JPH05105966A - Atmospheric patenting method for extremely fine steel wire - Google Patents

Atmospheric patenting method for extremely fine steel wire

Info

Publication number
JPH05105966A
JPH05105966A JP26736891A JP26736891A JPH05105966A JP H05105966 A JPH05105966 A JP H05105966A JP 26736891 A JP26736891 A JP 26736891A JP 26736891 A JP26736891 A JP 26736891A JP H05105966 A JPH05105966 A JP H05105966A
Authority
JP
Japan
Prior art keywords
pipe
steel wire
temperature
furnace
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26736891A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
剛 山崎
Hitoshi Tashiro
均 田代
Hiroshi Sato
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26736891A priority Critical patent/JPH05105966A/en
Publication of JPH05105966A publication Critical patent/JPH05105966A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To execute patenting treatment at a low cost without developing environmental pollution by passing a high carbon steel extremely fine wire through a pipe penetrated in a heating furnace, rapid cooling vessel and isothermal furnace to execute the heat treatment and making the structure the fine pearite. CONSTITUTION:The extremely fine high carbon steel wire 2 having 0.1-1.00mm diameter is unwound and drawn out of a bobbin 1 and passed in the pipe 4 having 5-10mm diameter and excellent heat resistance and heat conductivity, penetrating the heating furnace 3, the rapid cooling vessel providing blasting nozzles 5, 6 and the isothermal furnace 10. After the steel wire 2 is heated in the heating furnace 3 at near 1000 deg.C, at the rapid cooling vessel, mixed non-oxidizing gas of H2 and N2 adjusting the temp. at 300-600 deg.C is sucked in the pipe 4 from the nozzle 5 and at the same time, the air having the same temp. is blown to outside of the pipe 4 from the nozzle 6 and the patenting treatment is executed through the isothermal furnace 10 by controlling so that the temp. of the steel wire 2 at the outlet of the rapid cooling vessel becomes the setting temp. + or -20 deg.C of the isothermal furnace 10 having 500-600 deg.C. The structure in the high carbon extremely fine steel wire 2 to be treated becomes the fine pearite and this wire is wound to the bobbin 11 as the steel wire having excellent drawability and good wire drawing workability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は従来パテンティング処理
時に公害発生の問題がある鉛、ソルト等の熱媒体を使用
せずにガスを用いて低コストにパテンティング処理する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of patenting at low cost by using a gas without using a heat medium such as lead or salt which has conventionally been problematic in pollution during patenting.

【0002】[0002]

【従来の技術】高炭素鋼線を伸線加工するために、従来
鉛パテンティング、ソルトパテンティングなどが行われ
ているが、公害問題があり排気ダクトの設置、廃液処理
等に多大なコストを要していること、作業環境悪化等の
問題があった。そこで、流動層パテンティングの利用も
行われているが、線径が1mm以下の極細鋼線を熱処理す
る場合、流動砂との通線抵抗が大きいために断線が頻発
する問題があった。
2. Description of the Related Art Conventionally, lead patenting and salt patenting have been carried out to draw high carbon steel wire, but due to pollution problems, installation of exhaust ducts, waste liquid treatment, etc. are costly. There were problems such as what was needed and the work environment deteriorated. Therefore, fluidized bed patenting is also used, but when heat-treating an ultrafine steel wire having a wire diameter of 1 mm or less, there is a problem that wire breakage frequently occurs due to high resistance to wire passage with fluidized sand.

