta 5 Zr 4 C 12
The X-ray-diffraction pattern measured using the Co-K (alpha) ray after 700 degreeC heat processing of a film | membrane is shown. fcc-Co (111),
A diffraction peak of the (200) plane and a peak having a lattice constant intermediate between TaC and ZrC are seen. Note that fcc-Co
No diffraction peak of the (220) plane was observed. In this case, the crystal grain size of Co can be calculated from the half width of the peak by
The crystal grain size is calculated using the rrer's formula D = 0.94λ / Bcosθ (where D: crystal grain size, λ: wavelength of X-ray, B: half width of diffraction peak, θ: diffraction angle). , About 100Å were fine crystals. Also, Ta, Z
As a result of electron microscope observation, it was found that the crystal grains of the carbide of r were smaller than Co. On the other hand, Co
When the X-ray diffraction peak of the 77 Ta 8 C 15 film after the heat treatment at 700 ° C. is seen, the peak is sharper and larger than that of Co 79 Ta 5 Zr 4 C 12 , and it can be seen that the crystal grains are growing.
On the other hand, in the Co 74 Zr 8 C 18 film, the Co diffraction peak was small even after the heat treatment at 700 ° C., and the crystal grain size was 100 Å or less. Thus, by substituting Zr for Ta, the growth of crystal grains can be moderated. 6 f
The relationship between the X-ray diffraction intensity ratio I (200) / I (111) of the (111) plane and the (200) plane of cc-Co and the magnetic permeability is shown after the heat treatment at 700 ° C. The orientation of these films was changed by changing the sputtering conditions. Further, FIG. 7 shows the relationship between the heat treatment temperature, the crystal grain size, and the magnetic permeability of the samples A and B in FIG. In the figure, the case of including hcp-Co is also shown. In this case, the X-ray diffraction peak
(111) plane of fcc-Co and hcp-Co
The peak intensity ratio of the (101) plane is about 3: 1 after the heat treatment at 700 ° C. As can be seen from the figure, the growth of the crystal grains with the increase of the heat treatment temperature was observed in the samples A, B and hcp-C.
No significant difference was found between the cases containing o. It is understood that the magnetic permeability is higher in AB in the case of fcc-Co containing no hcp-Co, and higher in the sample A having the (111) plane orientation. As shown in FIGS. 6 and 7, fcc-Co
It is understood that the magnetic permeability is higher and the soft magnetism is better when the (111) plane of (1) is oriented parallel to the substrate surface. This is considered to be due to the smallest magnetocrystalline anisotropy when the magnetization rotates in the plane of the film and when the (111) plane is oriented parallel to the substrate surface.

