JP2893706B2 - Iron-based soft magnetic film - Google Patents

Iron-based soft magnetic film

Info

Publication number
JP2893706B2
JP2893706B2 JP1073233A JP7323389A JP2893706B2 JP 2893706 B2 JP2893706 B2 JP 2893706B2 JP 1073233 A JP1073233 A JP 1073233A JP 7323389 A JP7323389 A JP 7323389A JP 2893706 B2 JP2893706 B2 JP 2893706B2
Authority
JP
Japan
Prior art keywords
magnetic
iron
film
thin film
lattice plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1073233A
Other languages
Japanese (ja)
Other versions
JPH02251104A (en
Inventor
高橋  研
弘樹 荘司
政利 阿部
正己 越村
幹也 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1073233A priority Critical patent/JP2893706B2/en
Publication of JPH02251104A publication Critical patent/JPH02251104A/en
Application granted granted Critical
Publication of JP2893706B2 publication Critical patent/JP2893706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気記録用磁気ヘッド、高周波用のインダク
タンス,コイルの磁芯材料等に用いられる鉄系軟磁性膜
に関する。更に詳しくは高密度磁気記録に好適な単層の
鉄系軟磁性膜に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head for magnetic recording, a high-frequency inductance, an iron-based soft magnetic film used for a magnetic core material of a coil, and the like. More specifically, the present invention relates to a single-layer iron-based soft magnetic film suitable for high-density magnetic recording.

[従来の技術] 近年、電子機器の小型軽量化が進む中で磁気記録分野
においても高密度記録化、高周波化が著しい。高密度記
録には記録媒体の高保磁力化が不可欠であり、実際に従
来の代表的な記憶媒体であるフェライトの保磁力は500
〜700Oe程度であるのに対し、最近のメタルテープでは1
500〜2000Oeとなっている。
[Prior Art] In recent years, as electronic devices have become smaller and lighter, high-density recording and high-frequency operation have been remarkable in the magnetic recording field. It is indispensable to increase the coercive force of the recording medium for high-density recording, and the coercive force of ferrite, which is a typical conventional storage medium, is actually 500
~ 700 Oe, whereas recent metal tapes are 1
It is between 500 and 2000 Oe.

このような高保磁力の磁気記録媒体上に十分な高密度
記録を行うためには優れた磁気特性を有する磁気ヘッド
用磁性膜が必要となる。具体的には高飽和磁束密度を有
し、保磁力が低く透磁率の高い軟磁気特性を有し、更に
高周波に至るまで透磁率に減衰の見られない優れた高周
波特性を有する磁気ヘッド用磁性膜が必要となる。また
高密度記録のためには急峻な分布をなす磁界を得ること
が必要で、そのためには磁気ヘッドの磁極先端部の厚さ
は0.5μm以下にしなければならず、膜厚0.5μm以下で
上記特性を有する磁性膜が必要となる。
In order to perform sufficient high-density recording on such a magnetic recording medium having a high coercive force, a magnetic film for a magnetic head having excellent magnetic properties is required. Specifically, it has high saturation magnetic flux density, low coercive force, high magnetic permeability, soft magnetic characteristics, and excellent magnetic properties for magnetic heads with excellent high-frequency characteristics with no decrease in magnetic permeability up to high frequencies. A membrane is required. For high-density recording, it is necessary to obtain a steeply distributed magnetic field. To this end, the thickness of the tip of the magnetic pole of the magnetic head must be 0.5 μm or less. A magnetic film having characteristics is required.

従来、Feに侵入型で固溶するB,C,N,Pの元素をFeを主
成分とする磁性膜に1〜15at%又は5〜20at%含ませ
て、薄膜形成後、300℃で熱処理することにより、その
飽和磁束密度を減少させることなくその透磁率を増大さ
せ、かつ保磁力を減少させる技術が開示されている(特
開昭63−65604、特開昭63−236304及び特開昭64−4210
8)。
Conventionally, B, C, N, and P elements that interstitially dissolve in Fe are contained in a magnetic film containing Fe as a main component in an amount of 1 to 15 at% or 5 to 20 at%. Thus, techniques for increasing the magnetic permeability and reducing the coercive force without reducing the saturation magnetic flux density have been disclosed (JP-A-63-65604, JP-A-63-236304 and JP-A-63-236304). 64-4210
8).

またFeをターゲットとし、ArとNの混合ガス中で全ガ
ス圧を0.1〜0.5mTorrとしN2の分圧を0.01〜0.05mTorrと
して、イオンビーム蒸着、スパッタリング等によりイオ
ン化し窒化鉄薄膜からなる単層の主磁性体膜を形成し、
この主磁性体膜の磁性体とは異なるパーマロイ系合金、
センダスト系合金、非晶質系磁性合金等の他の比較的低
保磁力で磁歪の小さな磁性体からなる中間磁性体膜を介
して上記主磁性体膜を積層し、保磁力を大幅に低減した
鉄−窒素系積層磁性体膜が開示されている(特開昭60−
132305)。
Also, a single gas consisting of an iron nitride thin film ionized by ion beam evaporation, sputtering, or the like, with Fe as a target and a total gas pressure of 0.1 to 0.5 mTorr and a partial pressure of N 2 of 0.01 to 0.05 mTorr in a mixed gas of Ar and N is used. Forming the main magnetic film of the layer,
Permalloy alloy different from the magnetic material of this main magnetic film,
By laminating the main magnetic film through an intermediate magnetic film made of a magnetic material with a relatively low coercive force and a small magnetostriction such as a sendust alloy, an amorphous magnetic alloy, etc., the coercive force is greatly reduced. An iron-nitrogen based laminated magnetic film has been disclosed (JP-A-60-1985).
132305).