【0003】そこで、特開昭61−199039号では
加熱炉と保熱炉をつなぐ冷却装置に熱風を送り込んで、
衝風冷却する方法が開示されているが、熱風の種類が特
定されていないために酸化が避けられず、衝風をパイプ
内部のみに供給して冷却する方式であるため、冷却速度
が遅い問題がある。また、特開昭62−4834号では
非酸化性ガスを送り込む方法で加熱−冷却の熱処理を行
う装置が開示されているが、冷却後恒温変態させる機構
がないために、高炭素鋼のパテンティング処理には利用
できない。また、特開昭62−50417号では、加熱
炉と複数の徐冷炉中を細径鋼線を走行させて恒温変態に
近い状態でパテンティング処理する装置が開示されてい
るが、加熱炉−徐冷炉間、及び徐冷炉−徐冷炉間が大気
に曝されているために、厳密な温度コントロールは難し
く、大気からの酸化も避けられない問題がある。
Therefore, in Japanese Patent Laid-Open No. 61-199039, hot air is sent to a cooling device which connects a heating furnace and a heat-retaining furnace,
Although a method of cooling with an air blast is disclosed, oxidation is unavoidable because the type of hot air is not specified, and the method of supplying air blast only inside the pipe to cool it causes a slow cooling rate. There is. Further, Japanese Patent Application Laid-Open No. 62-4834 discloses a device for performing heat treatment of heating and cooling by feeding a non-oxidizing gas, but since there is no mechanism for constant temperature transformation after cooling, patenting of high carbon steel is disclosed. Not available for processing. Further, Japanese Patent Laid-Open No. 62-50417 discloses a device in which a thin steel wire is run in a heating furnace and a plurality of annealing furnaces to perform patenting treatment in a state close to a constant temperature transformation, but between the heating furnace and the annealing furnace. Since the space between the slow cooling furnace and the slow cooling furnace is exposed to the atmosphere, strict temperature control is difficult and oxidation from the atmosphere is inevitable.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような現
状を打破するために、鉛、ソルト等の公害問題がなく、
かつ酸化・脱炭が非常に少ない状態で高炭素極細鋼線を
高能率にパテンティング処理する方法を提供するもので
ある。本発明方法によれば、鉛蒸気の排気処理、ソルト
の廃液処理が省略できること、パイプの本数を増やすこ
とで多本通しも容易に行えること、次の酸洗工程を簡省
略して伸線できること等の経済的メリットがあり、従来
パテンティング方法に要したコストを大幅に低減でき
る。
In order to overcome such a situation, the present invention eliminates the pollution problem of lead, salt, etc.
Further, it is intended to provide a method for highly efficiently patenting a high carbon ultrafine steel wire in a state where oxidation and decarburization are extremely small. According to the method of the present invention, exhaust treatment of lead vapor and waste liquid treatment of salt can be omitted, multiple pipes can be easily passed by increasing the number of pipes, and wire drawing can be performed by simply omitting the next pickling step. There are economic advantages such as the above, and the cost required for the conventional patenting method can be greatly reduced.

【0005】[0005]

【課題を解決するための手段及び作用】本発明者らは、
極細鋼線をパテンティング処理する際、気体を介した輻
射や熱風、大気対流に基づく熱伝達のみでは加熱/冷却
能が低く、また安定した温度保持が難しいことから、熱
伝達率に優れる耐熱性パイプと接触状態を保った状態で
加熱冷却を貫通方式で行い、かつパイプ内を非酸化性ガ
スで満たすとともに、パイプ外側に対しても非酸化性ガ
スと同温度のエアーを衝風することにより熱交換が効率
化され、鉛パテンティングに近い処理が行えるととも
に、酸化・脱炭も非常に少なくなることを見出し本発明
に到達した。すなわち、熱伝達率の良好な耐熱性パイプ
を加熱炉−急冷槽−恒温炉と貫通方式とした構成と成
し、パイプの外側から加熱、急冷、恒温保持の順でパー
ライト変態を行わせる高炭素極細鋼線の雰囲気パテンテ
ィング方法において、処理線径0.1〜1.0mm、パイ
プ内径を5〜10mm、急冷槽では300℃〜600℃の
一定温度に調整した非酸化性ガスをパイプ内部に衝風吹
込みすると同時に、パイプ外側に対しては非酸化性ガス
と同温度に加熱したエアーを衝風した状態で、パイプ内
面と鋼線の接触率をパイプ長手方向に対して80%以上
保つ状態で鋼線を走行させて熱伝達を行わせ、急冷槽出
口での終点温度を500〜600℃の恒温炉設定温度±
20℃以内に温度制御して微細パーライト組織を得るこ
とを特徴とする高炭素極細鋼線の雰囲気パテンティング
方法である。
Means and Actions for Solving the Problems The present inventors have
When patenting ultra-fine steel wire, the heat / cooling ability is low and stable temperature maintenance is difficult only by heat transfer based on radiation through the gas, hot air, or atmospheric convection, and heat resistance with excellent heat transfer coefficient By heating and cooling in a penetrating manner while maintaining contact with the pipe, filling the pipe with non-oxidizing gas, and blowing air at the same temperature as the non-oxidizing gas also on the outside of the pipe. The present inventors have found that the efficiency of heat exchange is improved, a treatment similar to that of lead patenting can be performed, and that oxidation and decarburization are significantly reduced, and the present invention has been achieved. That is, a heat-resistant pipe having a good heat transfer coefficient is constituted by a heating furnace-quenching tank-constant temperature furnace and a penetrating system, and a high carbon that causes pearlite transformation from the outside of the pipe in the order of heating, quenching, and constant temperature holding. In the atmosphere patenting method for ultra-fine steel wire, the treated wire diameter is 0.1 to 1.0 mm, the pipe inner diameter is 5 to 10 mm, and in the quenching tank, a non-oxidizing gas adjusted to a constant temperature of 300 ° C to 600 ° C is introduced into the pipe. A state in which the contact rate between the inner surface of the pipe and the steel wire is kept at 80% or more in the longitudinal direction of the pipe with the air blown against the outside of the pipe and the air heated to the same temperature as the non-oxidizing gas The steel wire is run to transfer heat, and the end point temperature at the quenching tank outlet is set to a temperature of the constant temperature furnace of 500 to 600 ° C ±
It is an atmosphere patenting method for a high carbon ultrafine steel wire characterized by obtaining a fine pearlite structure by controlling the temperature within 20 ° C.