【0015】(実施例3)次に本発明によるCo84Ta
4Zr39膜を磁気ヘッドに応用した例を示す。図8は
本発明の磁性膜を適用した磁気ヘッドコアの一例を示す
外観斜視図である。MnO:28モル%、ZnO:19
モル%、Fe23:53モル%のMn−Zn単結晶フェ
ライトの磁気ヘッドコア半体のギャップ対向面に、RF
マグネトロンスパッタ装置を用い、膜厚2μのCo−T
a−Zr−C組成磁性膜を成膜した。スパッタ条件は以
下の通りである。 排気到達真空度 1×10-6Torr以下 投入電力 4.5w/cm2 ガス圧(全圧) 4×10-3Torr ガス圧(CH4) 6×10-3Torr タ−ゲット組成 Co91Ta5Zr4 タ−ゲットサイズ 150mmΦ 次に、磁気ヘッドコア半体の双方に、ギャップとしての
SiO2膜を0.2μmの厚さにスパッタし、磁気ヘッド
コア半体同志を700℃でガラスボンディングを行い、
仕上げ加工を行って図9に示す磁気ヘッドコアを作成し
た。この磁気ヘッドコアをCaTiO3のスライダーに
モ−ルディングガラスで固定し、図9に示すコンポジッ
ト型の浮上式磁気ヘッドに組立た。この時のモ−ルディ
ング温度は500℃とした。磁性膜の特性は、結晶化ガ
ラス基板上の膜で測定した場合、5MHzでの透磁率は
1500、飽和磁束密度Bsは1.6Tであった。ま
た、磁気ヘッドコアの高さは0.61mm、トラック幅
10μm、ギャップ深さ3μm、ギャップ長0.4μ
m、磁性膜の膜厚2μmとした。この磁気ヘッドをジン
バルに取付けハードディスクドライブ用の磁気ヘッドと
して評価した。評価には、2.5インチ径のディスクを
用い、以下の条件で測定を行った。 媒体保磁力 700〜1900 Oe ディスク周速 7.62m/秒 ヘッド浮上量 0.15μm 書き込み周波数 1.15MHz、4.6MHz 起磁力 0.8AT 図8は、本発明による磁性膜を用いた磁気ヘッドを用い
て測定した媒体保磁力と限界記録密度、D50(KFC
I)の関係を示す。Bsが1.6Tと大きいCo−Ta
−Zr−C膜を用いた場合、媒体保磁力が1500Oe
以上と大きくなっても、磁気コア先端が飽和せずに強い
記録磁界が発生できるため十分に記録が可能であり、媒
体保磁力の増加とともにD50も増加する。一方、飽和磁
束密度が1.1T程度のFe−Al−Si膜を用いた場
合には、媒体保磁力が1500Oe以上となると、磁気
ヘッドコア先端が飽和してD50が減少してしまう。Fe
−Al−Si膜の膜厚を厚くすれば、磁気飽和は生じに
くくはなるが、フェライトとFe−Al−Si膜の熱膨
張係数は各々100×10-7/deg、150×10-7
/degであり、膜厚を厚くすると熱膨張係数の差によ
る応力によって、ガラスボンディング時に膜剥がれや、
フェライトクラックが発生し、磁気ヘッドの作成が困難
であり実用的でない。従って、2μm程度の厚さでも磁
気コア先端に飽和を生じない本発明の磁性薄膜を用いる
ことは製造上も非常に有効である。また、本発明のCo
−Ta−Zr−C膜を用いた磁気ヘッドを用いることに
より、2000Oeの保磁力をもつ媒体にも十分に書き
込みが可能であることが確かめられた。また、保磁力1
200Oeの媒体を用い、再生出力を比較したところ、
Fe−Al−Si膜を用いた場合よりもCo−Ta−Z
r−C膜を用いた場合の方が約10%程度出力が向上し
ているのがわかった。
(Example 3) Next, Co 84 Ta according to the present invention
An example in which the 4 Zr 3 C 9 film is applied to a magnetic head will be shown. FIG. 8 is an external perspective view showing an example of a magnetic head core to which the magnetic film of the present invention is applied. MnO: 28 mol%, ZnO: 19
RF on the gap facing surface of the magnetic head core half of Mn—Zn single crystal ferrite of mol%, Fe 2 O 3 : 53 mol%.
Using a magnetron sputtering device, Co-T with a film thickness of 2μ
An a-Zr-C composition magnetic film was formed. The sputtering conditions are as follows. Exhaust ultimate vacuum 1 × 10- 6 Torr or less input power 4.5 W / cm 2 gas pressure (total pressure) 4 × 10- 3 Torr gas pressure (CH 4) 6 × 10- 3 Torr data - target composition Co 91 Ta 5 Zr 4 target size 150 mmΦ Next, a SiO 2 film as a gap is sputtered on both magnetic head core halves to a thickness of 0.2 μm, and the magnetic head core halves are glass-bonded at 700 ° C.
The magnetic head core shown in FIG. 9 was produced by finishing. This magnetic head core was fixed to a CaTiO 3 slider with molding glass and assembled into a composite type flying magnetic head shown in FIG. The molding temperature at this time was 500 ° C. As for the characteristics of the magnetic film, when measured with a film on a crystallized glass substrate, the magnetic permeability at 5 MHz was 1500 and the saturation magnetic flux density Bs was 1.6T. The height of the magnetic head core is 0.61 mm, the track width is 10 μm, the gap depth is 3 μm, and the gap length is 0.4 μm.
m and the film thickness of the magnetic film was 2 μm. This magnetic head was attached to a gimbal and evaluated as a magnetic head for a hard disk drive. For the evaluation, a disk having a diameter of 2.5 inches was used and the measurement was performed under the following conditions. Medium coercive force 700 to 1900 Oe Disk peripheral speed 7.62 m / sec Head flying height 0.15 μm Writing frequency 1.15 MHz, 4.6 MHz Magnetomotive force 0.8 AT FIG. 8 shows a magnetic head using the magnetic film according to the present invention. media coercivity and limitations recording density measured using, D 50 (KFC
The relationship of I) is shown. Co-Ta with a large Bs of 1.6T
When the -Zr-C film is used, the medium coercive force is 1500 Oe.
Even if it becomes larger than the above, recording can be sufficiently performed because a strong recording magnetic field can be generated without the tip of the magnetic core being saturated, and D 50 also increases as the medium coercive force increases. On the other hand, when an Fe-Al-Si film having a saturation magnetic flux density of about 1.1 T is used and the medium coercive force is 1500 Oe or more, the tip of the magnetic head core is saturated and D 50 is reduced. Fe
If the film thickness of -al-Si film, but is magnetically saturated is difficult to occur, ferrite and Fe-Al-Si film of the thermal expansion coefficient of each 100 × 10- 7 / deg, 150 × 10- 7
/ Deg, and when the film thickness is increased, film peeling during glass bonding due to stress due to the difference in thermal expansion coefficient,
Ferrite cracks occur, making it difficult to make a magnetic head, which is not practical. Therefore, it is very effective in manufacturing to use the magnetic thin film of the present invention which does not cause saturation at the tip of the magnetic core even with a thickness of about 2 μm. In addition, Co of the present invention
It was confirmed that by using the magnetic head using the -Ta-Zr-C film, it is possible to sufficiently write on a medium having a coercive force of 2000 Oe. Also, coercive force 1
When the reproduction output was compared using a medium of 200 Oe,
Co-Ta-Z compared with the case of using the Fe-Al-Si film
It was found that the output was improved by about 10% when the r-C film was used.