またAr、ArとN2又はArとO2をスパッタリングガスとす
るスパッタリング法を用い、所定の基板上にFeを主成分
とする膜を形成する場合に、50℃以下の基板温度で厚さ
1〜100nmの第一層鉄系膜を形成した後、引続き100℃以
上の基板温度で前記第1層鉄系膜の上に所定厚さの第2
層鉄系膜を形成する高密度鉄系磁性体膜の製造方法が提
案されている(特開昭62−158306)。
When a film containing Fe as a main component is formed on a predetermined substrate by using a sputtering method using Ar, Ar and N 2 or Ar and O 2 as a sputtering gas, a thickness of 1 mm at a substrate temperature of 50 ° C. or less is used. After forming a first-layer iron-based film having a thickness of about 100 nm, a second layer having a predetermined thickness is formed on the first-layer iron-based film at a substrate temperature of 100 ° C. or higher.
A method for producing a high-density iron-based magnetic film for forming a layered iron-based film has been proposed (JP-A-62-158306).

また窒化鉄に0.5〜7.5%の第三の元素を添加した軟磁
性薄膜を単独あるいは非磁性窒化物膜と積層して用いる
ことにより、成膜後、550℃で1時間熱処理しても低保
磁力で、良好な軟磁気特性を維持又は改善できる軟磁性
薄膜が開示されている(特開昭63−299219)。
Also, by using a soft magnetic thin film obtained by adding 0.5 to 7.5% of a third element to iron nitride alone or by laminating it with a non-magnetic nitride film, the film can be kept low even if heat-treated at 550 ° C. for 1 hour after film formation. A soft magnetic thin film capable of maintaining or improving good soft magnetic properties with a magnetic force has been disclosed (JP-A-63-299219).

更にFeを蒸発源とし、Arガス圧を3mTorrとしN2のガス
圧を0.15〜0.4mTorrとして、スパッタリング、真空蒸着
等を行って成膜した後200℃で熱処理することにより、F
eを主体とし、Fe4N及び又はFe3Nからなる窒化鉄を2.1〜
9.7モル%含んだ軟磁性薄膜が開示されている(特開昭6
4−15907)。この軟磁性薄膜は1.5テスラ以上の高飽和
磁束密度を有し、50e以下という低保磁力を有する。
Furthermore the evaporation sources Fe, an Ar gas pressure of 0.15~0.4mTorr gas pressure and 3 mTorr N 2, sputtering, by heat treatment at 200 ° C. After forming by performing vacuum deposition or the like, F
e as the main component, iron nitride consisting of Fe 4 N and / or Fe 3 N 2.1 to
A soft magnetic thin film containing 9.7 mol% is disclosed (Japanese Patent Application Laid-Open No.
4-15907). This soft magnetic thin film has a high saturation magnetic flux density of 1.5 Tesla or more and a low coercive force of 50 e or less.

[発明が解決しようとする課題] 特開昭63−65604号公報、特開昭63−236304号公報及
び特開昭64−42108号公報に示される鉄系磁性膜は、い
ずれも、2.0テスラ程度の高飽和磁束密度を有する薄膜
が得られるが、Feの結晶磁気異方性定数K1が室温で4.72
×105erg/ccと大きいことから低保磁力化、高透磁率化
が困難で侵入型固溶元素を添加して結晶粒を微細化して
も、また薄膜形成後、300℃で熱処理しても成膜速度を
特別に制御していないため、単層膜では透磁率は1000未
満であって実用には供していない。またこれらの鉄系磁
性膜を多層膜にした場合には1500以上の透磁率が得られ
るが、多層膜は各層の膜厚を制御しなければ磁気特性が
ばらつくことや、構造上、非磁性層を薄くしなければ高
飽和磁束密度が得られない。特に各層の熱膨張係数が異
なるため内部応力が生じ易く、その除去処理が繁雑であ
る等の問題点もある。
[Problems to be Solved by the Invention] The iron-based magnetic films disclosed in JP-A-63-65604, JP-A-63-236304 and JP-A-64-42108 each have a thickness of about 2.0 Tesla. A thin film having a high saturation magnetic flux density is obtained, but the crystal magnetic anisotropy constant K 1 of Fe is 4.72 at room temperature.
It is difficult to achieve low coercive force and high magnetic permeability due to the large x10 5 erg / cc, and it is difficult to increase the crystal grain size by adding an interstitial solid-solution element. Also, since the film formation rate is not specially controlled, the magnetic permeability of a single-layer film is less than 1000 and is not practically used. When these iron-based magnetic films are formed into a multilayer film, a magnetic permeability of 1500 or more can be obtained.However, the magnetic characteristics of the multilayer film vary if the thickness of each layer is not controlled, and the structure of the nonmagnetic layer If the thickness is not reduced, a high saturation magnetic flux density cannot be obtained. In particular, since the thermal expansion coefficients of the respective layers are different, internal stress is easily generated, and there is a problem that the removal process is complicated.

また特開昭60−132305号公報及び特開昭62−158306号
公報に示される鉄系磁性膜は、2.0テスラ以上の高飽和
磁束密度と20e以下の低保磁力を有する薄膜が得られる
が、複数の層からなるため各層の膜厚や基板温度を正確
に制御しなければ特性がばらつき易い不具合があった。
Further, the iron-based magnetic film shown in JP-A-60-132305 and JP-A-62-158306 can obtain a thin film having a high saturation magnetic flux density of 2.0 Tesla or more and a low coercive force of 20e or less. Since it is composed of a plurality of layers, the characteristics tend to vary unless the film thickness of each layer and the substrate temperature are accurately controlled.

また特開昭63−299219号公報に示される単層の軟磁性
薄膜は、熱処理前で20e未満の低保磁力であったもの
が、熱処理後では20e以上になって保磁力が上昇し、熱
処理が必ずしも良好な軟磁気特性を示すとはいえない欠
点があった。
The single-layer soft magnetic thin film disclosed in JP-A-63-299219 had a low coercive force of less than 20 e before heat treatment, but increased to 20 e or more after heat treatment to increase the coercive force. However, there is a drawback that it cannot be said that good soft magnetic characteristics are always exhibited.

更に特開昭64−15907号公報に示される軟磁性薄膜は
1.5テスラ以上の飽和磁束密度が得られるものの、Fe4N
及び/又はFe3NというNの化合物を含む混晶膜であるた
め、飽和磁束密度の高密度化に関しては未だ十分でなか
った。
Further, the soft magnetic thin film disclosed in JP-A-64-15907 is
Although a saturation magnetic flux density of 1.5 Tesla or more can be obtained, Fe 4 N
And / or a mixed crystal film containing an N compound called Fe 3 N, so that the saturation magnetic flux density has not yet been sufficiently increased.