【0006】ここでパイプを熱伝達率の良好な耐熱性と
した理由は、パイプ外側から加熱冷却して所定の温度に
制御すると同時に、パイプと鋼線の直接接触により熱伝
達が迅速でかつばらつきを少なくする必要があるためで
ある。パイプの材質としてはステンレスやカンタル合
金、グラファイトなどが利用できる。加熱炉と恒温炉に
ついては電気炉加熱または高周波加熱が望ましく、中間
の急冷槽についてはパイプ内/外からの衝風で温度制御
する。
Here, the reason why the heat resistance of the pipe is good is that the heat transfer from the outside of the pipe is controlled by heating and cooling it to a predetermined temperature, and at the same time, the heat transfer is rapid and uneven due to direct contact between the pipe and the steel wire. This is because it is necessary to reduce As the material of the pipe, stainless steel, Kanthal alloy, graphite or the like can be used. Electric furnace heating or high frequency heating is desirable for the heating furnace and the constant temperature furnace, and for the intermediate quench tank, the temperature is controlled by the wind blown from inside / outside the pipe.

【0007】処理線径は、0.1〜1.0mmの範囲に限
定した。処理線径が0.1mm未満のパテンティングは実
用上のニーズが低く、また加熱炉内の破断荷重も極めて
小さいためにテンションコントロールしても断線がさけ
られないため0.1mm以上とした。一方、1.0mmを越
えるとガス衝風とパイプを介した熱伝達のみでは不十分
で、ばらつき制御が難しくなることから、1.0mm以下
に限定した。
The treated wire diameter was limited to the range of 0.1 to 1.0 mm. The patenting with a treated wire diameter of less than 0.1 mm has a low practical need, and since the breaking load in the heating furnace is extremely small, even if the tension is controlled, the breaking cannot be avoided. On the other hand, if the thickness exceeds 1.0 mm, the heat transfer through the gas blast and the pipe is not sufficient, and it becomes difficult to control the variation. Therefore, the thickness is limited to 1.0 mm or less.

【0008】更にパイプ内径は5〜10mmの範囲に限定
した。パイプ内径が5mm未満ではパイプ内に衝風吹込み
したガスの流通抵抗が大きくなり過ぎ、鋼線/ガス間の
熱交換が十分に行えない問題があるために5mm以上とし
た。また、パイプ径が10mmを越えると、パイプ内/外
を所定の温度に加熱冷却するのに要するガス充填/供給
容量が大きくなり過ぎて温度制御能の低下、経済性の低
下が生ずるために、10mm以下に限定した。
Further, the inner diameter of the pipe is limited to the range of 5 to 10 mm. If the inner diameter of the pipe is less than 5 mm, the flow resistance of the gas blown into the pipe becomes too large and the heat exchange between the steel wire and the gas cannot be performed sufficiently. Further, if the pipe diameter exceeds 10 mm, the gas filling / supply capacity required for heating / cooling the inside / outside of the pipe to a predetermined temperature becomes too large, which lowers the temperature controllability and lowers the economical efficiency. Limited to 10 mm or less.

【0009】次にパイプを加熱−急冷−恒温保持まで貫
通方式の構造とした理由は、鋼線が途中で大気等酸化性
雰囲気と接触するのを防止するためである。急冷槽では
パイプの内側に300℃〜600℃の範囲の一定温度に
加熱された非酸化性ガスの衝風吹き込みを行うと同時
に、パイプ外側にも同じ温度に加熱されたエアーを衝風
することを規定した。ここで衝風する非酸化性ガス及び
エアーの下限温度を300℃とした理由は、300℃未
満ではマルテンサイト、ベーナイトなどの異常組織の発
生が避けられないためである。下限温度は鋼種によって
異なり、合金元素を多く含む合金鋼ほど高めの温度設定
が必要となる。一方、上限温度を600℃とした理由
は、600℃を越えたガス、エアー衝風では急冷効果が
得られず、恒温炉に装入するまでの時間が著しく長くな
り、急冷槽長さがいたずらに長くなって非効率であるた
めに上限温度を設定した。また、パイプ内のみを非酸化
性ガスとした理由は鋼線の酸化・脱炭を防止するためで
ある。非酸化性ガスとしては25%H2 +75%N2
合ガスや高純度Arガスなどが望ましい。
Next, the reason why the pipe has a structure of a penetration method from heating to quenching to holding at a constant temperature is to prevent the steel wire from coming into contact with an oxidizing atmosphere such as the air on the way. In the quench tank, blow a non-oxidizing gas heated to a constant temperature in the range of 300 ℃ to 600 ℃ into the pipe, and at the same time blow the air heated to the same temperature outside the pipe. Stipulated. The reason for setting the lower limit temperature of the non-oxidizing gas and air blown here to 300 ° C is that the occurrence of abnormal structures such as martensite and bainite is inevitable below 300 ° C. The lower limit temperature differs depending on the steel type, and the higher the alloy temperature, the higher the temperature setting required for alloy steel. On the other hand, the reason for setting the upper limit temperature to 600 ° C is that the quenching effect cannot be obtained with gas or air blast exceeding 600 ° C, the time until charging into the constant temperature furnace becomes extremely long, and the length of the quenching tank is prank. The upper limit temperature is set because it becomes long and inefficient. The reason why only the pipe is made non-oxidizing gas is to prevent oxidation and decarburization of the steel wire. As the non-oxidizing gas, a mixed gas of 25% H 2 + 75% N 2 and high-purity Ar gas are desirable.

【0010】更に、急冷槽出口温度は、恒温炉設定温度
±20℃以内に制御することを規定した。この範囲を外
れると恒温炉内で微細パーライト組織を得るのが困難と
なり、ベーナイト等の異常組織の発生やパーライトラメ
ラー間隔の粗大化が生じ、所望の材質が得られないため
である。なお、温度制御方法としてはガス吹込み温度、
ガス吹込み量、急冷槽長さ調整によって可能である。
Further, it is specified that the temperature of the quenching tank outlet is controlled within the temperature of the constant temperature furnace ± 20 ° C. If it is out of this range, it becomes difficult to obtain a fine pearlite structure in the constant temperature furnace, an abnormal structure such as bainite is generated, and the pearlite lamellar interval is coarsened, and a desired material cannot be obtained. As the temperature control method, the gas injection temperature,
It is possible by adjusting the amount of gas blown in and the length of the quenching tank.

【0011】鋼線はパイプ内面にパイプ長手方向に対し
て80%以上接触を保つように走行させることを規定し
た。これは、鋼線の温度制御にパイプからの伝熱が重要
な役割を果たすためである。パイプ内面での接触率が8
0%未満になると、所望の冷却、加熱曲線が得られない
ばかりか、長手方向の組織不均一につながり、次工程の
伸線時に断線する原因にもなる。実際には、鋼線はサプ
ライボビンからパイプ内面を接触するように経由して捲
取ボビンに至るまで、直線性を保ちながらかつ途中で引
張やキンクの負荷応力がかからないように、テンション
コントロールして走行させることが望ましい。なお、パ
イプ内面と鋼線の摩擦により鋼線表面きずが問題となる
ような場合には、パイプ内面に潤滑効果のあるコーティ
ングを施すのが有効である。
It has been specified that the steel wire runs so as to maintain contact with the inner surface of the pipe in the longitudinal direction of the pipe by 80% or more. This is because the heat transfer from the pipe plays an important role in controlling the temperature of the steel wire. The contact rate on the inner surface of the pipe is 8
If it is less than 0%, not only the desired cooling and heating curves cannot be obtained, but also the structure in the longitudinal direction becomes non-uniform, which may cause wire breakage during wire drawing in the next step. In practice, the steel wire is tension-controlled from the supply bobbin to the winding bobbin via the inner surface of the pipe so as to maintain linearity and to prevent tension or kink load stress during the process. It is desirable to drive. If the surface flaw of the steel wire causes a problem due to friction between the inner surface of the pipe and the steel wire, it is effective to apply a coating having a lubricating effect to the inner surface of the pipe.

【0012】次にパイプ内に衝風する非酸化性ガスの吹
込み位置は、急冷槽の加熱炉と連結される側として、非
酸化性ガスは加熱炉入口側と恒温炉出口側の2方向に放
出させる。更に、加熱炉入口付近と恒温炉出口付近には
常温の非酸化性ガスを供給する機能を設けることにより
パイプ両端からの大気侵入を防止してシール性を向上さ
せることも可能である。
Next, the blowing position of the non-oxidizing gas that blows into the pipe is the side connected to the heating furnace of the quenching tank, and the non-oxidizing gas is in two directions: the heating furnace inlet side and the constant temperature furnace outlet side. To release. Further, by providing a function of supplying a non-oxidizing gas at room temperature near the inlet of the heating furnace and near the outlet of the constant temperature furnace, it is possible to prevent air from entering from both ends of the pipe and improve the sealing property.

【0013】以下に本発明方法の一実施例に基いて、そ
の作用を説明する。図1は本発明方法を実現するための
装置の一例である。サプライボビン1から供給された極
細鋼線2は耐熱性パイプ4内に装入され加熱炉3でまず
オーステナイト化される。その後、パイプ内衝風ノズル
5から供給される25%H2 +75%N2 ガスによって
直接的に、またパイプ外衝風ノズル6から供給されるエ
アーによって間接的に冷却される。その後恒温炉10を
経由して捲取ボビン11で微細なパーライト組織の熱処
理材が得られた。この時、放射温度計12で急冷槽出口
温度を測定して恒温炉設定温度±20℃に管理した。
The operation of the method of the present invention will be described below based on an embodiment. FIG. 1 is an example of an apparatus for implementing the method of the present invention. The ultrafine steel wire 2 supplied from the supply bobbin 1 is loaded into a heat resistant pipe 4 and first austenitized in a heating furnace 3. Then, it is cooled directly by the 25% H 2 + 75% N 2 gas supplied from the pipe inner wind nozzle 5 and indirectly by the air supplied from the pipe outer wind nozzle 6. After that, a heat-treated material having a fine pearlite structure was obtained on the winding bobbin 11 via the constant temperature oven 10. At this time, the temperature of the quenching tank outlet was measured with the radiation thermometer 12 and the temperature was controlled to be ± 20 ° C. in the constant temperature oven.

【0014】図2はパイプ内/外へのガス衝風の有無に
よる鋼線温度履歴の比較を示したものである。ガス衝風
を全く行わなかった場合やパイプ内衝風のみでは温度降
下が大き過ぎて微細なパーライト組織が得られないこと
がわかる。
FIG. 2 shows a comparison of steel wire temperature histories depending on the presence / absence of a gas blast inside / outside the pipe. It can be seen that the temperature drop is too large and a fine pearlite structure cannot be obtained when no gas blast is applied or only in the pipe.

【0015】図3は鋼線とパイプ長手方向の接触率80
%以上が均一な微細パーライト組織を得るための必須条
件であることを示す実測例、図4は急冷槽出口温度と恒
温炉設定温度の組み合わせにより得られる組織の関係を
示したものである。
FIG. 3 shows a contact ratio of the steel wire and the pipe in the longitudinal direction of 80.
FIG. 4 shows the relationship between the structures obtained by the combination of the quenching tank outlet temperature and the constant temperature set temperature in the quenching tank, which shows that the above percentage is an essential condition for obtaining a uniform fine pearlite structure.

【0016】表1に実施例を示す。鋼種、線径、パイプ
内径、パイプ内接触率、加熱炉温度、供給ガスの種類・
温度、急冷槽出口温度、恒温炉温度などを種々変えて実
験を行った。熱処理した極細鋼線の金属組織、表面性状
観察、引張強さ試験を行って評価した。
Table 1 shows examples. Steel type, wire diameter, pipe inner diameter, pipe contact rate, heating furnace temperature, supply gas type
Experiments were carried out by changing the temperature, the temperature of the quenching tank outlet, the temperature of the constant temperature oven, etc. The heat-treated ultrafine steel wire was evaluated by observing its metallographic structure, surface properties, and tensile strength test.

【0017】本発明例1,2はSWRH82Aで、本発
明例3,4はSi−Crを含んだ低合金鋼で各々雰囲気
パテンティングを行った場合である。微細パーライト組
織が得られ、表面性状も酸化(スケール生成)、脱炭が
非常に少なく良好であった。引張強さの値から、本発明
方法で鉛パテンティングに近い強度が得られることが明
らかである。
Inventive Examples 1 and 2 are SWRH82A, and Inventive Examples 3 and 4 are cases in which atmosphere patenting is performed on low alloy steel containing Si—Cr. A fine pearlite structure was obtained, and the surface properties were good with very little oxidation (scale formation) and decarburization. From the value of tensile strength, it is clear that the method of the present invention provides strength close to that of lead patenting.

【0018】比較例1は処理線径が規定の範囲よりも細
かったために加熱炉中で断線が生じた例である。破断荷
重が極めて小さいためにテンションコントロール機能が
十分に作用できないことが原因である。逆に比較例2は
処理線径が規定の範囲よりも太かったために衝風とパイ
プ伝熱による熱交換が十分に行えず、微細パーライトが
得られなかった例である。
Comparative Example 1 is an example in which a wire breakage occurred in the heating furnace because the treated wire diameter was smaller than the specified range. The cause is that the tension control function cannot fully function because the breaking load is extremely small. On the other hand, Comparative Example 2 is an example in which the fine pearlite was not obtained because the treated wire diameter was thicker than the specified range, so that the heat exchange by the blast and the pipe heat transfer could not be sufficiently performed.

【0019】比較例3はパイプ内径が小さ過ぎたため
に、パイプ内/外に供給すべきガス量が相対的に大きく
なり、急冷槽出口温度の制御が難しく、ばらつきが生じ
た例である。比較例4は逆にパイプ内径が大き過ぎたた
めにパイプ内の通線抵抗が大きく、組織不均一で機械的
性質にばらつきが生じた例である。
Comparative Example 3 is an example in which the inner diameter of the pipe was too small, so that the amount of gas to be supplied to the inside / outside of the pipe was relatively large, and it was difficult to control the temperature at the exit of the quenching tank, resulting in variations. On the contrary, Comparative Example 4 is an example in which the pipe inner diameter is too large, so that the wire resistance in the pipe is large, the structure is nonuniform, and the mechanical properties vary.

【0020】比較例5は鋼線とパイプ長手方向の接触率
が50%と低かったために、パイプ外側からの伝熱が均
一に行われず、鋼線長手方向に組織、機械的性質のばら
つきが生じた例である。
In Comparative Example 5, since the contact ratio between the steel wire and the longitudinal direction of the pipe was as low as 50%, the heat transfer from the outside of the pipe was not performed uniformly, and the structure and mechanical properties of the steel wire varied in the longitudinal direction. It is an example.

【0021】比較例6はパイプ内/外の両方をエアーで
衝風を使用したために、パイプ内が非酸化性雰囲気に保
持されず、表面酸化が生じた例である。また、比較例7
は衝風を全く行わなかった例、比較例8はパイプ内のみ
の衝風を行った例であるが、いずれも急冷槽内での温度
降下が大きくなり過ぎ、マルテンサイト組織となった。
Comparative Example 6 is an example in which the inside of the pipe was blown with air and the air was blown, so that the inside of the pipe was not kept in a non-oxidizing atmosphere and surface oxidation occurred. In addition, Comparative Example 7
Is an example in which no blast was performed, and Comparative Example 8 was an example in which blast was performed only in the pipe. In both cases, the temperature drop in the quenching tank became too large, and a martensite structure was formed.

【0022】比較例9,10はいずれも供給ガス温度が
規定の範囲から外れたために、微細パーライト組織が得
られなかった例である。比較例11,12は供給ガス温
度は規定の範囲内であったが、鋼線の急冷槽出口温度制
御が不十分で、恒温炉設定温度±20℃の範囲外とした
ために所望の組織が得られなかった例である。
Comparative Examples 9 and 10 are examples in which the fine pearlite structure was not obtained because the supply gas temperature was out of the specified range. In Comparative Examples 11 and 12, the temperature of the supplied gas was within the specified range, but the temperature control of the exit of the quenching tank of the steel wire was insufficient, and the desired temperature was obtained outside the range of the constant temperature furnace set temperature ± 20 ° C. This is an example that could not be obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上のように本発明は、従来パテンティ
ング処理に利用されている鉛、ソルト等公害問題のある
恒温炉を用いることなく、熱伝導率の良好な耐熱性パイ
プから鋼線への熱伝達制御とパイプ内非酸化性ガス雰囲
気調整との組合せにより酸化(スケール生成)と脱炭が
非常に少ない極細鋼線のパテンティング処理を効率的に
行える点で大きな効果が認められた。スケールの生成が
少ないことから、次工程以降の最終伸線では、酸洗を簡
省略することも可能である。更に、排気ダクト、廃液処
理等の付帯設備が不要であるためコスト削減効果も見込
まれる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a heat-resistant pipe having a good thermal conductivity can be converted into a steel wire without using a constant temperature furnace which is conventionally used for patenting treatment and which has a pollution problem such as lead and salt. A large effect was observed in that the patenting treatment of the ultra-fine steel wire with very little oxidation (scale formation) and decarburization can be efficiently performed by the combination of the heat transfer control of NO and the adjustment of the non-oxidizing gas atmosphere in the pipe. Since less scale is generated, it is possible to simply omit the pickling in the final wire drawing after the next step. Furthermore, cost reduction effects are expected because no additional equipment such as exhaust ducts and waste liquid treatment is required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実現するための装置の一例であ
る。
FIG. 1 is an example of an apparatus for implementing the method of the present invention.

【図2】鋼線温度履歴の実測例である。FIG. 2 is an example of actual measurement of temperature history of a steel wire.

【図3】パテンティング特性に及ぼす鋼線/パイプ接触
率の影響である。
FIG. 3 is the effect of steel wire / pipe contact rate on patenting properties.

【図4】恒温炉設定温度と急冷槽出口温度の組み合わせ
による組織変化を各々示す。
FIG. 4 shows changes in the microstructure due to the combination of the set temperature of the constant temperature furnace and the exit temperature of the quenching tank.

【符号の説明】[Explanation of symbols]

1 サプライボビン 2 熱処理用鋼
線 3 加熱炉 4 耐熱性パイ
プ 5 パイプ内衝風用ノズル 6 パイプ外衝
風用ノズル 7 エアー加熱装置 8 非酸化性ガ
ス加熱装置 9 非酸化性ガス供給ボンベ 10 恒温炉 11 捲取ボビン 12 急冷槽出
口温度測定機
1 Supply bobbin 2 Steel wire for heat treatment 3 Heating furnace 4 Heat resistant pipe 5 Nozzle for inner wind of pipe 6 Nozzle for outer wind of pipe 7 Air heating device 8 Non-oxidizing gas heating device 9 Non-oxidizing gas supply cylinder 10 Constant temperature furnace 11 Winding bobbin 12 Quenching tank outlet temperature measuring machine

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱伝達率の良好な耐熱性パイプを加熱炉
−急冷槽−恒温炉と貫通方式とした構造と成し、パイプ
の外側から加熱、急冷、恒温保持の順でパーライト変態
を行なわせる高炭素極細鋼線の雰囲気パテンティング方
法において、処理線径0.1〜1.0mm、パイプ内径を
5〜10mm、急冷槽では300℃〜600℃の一定温度
に調整した非酸化性ガスをパイプ内部に衝風吹込みする
と同時に、パイプ外側に対しては非酸化性ガスと同温度
に加熱したエアーを衝風した状態で、パイプ内面と鋼線
の接触率をパイプ長手方向に対して80%以上保つ状態
で鋼線を走行させて熱伝達を行わせ、急冷槽出口での鋼
線終点温度を500〜600℃の恒温炉設定温度±20
℃以内に温度制御して微細パーライト組織を得ることを
特徴とする高炭素極細鋼線の雰囲気パテンティング方
法。
1. A structure in which a heat-resistant pipe having a good heat transfer coefficient is formed into a heating furnace-quenching tank-constant temperature furnace and a penetration system, and pearlite transformation is performed from the outside of the pipe in the order of heating, rapid cooling, and constant temperature holding. In the atmosphere patenting method for high carbon ultra-fine steel wire, the treated wire diameter is 0.1 to 1.0 mm, the pipe inner diameter is 5 to 10 mm, and the non-oxidizing gas adjusted to a constant temperature of 300 ° C. to 600 ° C. in the quenching tank is used. At the same time as the air blown into the pipe, the outside of the pipe was blown with air heated to the same temperature as the non-oxidizing gas, and the contact rate between the inner surface of the pipe and the steel wire was 80% in the longitudinal direction of the pipe. The steel wire is run while maintaining the above temperature to perform heat transfer, and the temperature of the steel wire end point at the exit of the quenching tank is set to a temperature of the constant temperature furnace of 500 to 600 ° C ± 20.
An atmosphere patenting method for a high carbon ultrafine steel wire, characterized in that a fine pearlite structure is obtained by controlling the temperature within ℃.
JP26736891A 1991-10-16 1991-10-16 Atmospheric patenting method for extremely fine steel wire Withdrawn JPH05105966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26736891A JPH05105966A (en) 1991-10-16 1991-10-16 Atmospheric patenting method for extremely fine steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26736891A JPH05105966A (en) 1991-10-16 1991-10-16 Atmospheric patenting method for extremely fine steel wire

Publications (1)

Publication Number Publication Date
JPH05105966A true JPH05105966A (en) 1993-04-27

Family

ID=17443863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26736891A Withdrawn JPH05105966A (en) 1991-10-16 1991-10-16 Atmospheric patenting method for extremely fine steel wire

Country Status (1)

Country Link
JP (1) JPH05105966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264759B1 (en) 1998-10-16 2001-07-24 Pohang Iron & Steel Co., Ltd. Wire rods with superior drawability and manufacturing method therefor
KR100871757B1 (en) * 2007-02-22 2008-12-05 엘에스전선 주식회사 In line annealing apparatus for ultrafine microfiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264759B1 (en) 1998-10-16 2001-07-24 Pohang Iron & Steel Co., Ltd. Wire rods with superior drawability and manufacturing method therefor
KR100871757B1 (en) * 2007-02-22 2008-12-05 엘에스전선 주식회사 In line annealing apparatus for ultrafine microfiber

Similar Documents

Publication Publication Date Title
US8075836B2 (en) Steel-sheet continuous annealing equipment and method for operating steel-sheet continuous annealing equipment
JP2008196015A (en) Continuous annealing facility
SK280740B6 (en) Heat treatment of steel wire
JPH0755331B2 (en) Ultra-high strength ultra-thin high-carbon steel wire manufacturing method
WO1997000975A1 (en) Method of continuous annealing of cold rolled steel plate and equipment therefor
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JPH05105966A (en) Atmospheric patenting method for extremely fine steel wire
CS199613B2 (en) Process for thermal treatment of hot rolling steal bars
US5192485A (en) Continuous annealing line having carburizing/nitriding furnace
US20080011394A1 (en) Thermodynamic metal treating apparatus and method
EP3867415A1 (en) Method for thermal treatment of steel wire with associated apparatus
KR910001607B1 (en) Continous annealing extra-low carbon steel
JP5313599B2 (en) Heat treatment method for steel wire
JPH05263150A (en) Atmospheric patenting device for fine diameter steel wire
CN112795734B (en) GCr15 bearing steel bar and normalizing process thereof
JPH04136126A (en) Method for atmosphere-patenting extra-fine steel wire
JPH0514771B2 (en)
JPH0561329B2 (en)
JP2640398B2 (en) Cooling control method of steel pipe in roller hearth heat treatment furnace
TWI810861B (en) Device and method for heat-treating a metal strip
JPH0643611B2 (en) Method for producing high silicon steel strip in continuous line
JP2001192771A (en) Hot rolled wire rod with fine diameter
JPH04280920A (en) Manufacturing equipment for steel wire rod for wiredrawing
JP2815695B2 (en) Fluidized bed patenting method for high carbon steel wire
JP2549968B2 (en) Manufacturing method of plated high tensile strength steel wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107