【0016】[0016]

【発明の効果】以上説明したごとく、本発明によるCo
−Ta−Zr−C膜は、高飽和磁束密度(1.5〜1.
6T)、高透磁率(1000〜2000)、低保磁力
(1Oe以下)、低磁歪定数(−3〜+3×10-6)、
高耐熱性(700℃以上)という磁気ヘッド材料に必要
な特性を兼ね備えている。したがって、この磁性膜を磁
気ヘッド磁極として用いた場合、0.2μm程度の薄膜
にしても磁気飽和を起こすことなく、磁極の先端に強い
磁界を発生させることができ、超高密度磁気記録を達成
することができる。また、本発明の磁性膜は、通常のR
Fマグネトロンスパッタ法で成膜可能であるため、製造
方法が簡単であり製造コストも安く、かつ高い信頼性も
確保できる利点がある。
As described above, Co according to the present invention
The -Ta-Zr-C film has a high saturation magnetic flux density (1.5 to 1.
6T), high permeability (1000-2000), the following low-coercivity (1 Oe), a low magnetostriction constant (-3~ + 3 × 10- 6) ,
It also has high heat resistance (700 ° C or higher), which is a characteristic required for magnetic head materials. Therefore, when this magnetic film is used as a magnetic pole of a magnetic head, a strong magnetic field can be generated at the tip of the magnetic pole without causing magnetic saturation even with a thin film of about 0.2 μm, thereby achieving super high density magnetic recording. can do. In addition, the magnetic film of the present invention has a normal R
Since the film can be formed by the F magnetron sputtering method, there are advantages that the manufacturing method is simple, the manufacturing cost is low, and high reliability can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のCo−Ta−Zr−C膜のZr量と透
磁率の関係を600℃及び700℃熱処理後の場合につ
いて示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the Zr content and magnetic permeability of a Co—Ta—Zr—C film of the present invention after heat treatment at 600 ° C. and 700 ° C.

【図2】Co−Ta−Zr−C膜のZr量と飽和磁束密
度の関係を700℃熱処理後の場合について示す特性図
である。
FIG. 2 is a characteristic diagram showing the relationship between the amount of Zr and the saturation magnetic flux density of a Co—Ta—Zr—C film after heat treatment at 700 ° C.

【図3】Co−Ta−Zr−C膜とCo−Ta−C膜及
びCo−Zr−C膜の熱処理温度と透磁率の関係を示す
特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a heat treatment temperature and a magnetic permeability of a Co—Ta—Zr—C film, a Co—Ta—C film, and a Co—Zr—C film.

【図4】Co−Ta−Zr−C膜とCo−Ta−C膜及
びCo−Zr−C膜の熱処理温度と飽和磁束密度の関係
を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a heat treatment temperature and a saturation magnetic flux density of a Co-Ta-Zr-C film, a Co-Ta-C film, and a Co-Zr-C film.