本発明の目的は、磁気ヘッド材料として要求される高
飽和磁束密度と高透磁率の双方の磁気特性を有する単層
の鉄系軟磁性膜を提供することにある。
An object of the present invention is to provide a single-layer iron-based soft magnetic film having both high saturation magnetic flux density and high magnetic permeability required for a magnetic head material.

[課題を解決するための手段] 本発明者らは、N及びAr雰囲気中でFeを主成分とする
薄膜を作製した場合、結晶粒が微細化するだけでなく、
格子定数が大きく変化することに着目し、このために薄
膜を所定範囲内の一定速度で成膜し、かつ所定の温度で
熱処理することによりある定まった格子定数の磁性膜を
作製すれば、高飽和磁束密度を維持しながら透磁率を非
常に大きくできることを見出し、本発明に到達した。
[Means for Solving the Problems] The present inventors have found that when a thin film containing Fe as a main component is produced in an N and Ar atmosphere, not only the crystal grains are refined, but also
Focusing on a large change in the lattice constant, a thin film is formed at a constant rate within a predetermined range, and a heat treatment is performed at a predetermined temperature to produce a magnetic film having a certain lattice constant. The present inventors have found that the magnetic permeability can be extremely increased while maintaining the saturation magnetic flux density, and arrived at the present invention.

すなわち、本発明はFeは侵入型で固溶する元素を含有
し、体心立方晶構造をとり、被着された基板と平行な面
の粒径が50nm以下の結晶粒から主として構成され、この
結晶粒の格子面(110)が基板面に平行に配向し、Fe侵
入型で固溶する元素がN、或いはN,C,Si,B,Pより選ばれ
た1種の元素とArの2種の元素であり、侵入型固溶元素
の含有量は1〜12at%の範囲にある、Feを主成分とする
単層の鉄系軟磁性膜において、Nの化合物を含まない単
一相の膜であって、かつ格子面(110)間隔が純Feの格
子面(110)間隔よりも0.2〜0.7%増加したことを特徴
とする。
That is, in the present invention, Fe contains an element which forms an interstitial solid solution, has a body-centered cubic structure, and is mainly composed of crystal grains having a grain size of 50 nm or less in a plane parallel to the substrate to which the Fe is applied. The lattice plane (110) of the crystal grains is oriented parallel to the substrate plane, and the element which forms a solid solution in the Fe intrusion type is N, or one element selected from N, C, Si, B, and P and Ar. In the case of a single-layer iron-based soft magnetic film containing Fe as a main component, the content of the interstitial solid solution element is in the range of 1 to 12 at%, The film is characterized in that the spacing between the lattice planes (110) is increased by 0.2 to 0.7% from the spacing between the lattice planes (110) of pure Fe.

本発明を更に詳述すると、本発明の磁性薄膜は高飽和
磁束密度を有するFeを主成分とし、体心立方晶(bcc)
構造をとり、結晶粒の格子面(110)が基板面に平行に
配向した薄膜であって、その薄膜の中にN、或いはN,C,
Si,B,Pより選ばれた1種の元素とArの2種の非磁性元素
を含有する単層の鉄系薄膜であって、しかも他の相を含
まない単一相の鉄系薄膜である。Nを侵入型固溶元素と
すると、得られた磁性膜の耐摩耗性が向上し、ヘッド材
として好都合であるため好ましい。またこの鉄系薄膜に
は飽和磁束密度を大きく下げない範囲内でNi,Co等の磁
性元素を含ませることもできる。
More specifically, the magnetic thin film of the present invention is mainly composed of Fe having a high saturation magnetic flux density, and has a body-centered cubic crystal (bcc).
It is a thin film having a structure, in which the lattice plane (110) of the crystal grain is oriented parallel to the substrate surface, and N, or N, C,
A single-layer iron-based thin film containing one element selected from Si, B and P and two non-magnetic elements of Ar and a single-phase iron-based thin film containing no other phases is there. It is preferable that N is an interstitial solid solution element because the resulting magnetic film has improved wear resistance and is advantageous as a head material. The iron-based thin film may contain a magnetic element such as Ni or Co within a range that does not greatly reduce the saturation magnetic flux density.

この鉄系磁性膜の形成方法としては、スパッタリング
法、真空蒸着法、CVD法(気相化学反応法)等が考えら
れ、特に限定されない。実用的にはスパッタリング法が
好ましい。
As a method for forming the iron-based magnetic film, a sputtering method, a vacuum evaporation method, a CVD method (gas phase chemical reaction method), and the like are considered, and are not particularly limited. Practically, the sputtering method is preferable.

スパッタリング法により磁性膜を形成する場合には、
N,C,Si,B,Pは薄膜中の磁性元素からなる結晶中に侵入型
で固溶し、Arは上記磁性元素に主に粒界侵入型で固溶す
ると考えられる。高透磁率化は純Arでは達成されず、N,
C,Si,B,Pのいずれかの元素が必要である。N,C,Si,B,Pよ
り選ばれた1種の元素とArの相違は、前者がFeに異方性
に侵入し体心立方晶(bcc)から体心正方晶(bct)の形
成を促進する傾向を示すのに対して、後者(Ar)は等方
的に侵入すると考えられる。後者(Ar)は通常のスパッ
タリングガスとしての役目を果し、高い磁気特性は前者
による異方的な侵入と結晶粒の微細化により達成され
る。また両者とも侵入型であるため、単位体積中の磁性
元素量を極端に減少させることがなく、高飽和磁束密度
を維持することができる。また結晶粒の粒径の微細化は
異方性分散に効果的であり、高透磁率化に有効と考えら
れる。実際にNの固溶により30nm以下の微粒子が生成し
ていることが確認されている。
When forming a magnetic film by a sputtering method,
It is considered that N, C, Si, B, and P form a solid solution in a crystal formed of a magnetic element in a thin film, and Ar forms a solid solution with the above magnetic element mainly in a grain boundary form. High permeability cannot be achieved with pure Ar.
Any element of C, Si, B, and P is required. The difference between one element selected from N, C, Si, B, and P and Ar is that the former anisotropically penetrates Fe and forms a body-centered cubic (bcc) to a body-centered tetragonal (bct). The latter (Ar) is thought to penetrate isotropically, whereas The latter (Ar) serves as a normal sputtering gas, and high magnetic properties are achieved by anisotropic intrusion and grain refinement by the former. Further, since both are interstitial types, it is possible to maintain a high saturation magnetic flux density without extremely reducing the amount of magnetic element in a unit volume. Further, the refinement of the grain size of the crystal grains is effective for anisotropic dispersion and is considered effective for increasing the magnetic permeability. It has been confirmed that fine particles of 30 nm or less are actually generated by the solid solution of N.