【図5】Co−Ta−Zr−C膜とCo−Ta−C膜及
びCo−Zr−C膜の700℃熱処理後のX線回折パタ
−ンを示す図である。
FIG. 5 is a diagram showing an X-ray diffraction pattern of a Co-Ta-Zr-C film, a Co-Ta-C film, and a Co-Zr-C film after heat treatment at 700 ° C.

【図6】Co−Ta−Zr−C膜の結晶配向と透磁率の
関係を700℃熱処理後の場合について示す図である。
FIG. 6 is a diagram showing a relationship between crystal orientation and magnetic permeability of a Co—Ta—Zr—C film after a heat treatment at 700 ° C.

【図7】結晶配向の異なる2つのCo−Ta−Zr−C
膜の熱処理温度と結晶粒径及び透磁率の関係を示す特性
図である。
FIG. 7: Two Co-Ta-Zr-Cs with different crystal orientations
It is a characteristic view which shows the heat treatment temperature of a film | membrane, the crystal grain size, and the relationship of magnetic permeability.

【図8】本発明による磁性膜を適用した磁気コアの一例
を示す外観斜視図である。
FIG. 8 is an external perspective view showing an example of a magnetic core to which the magnetic film according to the present invention is applied.

【図9】コンポジット型浮上式磁気ヘッドの外観斜視図
である。
FIG. 9 is an external perspective view of a composite-type floating magnetic head.

【図10】Co−Ta−Zr−C膜を用いた磁気ヘッド
を用いて測定した媒体保磁力と限界記録密度の関係を示
す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between a medium coercive force measured using a magnetic head using a Co-Ta-Zr-C film and a limit recording density.

【符号の説明】[Explanation of symbols]

1 磁気コア半体 2 磁気コア半体 3 磁性薄膜 4 磁気ギャップ 5 ガラス(A) 6 磁気ヘッドコア 7 スライダー 8 ガラス(B) 1 magnetic core half body 2 magnetic core half body 3 magnetic thin film 4 magnetic gap 5 glass (A) 6 magnetic head core 7 slider 8 glass (B)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 CoxTauZrvCw(ただし、x,u,
v,wは各々組成比を原子%で表す。)で示される組成
を有し、その組成範囲が、 75≦ x ≦89 3 ≦ u ≦8 1 ≦ v ≦6 5 ≦ w ≦15 6 ≦ u+v ≦10 2/3 ≦ (u+v)/w ≦1.2 x+u+v+w=100 であることを特徴とするCo基軟磁性薄膜。
1. CoxTauZrvCw (where x, u,
v and w each represent a composition ratio in atomic%. ), The composition range is 75 ≦ x ≦ 89 3 ≦ u ≦ 8 1 ≦ v ≦ 6 5 ≦ w ≦ 15 6 ≦ u + v ≦ 10 2/3 ≦ (u + v) / w ≦ 1 .2 x + u + v + w = 100 Co-based soft magnetic thin film.
【請求項2】 CoxFeyTauZrvCw(ただし、
x,y,u,v,wは各々組成比を原子%で表す。)で
示される組成を有し、その組成範囲が、 65≦ x ≦89 0 ≦ y ≦10 3 ≦ u ≦8 1 ≦ v ≦6 5 ≦ w ≦15 6 ≦ u+v ≦10 2/3 ≦ (u+v)/w ≦1.2 x+y+u+v+w=100 であることを特徴とするCo基軟磁性薄膜。
2. CoxFeyTauZrvCw (however,
x, y, u, v, and w each represent a composition ratio in atomic%. ), The composition range thereof is 65 ≦ x ≦ 89 0 ≦ y ≦ 10 3 ≦ u ≦ 8 1 ≦ v ≦ 6 5 ≦ w ≦ 15 6 ≦ u + v ≦ 10 2/3 ≦ (u + v) ) /W≦1.2 x + y + u + v + w = 100 The Co-based soft magnetic thin film.
【請求項3】 Co基軟磁性薄膜中のTaとZrの組成
比(u/v)が 0.8 ≦(u/v)≦ 1.4 である請求項1または2に記載のCo基軟磁性薄膜。
3. The Co-based soft according to claim 1, wherein the composition ratio (u / v) of Ta and Zr in the Co-based soft magnetic thin film is 0.8 ≦ (u / v) ≦ 1.4. Magnetic thin film.
【請求項4】 Co基軟磁性薄膜の組織は、実質的に結
晶質からなる請求項1乃至3に記載のCo基軟磁性薄
膜。
4. The Co-based soft magnetic thin film according to claim 1, wherein the texture of the Co-based soft magnetic thin film is substantially crystalline.
【請求項5】 Co基軟磁性薄膜の組織中に、実質的に
hcp構造のCoが存在せず、fcc構造のCoまたは
Co−Feと、TaおよびZrの炭化物の結晶からなる
請求項1乃至4に記載のCo基軟磁性薄膜。
5. The structure of a Co-based soft magnetic thin film is substantially free of Co having an hcp structure, and consists of Co or Co—Fe having an fcc structure and crystals of carbides of Ta and Zr. 4. The Co-based soft magnetic thin film described in 4.
【請求項6】 Co基軟磁性薄膜中のfcc構造のCo
またはCo−Feの(111)面が優先的に基板面に平
行に配向している請求項5に記載のCo基軟磁性薄膜。
6. Co of fcc structure in Co-based soft magnetic thin film
The Co-based soft magnetic thin film according to claim 5, wherein the (111) plane of Co-Fe is preferentially oriented parallel to the substrate surface.
【請求項7】 Co基軟磁性薄膜のCoまたはCo−F
eの組織が平均粒径200Å以下の微細な結晶粒よりな
る請求項5または6に記載のCo基軟磁性薄膜。
7. A Co-based soft magnetic thin film of Co or Co—F.
7. The Co-based soft magnetic thin film according to claim 5, wherein the structure of e is composed of fine crystal grains having an average grain size of 200Å or less.
【請求項8】 Co基軟磁性薄膜のTaおよびZrの炭
化物の平均粒径が、CoまたはCo−Feの平均粒径よ
りも小さい請求項7に記載のCo基軟磁性薄膜。
8. The Co-based soft magnetic thin film according to claim 7, wherein the average particle size of the Ta and Zr carbides of the Co-based soft magnetic thin film is smaller than the average particle size of Co or Co—Fe.
【請求項9】 請求項1乃至8に記載のCo基軟磁性薄
膜を用いたコンポジット型磁気ヘッド。
9. A composite type magnetic head using the Co-based soft magnetic thin film according to claim 1.
JP3266698A 1991-10-16 1991-10-16 Co base soft magnetic thin film and magnetic head using it Pending JPH05109533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3266698A JPH05109533A (en) 1991-10-16 1991-10-16 Co base soft magnetic thin film and magnetic head using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3266698A JPH05109533A (en) 1991-10-16 1991-10-16 Co base soft magnetic thin film and magnetic head using it