スパッタリング法とは別の真空蒸着法、CVD法等の鉄
系磁性膜の形成方法を用いれば、Feに侵入型で固溶する
元素をNだけにすることができる。
If an iron-based magnetic film formation method such as a vacuum evaporation method or a CVD method other than the sputtering method is used, the element which forms a solid solution with Fe in an interstitial manner can be made only N.

Nのみの固溶量、或いはN,C,Si,B,Pより選ばれた1種
の元素とArの総固溶量は、高飽和磁束密度を維持するた
めに1〜12at%の範囲内にあることが必要である。1at
%未満の固溶量では格子面(110)間隔を純Feのそれよ
り0.2%以上増加させることができず、高透磁率化を達
成できない。また12at%を越えると格子面(110)間隔
が0.7%を上回って、Nの化合物ができたり、或いは粒
界間に含まれるArガスのため、磁化が動きにくくなり高
透磁率化できない。本発明の鉄系磁性膜はNの化合物を
含まない単一相であることも特徴の1つである。このた
めに、スパッタリングで成膜するときには、高純度Feか
らなるターゲット又はFeを主成分とする合金ターゲット
にArとNの混合ガス中でその全ガス圧を0.5〜1.0mTorr
にして、N2の分圧を0.01〜0.07mTorrにする。
The amount of solid solution of only N or the total amount of solid solution of one element selected from N, C, Si, B and P and Ar is within a range of 1 to 12 at% in order to maintain a high saturation magnetic flux density. It is necessary to be in. 1at
If the solid solution amount is less than 0.2%, the lattice plane (110) interval cannot be increased by 0.2% or more than that of pure Fe, and high permeability cannot be achieved. On the other hand, if it exceeds 12 at%, the lattice plane (110) interval exceeds 0.7%, and a compound of N is formed, or magnetization is difficult to move due to Ar gas contained between grain boundaries, so that high permeability cannot be achieved. One of the features is that the iron-based magnetic film of the present invention is a single phase containing no N compound. For this reason, when forming a film by sputtering, the total gas pressure of a target made of high-purity Fe or an alloy target containing Fe as a main component in a mixed gas of Ar and N is set to 0.5 to 1.0 mTorr.
A manner, the partial pressure of N 2 in 0.01~0.07MTorr.

更に本発明の特徴ある点は、成膜速度が50〜200Å/
分の範囲内で一定に制御され、Nのみの固溶、或いはN,
C,Si,B,Pより選ばれた1種の元素とArの固溶によって生
じた格子歪を熱処理により最適歪に調整することであ
る。成膜速度が上記範囲外では或いは範囲内でも一定に
制御されないと結晶粒の格子面(110)が基板面に平行
に配向しにくい。また格子歪の調整は具体的にはN、或
いはN,C,Si,B,Pより選ばれた1種の元素とArが侵入型で
固溶しかつ格子面(110)に配向した鉄系薄膜を250〜40
0℃の温度で熱処理して格子面(110)間隔が純Feのそれ
よりも0.2〜0.7%増加するように調整することである。
250℃未満では熱処理効果が得られず、400℃を越えると
薄膜の結晶粒が粒成長するとともに歪が減少し、必要と
される格子面(110)間隔が増加しない。
Another characteristic of the present invention is that the film formation rate is 50 to 200 ° /
Is controlled to a constant value within the range of
The purpose is to adjust the lattice strain caused by the solid solution of one element selected from C, Si, B, and P and Ar to an optimum strain by heat treatment. If the deposition rate is not controlled to be constant outside or within the above range, the lattice plane (110) of the crystal grains is unlikely to be oriented parallel to the substrate plane. The lattice strain is adjusted specifically by iron or an element selected from N, C, Si, B, and P and an iron-based alloy in which Ar forms an interstitial solid solution and is oriented on the lattice plane (110). 250-40 thin film
The heat treatment is performed at a temperature of 0 ° C. to adjust the lattice plane (110) interval to be 0.2 to 0.7% larger than that of pure Fe.
If the temperature is lower than 250 ° C., the heat treatment effect cannot be obtained. If the temperature exceeds 400 ° C., the crystal grains of the thin film grow and the strain decreases, and the required lattice plane (110) interval does not increase.

これを純FeにN2を含有した膜の格子面(110)間隔の
伸び率の点からみると、0.2〜0.7%に相当し、この範囲
でこれまでの代表的な鉄系単層膜の透磁率の値である80
0を越えた鉄系磁性膜が得られる。なお純FeにCo,Ni等の
磁性原子を添加した膜にN2を含有した膜では伸び率が0.
2〜0.7%の範囲内で高透磁率となる。この熱処理は膜の
酸化を防ぐため、真空中又は不活性ガス中で行われる。
This corresponds to 0.2 to 0.7% in terms of the elongation rate of the lattice plane (110) interval of the film containing N 2 in pure Fe, and within this range, the typical iron-based single-layer film has Permeability value of 80
An iron-based magnetic film exceeding 0 is obtained. Note Co pure Fe, the elongation at film containing N 2 to film added with magnetic atoms such as Ni 0.
High magnetic permeability is obtained in the range of 2 to 0.7%. This heat treatment is performed in a vacuum or in an inert gas to prevent oxidation of the film.

[作 用] Arが磁性膜の結晶粒内に侵入すると格子面(110)間
隔は広がるが、N,C,Si,B,Pより選ばれた1種の元素が侵
入することにより更に格子面(110)間隔が広がると考
えられる。これによりその格子定数が変化しその格子歪
に対応した磁気弾性エネルギーが磁性膜に誘起される。
この磁気弾性エネルギーでFeのもつ大きな結晶磁気異方
性エネルギーK1=4.72×105egr/cc(室温)を相殺させ
ることにより、結晶粒内の見かけの結晶磁気異方性エネ
ルギーが減少し、その結果、優れた軟磁性膜が得られる
と考えられる。
[Operation] When Ar penetrates into the crystal grains of the magnetic film, the lattice plane (110) interval is widened, but the lattice plane is further increased due to the penetration of one element selected from N, C, Si, B, and P. (110) It is thought that the interval increases. Thereby, the lattice constant changes, and magnetoelastic energy corresponding to the lattice strain is induced in the magnetic film.
By offsetting the large crystal magnetic anisotropy energy K 1 of Fe = 4.72 × 10 5 egr / cc (room temperature) with this magnetoelastic energy, the apparent crystal magnetic anisotropy energy in the crystal grain is reduced, As a result, it is considered that an excellent soft magnetic film is obtained.

その際、膜の格子面(110)の配向が重要となる。成
膜速度が50〜200Å/分の範囲内で一定に制御されると
この配向度は高くなる。鉄系薄膜のX線回折結果より、
格子面(100)と格子面(110)の2つの配向が考えられ
る。しかし格子面(100)に配向した膜の結晶磁気異方
性定数K1から生じる格子面(100)内の異方性エネルギ
ーは周期π/2の成分のみに依存し、周期πの成分からな
る磁気弾性エネルギーとの相殺は不可能となる。一方、
格子面(110)に配向した場合の格子面(110)内の異方
性エネルギーが周期πの成分を持ち、磁気弾性エネルギ
ーとの相殺が可能となる。また高次の異方性エネルギー
の項も、格子面(110)に配向した場合の方が格子面(1
00)に配向した場合に比べて小さい。これらの理由によ
り格子面(110)の配向が非常に重要であることが分
る。本発明の鉄系軟磁性膜はN2添加による成膜、所定の
成膜速度及びその後の熱処理により強く、格子面(11
0)に配向した膜が形成されるため優れた軟磁性膜が得
られると考えられる。
At that time, the orientation of the lattice plane (110) of the film is important. This degree of orientation increases when the film forming rate is controlled to be constant within the range of 50 to 200 ° / min. From the X-ray diffraction results of the iron-based thin film,
Two orientations of the lattice plane (100) and the lattice plane (110) are possible. However, the anisotropy energy in the lattice plane (100) resulting from the magnetocrystalline anisotropy constant K 1 of the film oriented to the lattice plane (100) depends only on the component of the period π / 2, and consists of the component of the period π. Cancellation with magnetoelastic energy becomes impossible. on the other hand,
The anisotropic energy in the lattice plane (110) when oriented to the lattice plane (110) has a component of the period π, and can be canceled with the magnetoelastic energy. The higher-order anisotropy energy term is also higher when the lattice plane (110) is oriented.
(00). It turns out that the orientation of the lattice plane (110) is very important for these reasons. The iron-based soft magnetic film of the present invention can be formed strongly by a film formation by adding N 2 , a predetermined film formation rate and a subsequent heat treatment, and the lattice plane (11
It is considered that an excellent soft magnetic film can be obtained because a film oriented in 0) is formed.

計算によれば、これらのエネルギーの結晶粒内におけ
る総和は、格子面(110)間隔の増加率を0.2〜0.5%と
したときに104erg/ccのオーダーとなり、特に0.4%前後
ではFeの結晶磁気異方性エネルギーのおよそ5分の1に
低下し、高透磁率、低保磁力化を図ることができる。Fe
にCo或いはNi原子を含む場合には、結晶磁気異方性エネ
ルギーが異なるため、高透磁率化するための格子面(11
0)間隔の増加率の範囲は0.2〜0.7%になる。この増加
率は成膜後に250〜400℃の温度で処理することにより設
定される。
According to the calculation, the sum of these energies in the crystal grains is on the order of 10 4 erg / cc when the rate of increase of the lattice plane (110) interval is 0.2 to 0.5%, and especially around 0.4%, The energy of crystal magnetic anisotropy is reduced to about one-fifth, and high magnetic permeability and low coercive force can be achieved. Fe
When Co or Ni atoms are included, the crystal magnetic anisotropy energies are different, so that the lattice plane (11
0) The range of the increase rate of the interval is 0.2 to 0.7%. This increase rate is set by processing at a temperature of 250 to 400 ° C. after film formation.

更にスパッタリング時にN2ガス分圧を0.01〜0.07mTor
rにして、N2ガス分圧を極力低くすることにより、膜中
にNの化合物は生じない。
Further, during sputtering, the N 2 gas partial pressure is set to 0.01 to 0.07 mTor.
in the r, by the N 2 gas partial pressure as low as possible, there is no compound of N in the film.

[実施例] 次に本発明の実施例を比較例とともに説明する。[Examples] Next, examples of the present invention will be described together with comparative examples.

<実施例1> ターゲットとして高純度Fe円板を用い、ArとNの混合
ガス中でDC対向マグネトロンスパッタリング方により、
マイクロカバーガラスの基板上に0.3μmの厚さで単層
の鉄系薄膜を作製した。このスパッタリングの条件は、 全ガス圧(Ar+N2) …0.5 mTorr N2の分圧 …0.01mTorr 全ガス流量(Ar+N2)…5ccm 成膜速度 …50Å/分 であった。
<Example 1> Using a high-purity Fe disk as a target, and a DC facing magnetron sputtering method in a mixed gas of Ar and N,
A single-layer iron-based thin film having a thickness of 0.3 μm was formed on a micro cover glass substrate. The sputtering conditions were as follows: total gas pressure (Ar + N 2 ): 0.5 mTorr N 2 partial pressure: 0.01 mTorr total gas flow rate (Ar + N 2 ): 5 ccm Film formation rate: 50 ° / min.