Publications (1)

Publication Number Publication Date
JPH05109533A true JPH05109533A (en) 1993-04-30

Family

ID=17434446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3266698A Pending JPH05109533A (en) 1991-10-16 1991-10-16 Co base soft magnetic thin film and magnetic head using it

Country Status (1)

Country Link
JP (1) JPH05109533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240438B2 (en) 2003-12-10 2007-07-10 Lg.Philips Lcd Co., Ltd. Aligning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240438B2 (en) 2003-12-10 2007-07-10 Lg.Philips Lcd Co., Ltd. Aligning apparatus

Similar Documents

Publication Publication Date Title
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
Katada et al. Soft magnetic properties and microstructure of NiFe (Cr)/FeCo/NiFe (Cr) films with large saturation magnetization
US5851582A (en) Magnetic recording medium and process for producing the same
JP2698814B2 (en) Soft magnetic thin film
JPH0320444A (en) Soft magnetic alloy film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2508489B2 (en) Soft magnetic thin film
JP2950917B2 (en) Soft magnetic thin film
JPH05109533A (en) Co base soft magnetic thin film and magnetic head using it
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2508479B2 (en) Soft magnetic ferrite thin film
KR960012245B1 (en) Soft magnetic alloy coating
JPH0636928A (en) Soft magnetic material
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH03263306A (en) Magnetic film and magnetic head
JPH0827908B2 (en) Magnetic head
US6303240B1 (en) Soft magnetic thin film
JP3232592B2 (en) Magnetic head
JP2893706B2 (en) Iron-based soft magnetic film
JP2979557B2 (en) Soft magnetic film
JP2991478B2 (en) Soft magnetic thin film material
JPH03132004A (en) Fe-ta-c magnetic film and magnetic head
KR100193703B1 (en) Manufacturing method of soft magnetic alloy film, magnetic head and soft magnetic alloy film
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JPH0439905A (en) Magnetically soft alloy film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A02 Decision of refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A02