このように作製された薄膜を更に真空中で300℃で1
時間熱処理して鉄系磁性膜を得た。
The thin film thus produced is further subjected to vacuum at 300 ° C. for 1 hour.
Heat treatment was performed for an hour to obtain an iron-based magnetic film.

<比較例1> 実施例1のスパッタリング条件の中で、N2を含まない
雰囲気、すなわちN2の分圧を0mTorrとした以外は実施例
1と同様に鉄系薄膜を作製した。この薄膜を熱処理せず
に真空中に放置して鉄系磁性膜を得た。
Among the sputtering conditions of <Comparative Example 1> Example 1, an atmosphere that does not contain N 2, i.e. except that the 0mTorr the partial pressure of N 2 was produced an iron-based thin film in the same manner as in Example 1. This thin film was left in a vacuum without heat treatment to obtain an iron-based magnetic film.

<比較例2> 比較例1の鉄系薄膜を実施例1と同様に真空中で300
℃で1時間熱処理して鉄系磁性膜を得た。
<Comparative Example 2> The iron-based thin film of Comparative Example 1 was 300
C. for 1 hour to obtain an iron-based magnetic film.

<比較例3> 実施例1と同一のスパッタリング条件で鉄系薄膜を作
製した。この薄膜を熱処理せずに真空中に放置して鉄系
磁性膜を得た。
Comparative Example 3 An iron-based thin film was produced under the same sputtering conditions as in Example 1. This thin film was left in a vacuum without heat treatment to obtain an iron-based magnetic film.

<実施例2> 実施例1のスパッタリング条件の中で、N2の分圧を0.
02mTorrとした以外は実施例1と同様に鉄系薄膜を作製
した。この薄膜を実施例1と同様に真空中で300℃で1
時間熱処理して鉄系磁性膜を得た。
<Example 2> Under the sputtering conditions of Example 1, the partial pressure of N 2 was set to 0.
An iron-based thin film was prepared in the same manner as in Example 1 except that the pressure was set to 02 mTorr. This thin film was dried at 300 ° C. in vacuum in the same manner as in Example 1.
Heat treatment was performed for an hour to obtain an iron-based magnetic film.

<比較例4> 実施例2と同一のスパッタリング条件で鉄系薄膜を作
製した。この薄膜を熱処理せずに真空中に放置して鉄系
磁性膜を得た。
Comparative Example 4 An iron-based thin film was produced under the same sputtering conditions as in Example 2. This thin film was left in a vacuum without heat treatment to obtain an iron-based magnetic film.

<実施例3> 実施例1のスパッタリング条件の中で、N2の分圧を0.
035mTorrとした以外は実施例1と同様に鉄系薄膜を作製
した。この薄膜を更に真空中で、250、300、350及び400
℃で1時間熱処理して鉄系磁性膜を得た。
Among the sputtering conditions <Example 3> Example 1, the partial pressure of N 2 0.
An iron-based thin film was produced in the same manner as in Example 1 except that the pressure was changed to 035 mTorr. The thin film is further subjected to 250, 300, 350 and 400 in vacuum.
C. for 1 hour to obtain an iron-based magnetic film.

<比較例5> 実施例3と同一のスパッタリング条件で鉄系薄膜を作
製した。この薄膜を熱処理せずに真空中に放置して鉄系
磁性膜を得た。
Comparative Example 5 An iron-based thin film was produced under the same sputtering conditions as in Example 3. This thin film was left in a vacuum without heat treatment to obtain an iron-based magnetic film.

<比較例6> 実施例3と同一のスパッタリング条件で鉄系薄膜を作
製した。この薄膜を更に真空中で、100、150、200及び5
00℃で1時間熱処理して鉄系磁性膜を得た。
Comparative Example 6 An iron-based thin film was produced under the same sputtering conditions as in Example 3. This thin film is further subjected to 100, 150, 200 and 5 in vacuum.
Heat treatment was performed at 00 ° C. for 1 hour to obtain an iron-based magnetic film.

<実施例4> 実施例1のスパッタリング条件の中で、全ガス圧(Ar
+N2)を1.0mTorr、成膜速度を200Å/分、N2の分圧を
0.07mTorrとした以外は実施例1と同様に鉄系薄膜を作
製した。この薄膜を更に真空中で、300℃で1時間熱処
理して鉄系磁性膜を得た。
<Example 4> Under the sputtering conditions of Example 1, the total gas pressure (Ar
+ N 2 ) at 1.0 mTorr, deposition rate at 200Å / min, N 2 partial pressure
An iron-based thin film was prepared in the same manner as in Example 1 except that the pressure was set to 0.07 mTorr. This thin film was further heat-treated at 300 ° C. for 1 hour in vacuum to obtain an iron-based magnetic film.

<比較例7> 実施例4のスパッタリング条件の中で、N2を含まない
雰囲気、すなわちN2の分圧を0mTorrとした以外は実施例
4と同様に鉄系薄膜を作製した。この薄膜を熱処理せず
に真空中に放置して鉄系磁性膜を得た。
Among the sputtering conditions of <Comparative Example 7> Example 4, the atmosphere containing no N 2, i.e. except that the 0mTorr the partial pressure of N 2 was produced an iron-based thin film in the same manner as in Example 4. This thin film was left in a vacuum without heat treatment to obtain an iron-based magnetic film.

<比較例8> 比較例7の鉄系薄膜を真空中で300℃で1時間熱処理
して鉄系磁性膜を得た。
Comparative Example 8 The iron-based thin film of Comparative Example 7 was heat-treated at 300 ° C. for 1 hour in vacuum to obtain an iron-based magnetic film.

<比較例9> 実施例4と同一のスパッタリング条件で鉄系薄膜を作
製した。この薄膜を熱処理せずに真空中に放置して鉄系
磁性膜を得た。
<Comparative Example 9> An iron-based thin film was manufactured under the same sputtering conditions as in Example 4. This thin film was left in a vacuum without heat treatment to obtain an iron-based magnetic film.

<比較例10> 実施例4と同一のスパッタリング条件で鉄系薄膜を作
製した。この薄膜を更に真空中で、100℃で1時間熱処
理して鉄系磁性膜を得た。
Comparative Example 10 An iron-based thin film was produced under the same sputtering conditions as in Example 4. This thin film was further heat-treated at 100 ° C. for 1 hour in a vacuum to obtain an iron-based magnetic film.

実施例1〜4及び比較例1〜10の鉄系磁性膜の磁化特
性、格子面(110)間隔、Nの含有量及び結晶粒径を測
定した。この結果を第1表に示す。なお、格子面(11
0)間隔dの増加率は純Feの格子面(110)間隔d0=2.02
7を基準とした。第1表から、いずれの実施例において
も300℃、1時間の熱処理を行うことにより、得られた
鉄系磁性膜は2.08テスラ以上の高飽和磁束密度と800〜2
020の高透磁率を有することが分かった。
The magnetization characteristics, lattice plane (110) spacing, N content, and crystal grain size of the iron-based magnetic films of Examples 1 to 4 and Comparative Examples 1 to 10 were measured. Table 1 shows the results. The lattice plane (11
0) The increase rate of the interval d is the lattice plane of pure Fe (110) interval d 0 = 2.02
Based on 7. From Table 1, it can be seen that the iron-based magnetic film obtained by performing the heat treatment at 300 ° C. for 1 hour in any of the examples has a high saturation magnetic flux density of 2.08 Tesla or more and 800 to 2 Tesla.
It was found to have a high magnetic permeability of 020.

前述した実施例及び比較例の中で、全ガス圧0.5mTorr
でN2分圧0.035mTorrの条件で作製した実施例3、比較例
5及び比較例6の鉄系磁性膜についての透磁率μの格子
面(110)間隔dの依存性を第1図に示す。
In the above Examples and Comparative Examples, the total gas pressure was 0.5 mTorr.
FIG. 1 shows the dependence of the magnetic permeability μ on the lattice plane (110) spacing d for the iron-based magnetic films of Example 3, Comparative Example 5, and Comparative Example 6 prepared under the conditions of a N 2 partial pressure of 0.035 mTorr. .

第1図において、●は実施例、○は比較例を示す。ま
た括弧内の数値は純Feの格子面(110)間隔d0=2.027を
基準としたときの格子面(110)間隔dの増加率(%)
を意味する。第1図よりも透磁率800を越える格子面(1
10)間隔は、その増加率が0.2〜0.7%の範囲にあること
が分る。また第1図から格子面(110)間隔dが2.046の
ときに透磁率μが急激に減少しているが、これは膜が単
相から多相に変化し、FeとNの化合物(ε−Fe3N,Fe2N
等)が析出しているためと考えられる。
In FIG. 1, ● represents an example, and ○ represents a comparative example. The values in parentheses indicate the increase rate (%) of the lattice plane (110) distance d based on the lattice plane (110) distance d 0 = 2.027 of pure Fe.
Means The lattice plane (1
10) It can be seen that the rate of increase of the interval is in the range of 0.2-0.7%. From FIG. 1, the magnetic permeability μ sharply decreases when the lattice plane (110) interval d is 2.046. This is because the film changes from a single phase to a multiphase, and the compound of Fe and N (ε− Fe 3 N, Fe 2 N
Etc.) are presumed to have precipitated.

第1表より面間隔dの増加率が0.2〜0.7%の範囲にあ
るときには、その熱処理温度は250〜400℃の範囲内にな
ければならないことが分る。
From Table 1, it can be seen that when the rate of increase of the plane distance d is in the range of 0.2 to 0.7%, the heat treatment temperature must be in the range of 250 to 400 ° C.

なお、上記例ではターゲットとして高純度Fe円板を用
いたが、Feを主成分とするCo又はNiを含む合金ターゲッ
トを用いても、本発明の目的を達成することができる。
Although the high-purity Fe disk is used as the target in the above example, the object of the present invention can be achieved by using an alloy target containing Co or Ni containing Fe as a main component.

また、侵入型固溶元素はNに限らず、C,Si,B,Pでも同
様の効果が得られる。
The same effect can be obtained with not only N but also C, Si, B and P.

[発明の効果] 以上述べたように、本発明によれば、Fe系薄膜の結晶
粒内にN、或いはN,C,Si,B,Pより選ばれた1種の元素と
Arを侵入させ、所定の速度で成膜し、かつ所定の温度で
熱処理して、Nの化合物を含まない単一相の膜にし、か
つ結晶粒の格子面(110)間隔を純Feの格子面(110)間
隔よりも0.2〜0.7%増加させることにより、飽和磁束密
度2.1テスラ程度で、しかも実効透磁率800〜2000という
極めて優れた高飽和磁束密度、高透磁率を有する単層で
単一相の軟磁性膜が得られる。
[Effects of the Invention] As described above, according to the present invention, N or one element selected from N, C, Si, B, and P is contained in the crystal grains of the Fe-based thin film.
Ar is penetrated, a film is formed at a predetermined speed, and a heat treatment is performed at a predetermined temperature to form a single-phase film containing no N compound, and the lattice plane (110) spacing of crystal grains is set to a pure Fe lattice. By increasing 0.2 to 0.7% from the plane (110) interval, the saturation magnetic flux density is about 2.1 Tesla and the effective magnetic permeability is 800 to 2000. A phase soft magnetic film is obtained.

本発明の鉄系軟磁性膜は単層膜であるため、複雑な製
造条件を要さずに再現性よく製造することができる。
Since the iron-based soft magnetic film of the present invention is a single-layer film, it can be manufactured with good reproducibility without requiring complicated manufacturing conditions.

また本発明の鉄系軟磁性膜を用いて磁気ヘッドを構成
すれば、高密度記録に好適な薄膜磁気ヘッドとなる。特
に膜厚0.3μm以下の薄膜ヘッドとした場合には急峻で
強い磁界が得られるため、顕著な記録特性向上が認めら
れる。Nが侵入した場合には耐摩耗性が向上しヘッド材
として好都合である。
When a magnetic head is formed using the iron-based soft magnetic film of the present invention, a thin-film magnetic head suitable for high-density recording can be obtained. In particular, when a thin film head having a thickness of 0.3 μm or less is used, a sharp and strong magnetic field can be obtained, so that a remarkable improvement in recording characteristics can be recognized. When N invades, the abrasion resistance is improved and it is convenient as a head material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例及び比較例の鉄系軟磁性膜の結晶
粒の格子面(110)間隔とその透磁率の変化を示す図。
FIG. 1 is a diagram showing a lattice plane (110) interval of crystal grains and a change in magnetic permeability of iron-based soft magnetic films of an example of the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 政利 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱鉱業セメント株式会社セラミックス 研究所内 (72)発明者 越村 正己 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱鉱業セメント株式会社セラミックス 研究所内 (72)発明者 尾野 幹也 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱鉱業セメント株式会社セラミックス 研究所内 (56)参考文献 特開 昭63−299219(JP,A) 特開 昭63−236304(JP,A) 特開 昭60−132305(JP,A) 特開 昭64−42108(JP,A) 特開 昭63−65604(JP,A) 特開 昭62−158306(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masatoshi Abe 2270 Yokoze, Yokoze-cho, Chichibu-gun, Saitama Prefecture Inside the Ceramics Laboratory, Mitsubishi Mining Cement Co., Ltd. Mining Cement Co., Ltd. Ceramics Research Laboratory (72) Inventor Mikiya Ono 2270 Yokoze, Yokoze-cho, Chichibu-gun, Saitama Prefecture Mitsubishi Mining Cement Co., Ltd. Ceramics Research Laboratory (56) References JP-A-63-299219 (JP, A) JP-A-63-236304 (JP, A) JP-A-60-132305 (JP, A) JP-A-64-42108 (JP, A) JP-A-63-65604 (JP, A) JP-A-62-158306 (JP, A) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Feに侵入型で固溶する元素を含有し、体心
立方晶構造をとり、被着された基板と平行な面の粒径が
50nm以下の結晶粒から主として構成され、前記結晶粒の
格子面(110)が前記基板面に平行に配向し、前記Feに
侵入型で固溶する元素がN、或いはN,C,Si,B,Pより選ば
れた1種の元素とArの2種の元素であり、前記侵入型固
溶元素の含有量は1〜12at%の範囲にある、Feを主成分
とする単層の鉄系軟磁性膜において、 Nの化合物を含まない単一相の膜であって、かつ前記格
子面(110)間隔が純Feの格子面(110)間隔よりも0.2
〜0.7%増加したことを特徴とする鉄系軟磁性膜。
(1) An element which contains an interstitial solid solution with Fe, has a body-centered cubic structure, and has a particle diameter of a plane parallel to a substrate to which the element is attached.
Mainly composed of crystal grains of 50 nm or less, the lattice plane (110) of the crystal grains is oriented parallel to the substrate surface, and the element which forms an interstitial solid solution with the Fe is N or N, C, Si, B , A single element selected from P and two elements of Ar, wherein the content of the interstitial solid solution element is in the range of 1 to 12 at%, and is a single-layer Fe-based iron-based element. The soft magnetic film is a single-phase film containing no N compound, and the lattice plane (110) spacing is 0.2 times smaller than the pure Fe lattice plane (110) spacing.
An iron-based soft magnetic film characterized by increasing by 0.7%.
JP1073233A 1989-03-24 1989-03-24 Iron-based soft magnetic film Expired - Fee Related JP2893706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073233A JP2893706B2 (en) 1989-03-24 1989-03-24 Iron-based soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073233A JP2893706B2 (en) 1989-03-24 1989-03-24 Iron-based soft magnetic film

Publications (2)

Publication Number Publication Date
JPH02251104A JPH02251104A (en) 1990-10-08
JP2893706B2 true JP2893706B2 (en) 1999-05-24

Family

ID=13512263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073233A Expired - Fee Related JP2893706B2 (en) 1989-03-24 1989-03-24 Iron-based soft magnetic film

Country Status (1)

Country Link
JP (1) JP2893706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832588B2 (en) * 1995-10-02 1998-12-09 ミネベア株式会社 Iron-based soft magnetic material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132305A (en) * 1983-12-21 1985-07-15 Hitachi Ltd Iron-nitrogen laminated magnetic film and magnetic head using the same
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof
JPS6365604A (en) * 1986-09-05 1988-03-24 Hitachi Ltd Iron magnetic film
JP2555057B2 (en) * 1987-03-25 1996-11-20 株式会社日立製作所 Corrosion resistant ferromagnetic film
JP2550996B2 (en) * 1987-05-29 1996-11-06 ソニー株式会社 Soft magnetic thin film
JPS6415907A (en) * 1987-07-09 1989-01-19 Sony Corp Soft magnetic thin-film
JP2690904B2 (en) * 1987-08-10 1997-12-17 株式会社日立製作所 Heat resistant magnetic film

Also Published As

Publication number Publication date
JPH02251104A (en) 1990-10-08

Similar Documents

Publication Publication Date Title
US5587026A (en) Ferromagnetic film
JP2950912B2 (en) Soft magnetic thin film
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
KR100348920B1 (en) Magnetic film and method for producing the same
JP3970610B2 (en) Magnetic thin film and recording head
JP3392444B2 (en) Magnetic artificial lattice film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2950917B2 (en) Soft magnetic thin film
JP2893706B2 (en) Iron-based soft magnetic film
JPH0744108B2 (en) Soft magnetic thin film
JP2688630B2 (en) Magnetic alloy film and manufacturing method thereof
JP2508489B2 (en) Soft magnetic thin film
JP2696989B2 (en) Multilayer magnetic film
JP2704157B2 (en) Magnetic parts
JP2000150233A (en) Magnetic film and its manufacture
JP3337732B2 (en) Magnetoresistance effect element
JP2950921B2 (en) Soft magnetic thin film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP3167808B2 (en) Soft magnetic thin film
JP2003100515A (en) Soft magnetic thin film for magnetic core with high saturation magnetization
JP3232592B2 (en) Magnetic head
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP2853923B2 (en) Soft magnetic alloy film
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP3238216B2 (en) Soft magnetic thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees