WO1997000975A1 - Method of continuous annealing of cold rolled steel plate and equipment therefor - Google Patents

Method of continuous annealing of cold rolled steel plate and equipment therefor Download PDF

Info

Publication number
WO1997000975A1
WO1997000975A1 PCT/JP1995/002111 JP9502111W WO9700975A1 WO 1997000975 A1 WO1997000975 A1 WO 1997000975A1 JP 9502111 W JP9502111 W JP 9502111W WO 9700975 A1 WO9700975 A1 WO 9700975A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
cooling
zone
steel sheet
continuous annealing
Prior art date
Application number
PCT/JP1995/002111
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Onoda
Yoshiaki Hirota
Yoshio Saito
Masaru Fukuyama
Kohsaku Ushioda
Atsushi Itami
Ken Minato
Makoto Tezuka
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1019970701147A priority Critical patent/KR100221789B1/en
Priority to BR9508762A priority patent/BR9508762A/en
Priority to EP95934304A priority patent/EP0779370A1/en
Publication of WO1997000975A1 publication Critical patent/WO1997000975A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/62Continuous furnaces for strip or wire with direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum

Definitions

  • the present invention relates to a continuous annealing method and equipment for a cold-rolled steel strip, and more particularly to a continuous method for producing a cold-rolled steel sheet capable of improving workability of a cold-rolled steel sheet, imparting high functionality with BH property, and improving productivity.
  • a continuous annealing method and its equipment ⁇ > 0
  • a high-temperature annealing technology using continuous annealing equipment is known as a basic technology for improving the workability of a cold-rolled steel sheet, such as the deep drawability and the overhang property.
  • the main reason for this is that the cold rolled steel sheet has a fibrous structure and poor workability, so the workability is improved by growing the grains by recrystallization to recover the structure by annealing.
  • continuous annealing enables uniform treatment of continuous strip-shaped cold-rolled steel sheets and obtains a homogeneous material as compared with coil annealing, so that the treatment time is short and the number of process days can be significantly reduced. It is excellent in such points.
  • the continuous annealing equipment for cold-rolled steel sheets is provided with a heating zone, a soaking zone, a primary cooling zone, an overaging zone, and a secondary cooling zone from the entry side, and belt-shaped cold rolling through hearth rolls provided in each zone.
  • the steel sheet is transported and continuously annealed.
  • the basis of this technology is the thermal history of the steel sheet subjected to annealing.As a basic heat pattern, the cold-rolled steel sheet is heated above the recrystallization temperature, soaked for the required time, then cooled to the specified temperature, and After performing the overaging treatment for the required time within the predetermined temperature range, the secondary cooling is performed.
  • Various heat exchangers are used depending on the quality conditions of the drawing steel sheet and high-strength steel sheet, etc.In order to realize these heat patterns, appropriate heating and cooling methods must be selected. is necessary.
  • a method of annealing at a high temperature and re-dissolving a part of Ti C and NbC to leave solid solution C remains.
  • the strip-shaped cold-rolled steel sheet is uncoiled, inserted into the continuous annealing equipment and recrystallized and annealed.
  • the heat pattern is basically the same as the above-mentioned heat pattern, but the heatability is improved.
  • the heating and soaking temperatures are set high to provide BH properties.
  • Japanese Patent Publication No. Sho 60-26817 Japanese Patent Publication No. 56-116830
  • Japanese Patent Publication No. Sho 60-26818 Japanese Patent Publication No. 56-116831
  • Japanese Patent Application No. 4-60923 describes that an electric heating device is installed between hearth rolls in an atmosphere heating furnace.
  • JP-A-11-142032 and JP-A-1-187789 disclose passages before and after a metal band passage penetrating an annular transformer.
  • An electric roll is provided, and both energized rolls are connected by a conductive member to form a closed circuit by the metal band, the conductive roll and the conductive member, and the closed circuit is formed by applying an alternating current from an external power supply to the annular transformer.
  • a method is described in which an induced current is generated as a secondary coil, and the metal band is heated by Joule heat generated by the induced current.
  • the steel sheet temperature is divided into a low temperature range where the temperature reaches 600 to 700 and a high temperature range where it reaches 800 to 900.
  • a continuous annealing method for a steel sheet is disclosed in which the temperature of a steel sheet exiting a low temperature range is measured, and the heating is controlled so as to reach a target heating temperature in a high temperature range.
  • Japanese Patent Application Laid-Open No. 61-204319 discloses that in producing a Ti-added cold-rolled steel sheet by continuous annealing, the temperature in the soaking zone of the continuously annealed line is raised by 200 to 300 ° C higher than the soaking temperature.
  • a continuous annealing method for cold-rolled steel sheets which is characterized by heating rapidly and then rapidly cooling, is disclosed.
  • the target steel type is limited to Ti-added steel, and the temperature rise and rapid heating in the solitary tropics are also limited to induction heating.
  • the heating temperature is 200 to 300, and does not describe at all the detailed conditions related to the input energy such as heating rate, holding time, cooling rate and the purpose of imparting BH property.
  • gas jet cooling is non-oxidizing and can be uniformly cooled, and has a sufficiently large cooling capacity for thin materials with a thickness of 0.4 or less, but for thick materials with a thickness exceeding 0.4 band. Will be lacking in ability.
  • Roll contact cooling can provide higher cooling capacity than gas jet cooling, but it has problems with uniform cooling and has limitations when higher cooling capacity is required.
  • gas-liquid cooling has the problem that the surface of the steel sheet is lightly oxidized, but the cooling capacity, uniform cooling property, and cooling controllability This is a good way to reject.
  • Japanese Patent Publication No. 59-577 describes a short-time continuous annealing method for cold-rolled steel sheets that combines gas-liquid cooling and direct-fired heating, which activates the characteristics of gas-liquid cooling and directly injects high-temperature gas onto the steel sheet. ing.
  • direct flame heating the heating rate of the high temperature part is only 50 ° CZ second at most, and there is a problem in the ability to follow the heating temperature and speed when changing the annealing conditions, and the characteristics of gas-liquid cooling are fully utilized. I can't say that.
  • each of the above-mentioned patent publications has a very short heating method by combining a heating means for applying an electric current to the steel sheet itself and utilizing the Joule heat of the steel sheet itself and a cooling means by gas-liquid.
  • a heating means for applying an electric current to the steel sheet itself and utilizing the Joule heat of the steel sheet itself and a cooling means by gas-liquid.
  • a continuous annealing method for cold-rolled steel sheets that rapidly heats and cools over time. Disclosure of the invention
  • a first object of the present invention is to provide a continuous annealing method and equipment having good controllability and capable of promptly responding to a wider range of annealing conditions, while avoiding lengthening of the continuous annealing equipment.
  • a second object of the present invention is to provide a continuous annealing equipment with an optional heating step.
  • An object of the present invention is to provide a continuous annealing equipment capable of shortening an annealing time and a line as much as possible.
  • the heating step refers to a step including both the heating and soaking steps.
  • the continuous annealing method of the present invention is as follows:
  • the heating step includes a heating step by Joule heat
  • the cooling step includes a cooling step by gas-liquid.
  • a continuous annealing method for steel sheets characterized in that the heating by Joule heat in the heating process is a heating means by electric heating.
  • the steel sheet After heating to 400 ° C in a heating step by energization, the steel sheet is heated to 700 to 900 ° C by another heating means in a non-oxidizing or reducing atmosphere. Continuous annealing method.
  • the temperature is rapidly and quickly increased at any part of the subsequent soaking, and the heating control is performed so that the value of the annealing parameter (AP) becomes -33 or more.
  • AP annealing parameter
  • the entire heating zone including the soaking zone should include heating means by Joule heat
  • the cooling zone should include a cooling means by gas-liquid.
  • heating means by Joule heat in the entire heating zone is heating means by electric heating.
  • a heating device that heats the steel sheet to a specified temperature, raises the temperature quickly and in a short time in any part of the soaking zone, and controls the heating so that the value of the annealing parameter (AP) becomes -33 or more This is a continuous annealing facility for steel sheets.
  • the heating means by energization is means for causing the steel sheet to penetrate through the annular transformer and generating an induced current in the steel sheet by passing an alternating current through the annular transformer to heat the steel sheet. Annealing equipment.
  • the structure of the continuous annealing equipment of 7 to ⁇ ⁇ shall consist of heating zone, soaking zone, primary cooling zone, overage treatment zone and secondary cooling zone.
  • the means for raising the temperature quickly and in a short time in any part of the solitary tropics shall be an electric heating device or an induction heating device.
  • a heating method a method and an apparatus are used in which an electric current is passed through the steel sheet itself and the steel sheet itself is heated using the Joule heat.
  • Two types of heating using Joule heat are mainly used, that is, energization heating and induction heating. In the present invention, however, description will be made mainly on energization heating. Heating by energization makes the steel sheet itself a heating element, so there is no need to raise the ambient temperature and efficiency is high.
  • the heating capacity can be easily controlled by adjusting the current value, and it is possible to easily control the heating capacity to more than 1000 ° C / sec to a high temperature of 500 to 900 ° C through a current of 40 AZ mm or more. Rapid heating is also possible.
  • the dimension of the annealing parameter (AP) is a dimensionless parameter related to the distance over which the iron atoms are diffused by the applied thermal energy, in other words, the distance over which the grain boundary has moved. Therefore, the larger the AP, the greater the effect of annealing. Therefore, soft annealing has the significance of releasing the strain introduced by cold rolling by annealing to impart formability to the steel sheet. It has been found that such formability can be uniquely expressed by AP. This AP can be expressed by the following equation.
  • cooling is performed by spraying two fluids consisting of water and an in-furnace gas mainly composed of nitrogen gas onto the heated steel sheet surface.
  • This cooling method has the advantage that a uniform and extremely high cooling rate can be obtained, and that the cooling capacity and the cooling end point temperature can be controlled by adjusting the ratio of gas to water and the absolute amount of water. 7 It is possible to cool a steel plate at a cooling speed range of 50 to 200 in a nosec range, and it is possible to control the end point temperature with an accuracy of 10 ° C for soil at a plate temperature range of 250 to 550 ° C.
  • gas-liquid cooling a thin oxide film is formed on the surface of the steel sheet by the reaction between the steel sheet and water vapor, but the thickness of the film is on the order of a few micron and can be easily removed by simple pickling.
  • Heating by energization and cooling by gas-liquid have the above-mentioned advantages.Each of them can exert sufficient effects alone, but the present invention combines heating by energization and cooling by gas-liquid. However, the following specific effects can be obtained. 1 The continuous annealing equipment will be made more compact.
  • the steel plate length in the furnace is 1/8 in the heating zone and 1Z4 in the primary cooling zone, and considerable equipment is used. Is compacted. Furthermore, when the heating rate is slow, usually 10 to 20 ° CZ seconds, the soaking time is set to 20 because the dissolved carbon eluted from the cementite slows the growth of recrystallized grains during the heating process from the heating. You need to take more than a second.
  • Heating by energization is originally a heating method with extremely excellent thermal controllability.It is set in advance when heating from room temperature to the recrystallization temperature or higher, or when using it for partial heating from around 600 ° C to soaking temperature.
  • the heating rate and heating temperature can be freely and precisely controlled simply by controlling the current value.
  • a flexible heat pattern can be realized with high precision by using cooling with good thermal control.
  • gas-liquid cooling makes it easy to control the cooling rate and the end point temperature, so that it is possible to realize a flexible annealing heat pattern by using both heating by energizing and cooling by gas-liquid. It will be possible to meet the demand for mass production.
  • Both the heating by energization and the cooling by gas-liquid are extremely excellent in thermal responsiveness as well as thermal controllability. Therefore, it is possible to respond quickly to changes in conditions such as threading size and annealing temperature.
  • the continuous annealing equipment of the radiant tube heating and gas jet cooling type when changing the thickness or the annealing temperature, the adjusting coil is passed or the speed is reduced until the specified annealing conditions are reached. Production capacity had to be sacrificed.
  • the combined use of heating by energization and cooling by gas-liquid eliminates the sacrifice of productivity as described above, and can improve production capacity.
  • the equipment can be made compact, it is possible to reduce defects in sheet passing caused by heart rolls, and to achieve high-speed sheet passing.
  • Rapid heating and rapid cooling and high-temperature aging rapid cooling can be achieved by the combined use of heating by energization and cooling by gas-liquid.
  • seizure hardening The BH property is improved, and the crystal of the high-strength steel sheet is refined, and the hole expandability and the like are improved.
  • it is an index of deep drawability by controlling the annealing parameter (AP) value to -33 or more.
  • Elongation (EI%) as an index of average r value and overhanging property; Yield strength and tensile strength TS can be higher than the target, which is the performance as a steel sheet for deep drawing.
  • the combined use of heating by energization and cooling by gas-liquid produces an effect that is greater than the sum of the two. Furthermore, since the equipment is compact, it is easy to control the atmosphere in the furnace. For example, in gas-liquid cooling, the water vapor generated in the cooling zone is prevented from entering the heating zone and the solitary tropics. Is easy. This is because the volume of the heating zone and the soaking zone can be made compact, so that the atmospheric pressure in each zone can be easily controlled, and the pressure difference between the soaking zone and the cooling zone can be stably secured. It is effective in controlling and heating the oxide film on the steel sheet and preventing deterioration of the refractory material.
  • a typical heat pattern in the continuous annealing method that includes heating by energization and cooling by gas-liquid is as follows: after heating to 700 to 900 ° C in the heating process with energization, soaking for 5 seconds or more, and cooling in the gas-liquid cooling process. It cools at a cooling rate of 0 to 300 t / s.
  • a soaking temperature of 700 to 900 ° C. is a temperature necessary for recrystallization and grain growth of a rolled structure.
  • the heating rate can be higher than the rate of solid solution from the steel, the delay in recrystallization speed due to solid solution carbon can be prevented, and excellent workability can be imparted to the steel sheet even with a short soaking time of about 5 seconds.
  • the upper limit of the gas-liquid cooling rate was set to 300 ° CZ seconds because the amount of alloying elements added for non-aging and improvement of strength can usually be reduced with increasing cooling rate. This is because the effect saturates at 300 ° CZ seconds, and the steel sheet is likely to be inferior in shape due to cooling.
  • the lower limit was set to 10 ° C / sec because the cooling time was too long, resulting in longer equipment and an increase in the oxide film thickness on the steel sheet surface.
  • the heating means by energization should be placed after the heating zone including the existing solitary zone. After heating up to 600 ° C with the existing heating means, it can be heated to 700 to 900 ° C rapidly by energizing.
  • an energization heating facility may be provided before the entire heating zone. In this case, there is no effect on the material, but the thermal responsiveness is used.
  • the advantage of heating by energization can be taken advantage of, and it is possible to respond promptly to changes in the threading size and annealing conditions, so that an improvement in productivity can be expected. .
  • the same effect can be expected when a heating means by energization is provided after the entire heating zone.However, adoption of heating means by energization in a region where the temperature of the steel sheet is low makes inexpensive equipment that does not require high-temperature durability. Not only can this be done, but it is also possible to cut off the existing furnace equipment and install it in front of the heating zone, eliminating the need to modify the existing furnace, thus making it possible to make the equipment even cheaper.
  • Fig. 1 shows the entire continuous annealing equipment, which includes a winding machine 1, an inlet shearing machine 2, a welding machine 3, a washing machine 4, an inlet looper 5, and a heating zone 6 including an electric heating device.
  • An electric heater, a current-carrying heating device or an induction heating device is provided in the solitary zone 7, and a cooling device such as a gas jet is provided in the slow cooling zone 8.
  • the slow cooling zone 8 may not be provided in some cases.
  • the primary cooling zone 9 is an example equipped with a gas-liquid cooling device.Therefore, a drying zone 10 is provided, and an overaging zone 11, a secondary cooling zone 12, a cooling tank 13 and a post-treatment tank are provided. 14 are provided.
  • the post-treatment tank 14 usually includes four pickling tanks, a primary washing tank, an electrolytic treatment tank, and a secondary washing tank. It has a dryer 15, an exit looper 16, a temper rolling mill 17, an inspection and refinement section 18, an exit shearing machine 19, and a winder 20.
  • FIG. 2 is a diagram showing an example of a heating zone, a solitary tropical zone, and a primary cooling zone of the continuous annealing equipment of the present invention.
  • the steel sheet 21 wound in a coil shape through the cold rolling step is continuously sent out and charged into the heating zone 6.
  • An electric current heating device for generating an induced current in the steel sheet 21 using the annular transformer 24 is provided, and an electric current is supplied to the steel sheet 21 through the current supply rolls 22 and 23 connected by a conductive member, and the steel sheet is heated by Joule heat. Heat 21.
  • the rapidly heated steel plate 21 is then soaked in the soaking zone 7.
  • current-carrying rolls 25 and 26 are also arranged in the soaking zone 7, and soaking treatment is performed by heating by energization.
  • the heating zone 6 is a horizontal furnace and the tropical zone 7 is a vertical furnace, but the horizontal and vertical furnaces may be selected according to the equipment capacity. In other words, in the case of a high production facility, a vertical facility is indispensable because the line length becomes long, but in the case of a low production facility, the horizontal type is easier to operate.
  • the steel sheet 21 is guided to the primary cooling zone 9 and rapidly cooled by the gas-liquid cooling device 27. Thereafter, the steel sheet 21 is reheated and overaged if necessary, to remove an oxide film generated on the steel sheet surface.
  • FIG. 3 is a schematic explanatory view of a horizontal electric heating device.
  • Current-carrying rolls 22 and 23 are provided on the lower surface of the steel plate 21 to be heated, and presser rolls 28 and 29 are provided on the upper surface thereof in opposition to the current-carrying rolls 22 and 23.
  • the holding rolls 28 and 29 hold the steel plate 21 between the opposing energizing rolls 22 and 23 by pressing means made of, for example, cylinders 30 and 31, respectively.
  • An annular transformer 24 is disposed between the low-temperature side energizing roll 22 and the high-temperature side energizing roll 23 around the steel plate 21.
  • These energized rolls 22 and 23 are connected by a conductive member 32 such as copper, whose electric resistance value is much smaller than that of the steel plate 21, and a closed circuit is formed by the steel plate 21, the energized rolls 22 and 23 and the conductive member 32.
  • An AC current is supplied from an external power supply 33 to the annular transformer 24 to generate an induced current using the closed circuit as a secondary coil, and the steel sheet 21 is heated by Joule heat caused by the induced current.
  • the heating rate and the heating temperature can be controlled by the specific resistance value of the material to be heated and a predetermined amount of alternating current calculated based on conditions such as sheet thickness, sheet width, and sheet speed.
  • the current-carrying heating device uses this transformer-type current-carrying heating method and a method for directly supplying electricity There is a formula, but the former is more desirable because a large current can be efficiently passed through the steel plate.
  • FIG. 4 is a schematic explanatory diagram of the cooling zone.
  • a plurality of gas-liquid cooling chambers 34 are arranged in a down path 36, and a liquid draining device 35 is provided immediately below each chamber 34.
  • a vertical downpass is the most effective in order to maintain the cooling symmetry of the front and back surfaces and to prevent uneven cooling due to dripping water in the high temperature part of the steel plate 21.
  • a plurality of gas-liquid mixing nozzles 37 including a gas-liquid injection nozzle header 39 and a liquid injection nozzle header 38 are provided in the gas-liquid cooling chamber 34. It is arranged vertically along the passing direction with the steel plate 21 interposed therebetween.
  • the gas-liquid mixing unit 37 performs gas-liquid mixing immediately before spraying to keep the atomization state stable. Cooling rate in cooling by the gas-liquid is 1 minute question by adjusting the liquid flow rate control valve 41 which kicked set in the liquid pipe 40 which conducts the liquid injection nozzle to Dda 38, in the amount of water or 1 m 2 Ah The liquid density expressed and the end point temperature are controlled by the number of nozzle units by turning on and off the liquid flow control valve 41.o
  • Figure 6 (A) and Figure 6 (B) show examples of continuous annealing equipment and an annealing heat cycle, respectively, in which an electric heating device 6 'is provided in front of the heating zone 6 using a radiant tube.
  • an electric heating device 6 ′ By providing the electric heating device 6 ′, when the annealing temperature and the plate size are changed, current control of only the electric heating device can be used immediately, so schedule-free one annealing becomes possible and the production capacity is improved.
  • Figures 7 (A) and 7 (B) show examples of continuous annealing equipment and an annealing heat cycle in which a current-carrying heating device 6 'is installed between the soaking zone 7 and the primary cooling zone 9, respectively. Show.
  • a current-carrying heating device 6 ' is installed between the soaking zone 7 and the primary cooling zone 9, respectively.
  • the electric heating device 6 ′ between the soaking zone 7 and the gas-liquid cooling device, it is possible to change the annealing temperature and the strip size.
  • the heating device 6 ′ be installed at the front of the heating zone 6, but also it can be heated more quickly than the heating capacity of the existing radiant tube.
  • New quality improvement such as improvement and BH property is also possible.
  • Figure 1 is a diagram showing the entire continuous annealing equipment.
  • FIG. 2 is a diagram showing an example of the continuous annealing equipment of the present invention.
  • FIG. 3 is a diagram showing details of the electric heating device.
  • FIG. 4 is a diagram showing an outline of the gas-liquid cooling device.
  • FIG. 5 is a diagram showing details of the gas-liquid cooling device.
  • FIG. 6A is a diagram showing an example of the continuous annealing equipment of the present invention
  • FIG. 6B is a diagram showing an example of an annealing heat cycle.
  • FIG. 7A is a diagram illustrating an example of a continuous annealing facility in which the fourth embodiment of the present invention is performed
  • FIG. 7B is a diagram illustrating an example of a heat pattern performed in the fourth embodiment.
  • FIG. 7 is a diagram showing a relationship between a seven value, an E1 value, and YP and TS.
  • Example 1 the best mode for carrying out the present invention will be described based on examples.
  • the instantaneous temperature reached 860 ° C by a current-carrying heating device, and then the rapid cooling annealing cycle was used.
  • BH property was able to be given while maintaining 7 values. This utilizes the phenomenon that C is eluted by a high-temperature treatment even for a moment.
  • the same strength can be achieved even if the Mn of the alloy component is reduced from 1.5% to 1.0% by rapid heating and rapid cooling annealing. Expandability also improved. This is because the solid solution of C is suppressed by rapid heating, and the crystal is refined by quenching from the austenitic two-phase region with a high C concentration.
  • FIG. 7 (B) is a diagram showing an example of a heat pattern implemented in the present invention.
  • a is a stage in which a cold-rolled steel strip is unwound and heated in a continuous annealing furnace.
  • the heating pattern is a heating rate of 1 to 200 ° C / sec, and an ultimate temperature of 500 to 900. It is.
  • b is the stage of soaking the steel strip, the soaking temperature is 500-900 ° C, and the holding time is 0-300 sec.
  • c is abrupt due to current heating, which is a feature of the present invention. Raise the temperature quickly and for a short time.
  • the heating rate is 40 ⁇ 1000 ° CZsec, and heating up to 750 ⁇ 900 ° C.
  • d is the stage of cooling immediately after rapid heating for a short time. In the case of equipment with an overaging zone, e is cooled immediately after quenching and heated, and is maintained at an overaging temperature of 250 to 450 and then cooled to room temperature.
  • FIG. 8 is a diagram showing the relationship between the annealing parameter (AP) according to the present invention and "F value, E1 value, YP, TS, and FIG. 8 (A), FIG. 8 (B), FIG. ).
  • the average r value as an index of deep drawability and the elongation E1 (%)
  • the average r value is 1.5 or more when ⁇ is -33 or more
  • E1 (%) is 42% or more
  • YP is 180N bandage 2 or more
  • TS is 320NZNZmm 2 or more.
  • the partial heating can be performed in the range of 0.5 to 15 seconds by arranging the electric heating or the induction heating between the equal-tropical passes.
  • the reason why the electric heating device or the induction heating device is used is that, for example, as a heating method in a continuous annealing furnace for cold steel sheets, a direct-fired non-oxidizing heating method or a radiation tube heating method is used.
  • a heating method using heat transfer since each of these methods is a heating method using heat transfer, the heating capacity per unit time is not very high, and the required total amount of heat can be ascertained. In order to maintain the temperature, the heating time must be long, which necessarily increases the length of the heating zone.
  • induction heating In induction heating, a heating coil is arranged around the steel strip and power is supplied from a high-frequency power source. An induction current is applied to the steel strip by the magnetic field generated by the heating coil, parallel to the longitudinal direction of the steel strip or the length of the steel strip. This is because the steel strip is heated by Joule heat by flowing in a direction perpendicular to the direction, and rapid heating is possible. Auxiliary heating is performed using these electric heating or induction heating devices, whereby the annealing parameter (AP) can be easily controlled, and at the same time, the above-mentioned steel strip longitudinal direction or steel strip is used. Direct heating or thermal compensation in the vertical direction with respect to the longitudinal direction of the band makes it possible to obtain uniform characteristics. Industrial applicability
  • the continuous annealing method and equipment including Joule heat, preferably heating by energization and cooling by gas-liquid, according to the present invention can be made into extremely compact equipment. It has the effects of improving production capacity and improving quality. In addition, it is possible to obtain a high surface quality without heat backlash or breakage of the sheet, and no surface flaws, etc., and to improve productivity and cost by using a free time through the sheet. By controlling the value of AP to -33 or more, it is possible to manufacture cold-rolled steel sheets with excellent workability and BH properties. Things.

Abstract

Cold rolled steel plate is continuously annealed by means of a continuous annealing equipment which comprises heating means provided in a heating zone and a soaking zone to make use of Joule heat, and cooling means provided in a cooling zone to make use of gas-liquid. Further, provided is a heating device which rapidly provides auxiliary temperature-rise at any portion of the soaking zone in a short period of time to perform heating control so as to set a value of annealing parameter (AP) to -33 or more whereby workability and BH property are improved to continuously anneal steel plates in a compact manner by rapid heating and cooling which are favorably controlled.

Description

明 細 書 冷延鋼板の連続焼鈍方法および設備 技術分野  Description Continuous annealing method and equipment for cold rolled steel sheet
本発明は、 冷延鋼帯の連続焼鈍方法とその設備に関し、 特に冷延 鋼板の加工性の向上及び BH性を付与した高機能化、 生産性の向上が 可能な冷延鋼板を製造する連続焼鈍方法とその設備に関するもので め ^ > 0 背景技術 The present invention relates to a continuous annealing method and equipment for a cold-rolled steel strip, and more particularly to a continuous method for producing a cold-rolled steel sheet capable of improving workability of a cold-rolled steel sheet, imparting high functionality with BH property, and improving productivity. Regarding the annealing method and its equipment ^> 0
冷延鋼板の深絞り性や張り出し性などの加工性を改善する基本的 な技術として連続焼鈍設備を用いた高温焼鈍技術が知られている。 この主な理由としては、 冷延圧延された鋼板は繊維状組織を呈して おり、 加工性に乏しいため、 焼鈍により組織の回復を図るべく再結 晶処理により粒成長させることによって加工性を改善する必要があ る。 特に連続焼鈍は、 コイル焼鈍に比較すると、 連続する帯状冷延 鋼板に対して均一な処理が可能になって均質な材料を得ることがで き、 処理時間が短く、 工程日数を大幅に短縮できる等の点で優れて いる。  A high-temperature annealing technology using continuous annealing equipment is known as a basic technology for improving the workability of a cold-rolled steel sheet, such as the deep drawability and the overhang property. The main reason for this is that the cold rolled steel sheet has a fibrous structure and poor workability, so the workability is improved by growing the grains by recrystallization to recover the structure by annealing. There is a need to. In particular, continuous annealing enables uniform treatment of continuous strip-shaped cold-rolled steel sheets and obtains a homogeneous material as compared with coil annealing, so that the treatment time is short and the number of process days can be significantly reduced. It is excellent in such points.
一般に、 冷延鋼板の連続焼鈍設備には入側から加熱帯、 均熱帯、 一次冷却帯、 過時効帯、 二次冷却帯が設けられ、 各帯域に設けられ たハースロールを介して帯状冷延鋼板を搬送し連続焼鈍する。 この 技術の基本は、 焼鈍中に受ける鋼板の熱履歴にあり、 基本的ヒー ト パターンとして冷延鋼板を再結晶温度以上に加熱し、 所要時間均熱 し、 次いで所定温度まで冷却し、 必要に応じて所定温度範囲内で所 要時間過時効処理を施した後、 二次冷却する。 これ等のヒー トパ夕 一ンは絞り用鋼板や高張力鋼板等の品質条件に応じ様々なヒー トパ 夕一ンが採用されており、 これらのヒー トパターンを実現するため には適切な加熱方法および冷却方法の選定が必要である。 In general, the continuous annealing equipment for cold-rolled steel sheets is provided with a heating zone, a soaking zone, a primary cooling zone, an overaging zone, and a secondary cooling zone from the entry side, and belt-shaped cold rolling through hearth rolls provided in each zone. The steel sheet is transported and continuously annealed. The basis of this technology is the thermal history of the steel sheet subjected to annealing.As a basic heat pattern, the cold-rolled steel sheet is heated above the recrystallization temperature, soaked for the required time, then cooled to the specified temperature, and After performing the overaging treatment for the required time within the predetermined temperature range, the secondary cooling is performed. These heatpa evenings Various heat exchangers are used depending on the quality conditions of the drawing steel sheet and high-strength steel sheet, etc.In order to realize these heat patterns, appropriate heating and cooling methods must be selected. is necessary.
特に、 Ti及び Nbの少なく とも 1種を添加した極低炭素鋼に BH性を付 与するためには、 高温焼鈍し Ti C や NbC の一部を再溶解させ固溶 C を残存させる方法がよく知られている。 その場合、 帯状冷延鋼板を アンコィルして連続焼鈍設備に挿入し再結晶焼鈍するが、 そのヒー トパターンは基本的には上述のヒー トパターンと同様であるが、 加 ェ性を向上させ、 BH性を付与するために加熱 , 均熱温度を高温とし ている。 In particular, in order to impart BH property to an ultra-low carbon steel to which at least one of Ti and Nb is added, a method of annealing at a high temperature and re-dissolving a part of Ti C and NbC to leave solid solution C remains. well known. In this case, the strip-shaped cold-rolled steel sheet is uncoiled, inserted into the continuous annealing equipment and recrystallized and annealed.The heat pattern is basically the same as the above-mentioned heat pattern, but the heatability is improved. The heating and soaking temperatures are set high to provide BH properties.
加熱および均熱帯における加熱方式としては、 直火型無酸化加熱 、 輻射管加熱、 間接電気加熱等が一般的であるが、 いずれも鋼板以 外の発熱体を用いて発熱させ、 その熱を鋼板に伝達するものである ため、 鋼板自体を発熱させる場合に比べて熱効率が低くなることは 避けられず、 加熱能力が不十分であることに加えて、 急速加熱がで きないという問題がある。 また、 雰囲気温度も必然的に高くなるた め、 耐火物を厚くする等により加熱帯、 均熱帯の炉体容量が大き く なり、 温度制御性も低下して焼鈍条件変更に時間を要する等の問題 があった。 そこで、 これらの問題を解決する方法として、 ハース口 ールゃ鋼板自体を発熱体するような通電加熱方式や誘導加熱方式が 開発された。 その例として、 特公昭 60-26817号 (特開昭 56 - 116830 号) 公報おょぴ特公昭 60- 26818号 (特開昭 56 - 116831号) 公報には 、 鋼板にロールを介して通電加熱し、 鋼板自体を発熱体として高温 化する方法が記載されている。 同様に特願平 4 - 60923 号明細書に は、 雰囲気加熱炉内のハースロール間に通電加熱装置を設置するこ とが記載されている。 また、 特開平 1 一 142032号公報、 特開平 1 — 187789号公報には、 環状トランスを貫通する金属帯通路の前後に通 電ロールを設け、 両通電ロールを導電性部材で接続して金属帯、 通 電ロールおよび導電性部材により閉回路を構成し、 環状トランスに 外部電源から交流電流を通電することにより上記閉回路を二次コィ ルとして誘導電流を発生させ、 この誘導電流によるジュール熱で金 属帯を加熱する方法が記載されている。 As a heating method and a heating method in the solitary zone, direct heating type non-oxidizing heating, radiant tube heating, indirect electric heating, and the like are generally used. Therefore, the heat efficiency is inevitably lower than in the case where the steel sheet itself generates heat. In addition to the insufficient heating capacity, there is a problem that rapid heating cannot be performed. In addition, since the ambient temperature is inevitably high, the thickness of the refractory is increased, so that the heating zone and the volume of the solitary furnace are increased, the temperature controllability is reduced, and it takes time to change the annealing conditions. There was a problem. Therefore, as a method to solve these problems, an electric heating method and an induction heating method were developed, in which the Haas jar and the steel sheet itself were heated. As an example, Japanese Patent Publication No. Sho 60-26817 (Japanese Patent Publication No. 56-116830) and Japanese Patent Publication No. Sho 60-26818 (Japanese Patent Publication No. 56-116831) include a method in which a steel sheet is electrically heated through a roll. However, it describes a method of raising the temperature of a steel sheet itself as a heating element. Similarly, Japanese Patent Application No. 4-60923 describes that an electric heating device is installed between hearth rolls in an atmosphere heating furnace. In addition, JP-A-11-142032 and JP-A-1-187789 disclose passages before and after a metal band passage penetrating an annular transformer. An electric roll is provided, and both energized rolls are connected by a conductive member to form a closed circuit by the metal band, the conductive roll and the conductive member, and the closed circuit is formed by applying an alternating current from an external power supply to the annular transformer. A method is described in which an induced current is generated as a secondary coil, and the metal band is heated by Joule heat generated by the induced current.
また、 特開平 2 - 1 66234号公報には鋼板温度が 600〜700 てに達 する低温域と 800〜900 でに達する高温域とに分け、 低温域で直火 還元加熱、 高温域で誘導加熱を行い、 低温域を出た鋼板温度を測定 して高温域で目標加熱温度に成るよう加熱制御する鋼板の連続焼鈍 方法が開示されている。  In Japanese Patent Application Laid-Open No. 2-166234, the steel sheet temperature is divided into a low temperature range where the temperature reaches 600 to 700 and a high temperature range where it reaches 800 to 900. A continuous annealing method for a steel sheet is disclosed in which the temperature of a steel sheet exiting a low temperature range is measured, and the heating is controlled so as to reach a target heating temperature in a high temperature range.
更に、 特開昭 61 - 20431 9号公報には、 T i添加冷延鋼板を連続焼鈍 で製造するにあたって、 連続焼鈍ライ ンの均熱帯において、 均熱温 度より 200〜300 °Cだけ高く昇温急熱し、 次いで急冷することを特 徵とする冷延鋼板の連続焼鈍方法を開示されている。 しかし、 対象 鋼種は T i添加鋼に限定しており、 また、 均熱帯における昇温急熱も 誘導加熱に限定している。 さらに昇温温度も 200〜300 でと記述し ているだけであり、 加熱速度、 保定時間、 冷却速度などの投入エネ ルギ一に関する詳細条件および BH性付与の目的が全く記載されてい ない。  Furthermore, Japanese Patent Application Laid-Open No. 61-204319 discloses that in producing a Ti-added cold-rolled steel sheet by continuous annealing, the temperature in the soaking zone of the continuously annealed line is raised by 200 to 300 ° C higher than the soaking temperature. A continuous annealing method for cold-rolled steel sheets, which is characterized by heating rapidly and then rapidly cooling, is disclosed. However, the target steel type is limited to Ti-added steel, and the temperature rise and rapid heating in the solitary tropics are also limited to induction heating. Furthermore, it only states that the heating temperature is 200 to 300, and does not describe at all the detailed conditions related to the input energy such as heating rate, holding time, cooling rate and the purpose of imparting BH property.
冷延鋼板の加工性を改善したり BH性を付与するために、 高温焼鈍 を行う と、 ヒー トバッ クルゃ扳破断などの通板材の劣化や表面疵な どによる表面品位の劣化を生ずる。 また、 エネルギーコス トの上昇 及び異品種、 異グレー ドの鋼板製造に伴う焼鈍温度の変更の必要か ら生産性が低下するなどの問題がある。 通常の焼鈍炉と完全に分離 独立する形で従来の連続焼鈍炉と組合わせているため、 加熱温度範 囲が広く電気エネルギーコス トが高く、 また、 二つの加熱方法を分 離して使用するために設備費が高くなると言う問題がある。 一方、 冷却帯ではガスジュッ ト冷却、 ロール接触冷却、 気液冷却 等が一般に用いられている。 このうち、 ガスジヱッ ト冷却は無酸化 で均一冷却ができ、 かつ板厚 0. 4隨以下の薄手材の冷却能力として は十分に大きいが、 板厚が 0. 4匪を越える厚手材に対しては能力不 足となる。 ロール接触冷却は、 ガスジェッ ト冷却よりは高い冷却能 力が得られるが、 均一冷却性に問題があるほか、 より高い冷却能力 が必要な場合には限界がある。 これに対して、 特公昭 61 - 10020号公 報等に見られるように、 気液冷却は、 鋼板の表面が軽く酸化する問 題はあるが、 冷却能力、 均一冷却性、 冷却制御性において極めて優 れた ^却方法である。 When high-temperature annealing is performed to improve the workability of cold-rolled steel sheets or to impart BH properties, deterioration of threaded materials such as heat buckle fracture and surface quality deterioration due to surface flaws and the like occur. In addition, there are problems such as a rise in energy costs and the necessity of changing the annealing temperature due to the production of steel sheets of different types and grades, resulting in a decrease in productivity. Completely separate from the normal annealing furnace.Since it is combined with the conventional continuous annealing furnace in an independent form, the heating temperature range is wide, the electric energy cost is high, and the two heating methods are used separately. However, there is a problem that equipment costs are high. On the other hand, in the cooling zone, gas jet cooling, roll contact cooling, gas-liquid cooling, etc. are generally used. Of these, gas jet cooling is non-oxidizing and can be uniformly cooled, and has a sufficiently large cooling capacity for thin materials with a thickness of 0.4 or less, but for thick materials with a thickness exceeding 0.4 band. Will be lacking in ability. Roll contact cooling can provide higher cooling capacity than gas jet cooling, but it has problems with uniform cooling and has limitations when higher cooling capacity is required. On the other hand, as shown in the official gazette of Japanese Patent Publication No. 61-10020, etc., gas-liquid cooling has the problem that the surface of the steel sheet is lightly oxidized, but the cooling capacity, uniform cooling property, and cooling controllability This is a good way to reject.
また、 特公昭 59-577号公報には、 気液冷却の特徴を活性して高温 ガスを鋼板に直接噴射する直火加熱と気液冷却を組み合わせる冷延 鋼板の短時間連続焼鈍方法が記載されている。 しかしながら、 直火 加熱では高温部の加熱速度は高々 50°C Z秒しか得られず、 また焼鈍 条件変更時の加熱温度、 速度の追従性に問題があり、 気液冷却の特 徵を充分に活用しているとはいえない。  In addition, Japanese Patent Publication No. 59-577 describes a short-time continuous annealing method for cold-rolled steel sheets that combines gas-liquid cooling and direct-fired heating, which activates the characteristics of gas-liquid cooling and directly injects high-temperature gas onto the steel sheet. ing. However, with direct flame heating, the heating rate of the high temperature part is only 50 ° CZ second at most, and there is a problem in the ability to follow the heating temperature and speed when changing the annealing conditions, and the characteristics of gas-liquid cooling are fully utilized. I can't say that.
前述のように、 上記各特許公報には、 加熱方法として鋼板自体に 電流を通し鋼板自体のジュール熱を利用して加熱する加熱手段と、 気液による冷却手段を組合せることにより、 極く短時間に急速加熱 および冷却する冷延鋼板の連続焼鈍方法は開示されていない。 発明の開示  As described above, each of the above-mentioned patent publications has a very short heating method by combining a heating means for applying an electric current to the steel sheet itself and utilizing the Joule heat of the steel sheet itself and a cooling means by gas-liquid. There is no disclosure of a continuous annealing method for cold-rolled steel sheets that rapidly heats and cools over time. Disclosure of the invention
近年、 焼鈍条件の異なる多様で少量の鋼板を連続焼鈍するニーズ が高まっている。 そこで、 本発明の第 1 の目的は、 連続焼鈍設備の 長大化を避けると同時に、 より広範囲な焼鈍条件に速やかに対応可 能な制御性のよい連続焼鈍方法および設備を提供するこ とにある。 本発明の第 2の目的は連続焼鈍設備において、 加熱工程の任意の 段階において急速かつ短時間加熱による最適焼鈍パラメ一夕の値を 設定するこ とにより、 加工性及び BH性を付与するた めの高温焼鈍 を容易に可能とし、 しかも通板スケジュールフ リ一化を可能とした 焼鈍時間及びライ ンを極力短く 出来る連続焼鈍設備を提供すること にある。 以下本発明において加熱工程とは、 加熱および均熱工程の 両者を含めた工程を言う。 In recent years, the need for continuous annealing of various and small amounts of steel sheets with different annealing conditions has been increasing. Accordingly, a first object of the present invention is to provide a continuous annealing method and equipment having good controllability and capable of promptly responding to a wider range of annealing conditions, while avoiding lengthening of the continuous annealing equipment. . A second object of the present invention is to provide a continuous annealing equipment with an optional heating step. By setting the value of the optimal annealing parameter by rapid and short-time heating in the stage, high-temperature annealing for imparting workability and BH property can be easily performed, and streamlining of the sheeting schedule is facilitated. An object of the present invention is to provide a continuous annealing equipment capable of shortening an annealing time and a line as much as possible. Hereinafter, in the present invention, the heating step refers to a step including both the heating and soaking steps.
本発明の連続焼鈍方法は、 以下の①〜⑥の通りである。  The continuous annealing method of the present invention is as follows:
① 加熱工程および冷却工程を含む鋼板の連続焼鈍方法において、 前記加熱工程にはジュール熱による加熱工程を含み、 前記冷却工程 には気液による冷却工程を含むことを特徴とする鋼板の連続焼鈍方 法  (1) In a continuous annealing method for a steel sheet including a heating step and a cooling step, the heating step includes a heating step by Joule heat, and the cooling step includes a cooling step by gas-liquid. Law
② 加熱工程におけるジュール熱による加熱が、 通電加熱による加 熱手段であることを特徴とする鋼板の連続焼鈍方法。  (2) A continuous annealing method for steel sheets, characterized in that the heating by Joule heat in the heating process is a heating means by electric heating.
③ 通電による加熱工程にて 500〜900 °Cに加熱速度 40〜1000°C Z sec で加熱した後、 5秒〜 300 秒均熱し、 気液による冷却工程にて 10〜300 °C Z秒の冷却速度で冷却することを特徴とする前記①の鋼 板の連続焼鈍方法。  ③ Heating to 500-900 ° C in the heating process by energization at a heating rate of 40-1000 ° CZ sec, then soaking for 5-300 seconds, and cooling rate of 10-300 ° CZ seconds in the gas-liquid cooling process 2. The method for continuous annealing of a steel sheet according to the above (1), characterized in that:
④ 通電による加熱工程にて、 少なく とも 600°Cから 700〜900 °C の温度まで 40°C Z秒以上の加熱速度で加熱することを特徴とする前 記①の鋼板の連続焼鈍方法。  連 続 The continuous annealing method for a steel sheet as described in ① above, wherein heating is performed at a heating rate of at least 40 ° C Z seconds from a temperature of at least 600 ° C to a temperature of 700 to 900 ° C in a heating step by energization.
⑤ 通電による加熱工程にて 400°Cまで加熱昇温した後、 非酸化性 または還元性雰囲気による他の加熱手段にて 700〜900 °Cに加熱す ることを特徴とする前記①の鋼板の連続焼鈍方法。  の After heating to 400 ° C in a heating step by energization, the steel sheet is heated to 700 to 900 ° C by another heating means in a non-oxidizing or reducing atmosphere. Continuous annealing method.
⑥ 鋼板を所定温度に加熱した後、 引続く均熱の任意部位で急速か つ短時間の昇温を行い、 焼鈍パラメ一夕 (AP ) の値が— 33以上にな るよう加熱制御を行う ことを特徴とする前記①の鋼板の連続焼鈍方 また、 本発明の連続焼鈍設備は、 以下の⑦〜⑫の通りである。後 After the steel sheet is heated to the specified temperature, the temperature is rapidly and quickly increased at any part of the subsequent soaking, and the heating control is performed so that the value of the annealing parameter (AP) becomes -33 or more. Characterized in that the method of continuous annealing of the steel sheet as described in (1) above, Further, the continuous annealing equipment of the present invention is as described in the following ① to ⑫.
⑦ 加熱帯、 均熱帯および冷却帯を含む鋼板の連続焼鈍設備におい て、 前記均熱帯を含む加熱帯全域にジュール熱による加熱手段を含 み、 前記冷却帯には気液による冷却手段を含むことを特徵とする鋼 板の連続焼鈍設備。 に お In the continuous annealing equipment for steel sheets including a heating zone, a soaking zone and a cooling zone, the entire heating zone including the soaking zone should include heating means by Joule heat, and the cooling zone should include a cooling means by gas-liquid. Continuous annealing equipment for steel sheets.
⑧ 加熱帯全域におけるジュール熱による加熱手段が、 通電加熱に よる加熱手段であることを特徵とする鋼板の連続焼鈍設備。  連 続 Continuous annealing equipment for steel sheets, characterized in that heating means by Joule heat in the entire heating zone is heating means by electric heating.
⑨ 鋼板を所定温度に加熱し、 引続く均熱帯の任意部位で急速かつ 短時間の昇温を行い、 焼鈍パラメータ (AP) の値が- 33以上になる よう加熱制御を行う加熱装置を配設したことを特徵とする鋼板の連 続焼鈍設備。  加熱 A heating device that heats the steel sheet to a specified temperature, raises the temperature quickly and in a short time in any part of the soaking zone, and controls the heating so that the value of the annealing parameter (AP) becomes -33 or more This is a continuous annealing facility for steel sheets.
⑩ 通電による加熱手段が、 鋼板を環状ト ラ ンス内を貫通させ、 環 状トランスに交流電流を通して鋼板に誘導電流を発生させて加熱す る手段であることを特徴とする前記⑤の鋼板の連続焼鈍設備。  加熱 The continuity of the steel sheet as described in ⑤ above, wherein the heating means by energization is means for causing the steel sheet to penetrate through the annular transformer and generating an induced current in the steel sheet by passing an alternating current through the annular transformer to heat the steel sheet. Annealing equipment.
⑪ ⑦〜⑩の連続焼鈍設備の構成が、 加熱帯、 均熱帯、 一次冷却帯 、 過時効処理帯及び二次冷却帯よりなること。  連 続 The structure of the continuous annealing equipment of ⑦ to な る shall consist of heating zone, soaking zone, primary cooling zone, overage treatment zone and secondary cooling zone.
⑫ ⑥、 ⑨において、 均熱帯の任意部位で急速かつ短時間の昇温を 行う手段が通電加熱装置または誘導加熱装置であること。  ⑨ In ⑥ and ⑨ above, the means for raising the temperature quickly and in a short time in any part of the solitary tropics shall be an electric heating device or an induction heating device.
本発明においては、 加熱方法として鋼板自体に電流を通し、 鋼板 自体のジユール熱を利用して加熱する方法および装置を採用する。 ジュール熱を利用する加熱には、 通電加熱と誘導加熱の 2種類が主 に使用されるが、 本発明においては通電加熱を主体に説明する。 通電による加熱では鋼板自体が発熱体となるために雰囲気温度を 上げる必要がなく、 効率もよい。 さらに、 通電による加熱では、 電 流値を調整することにより加熱能力を容易に制御することができ、 40 A Z mm以上の電流を通して 500〜900 °Cの高温まで 1000°C /秒以 上の超急速加熱をすることも可能である。 また、 本発明においては、 焼鈍パラメ一夕 (AP) について投入さ れた熱エネルギーにより鉄原子が拡散した距離、 換言すれば、 粒界 が移動した距離と関係する無次元化されたパラメータであって、 こ の APが大きい程焼鈍の効果が大きいことを意味するものである。 従 つて、 軟化焼鈍は冷間圧延によって導入された歪みを焼鈍により開 放し、 鋼板に成形性を付与する意義がある。 このような成形性が AP で一義的に表現できることを見出したものである。 この APは次の式 で表すことが出来る。 In the present invention, as a heating method, a method and an apparatus are used in which an electric current is passed through the steel sheet itself and the steel sheet itself is heated using the Joule heat. Two types of heating using Joule heat are mainly used, that is, energization heating and induction heating. In the present invention, however, description will be made mainly on energization heating. Heating by energization makes the steel sheet itself a heating element, so there is no need to raise the ambient temperature and efficiency is high. In addition, in heating by energization, the heating capacity can be easily controlled by adjusting the current value, and it is possible to easily control the heating capacity to more than 1000 ° C / sec to a high temperature of 500 to 900 ° C through a current of 40 AZ mm or more. Rapid heating is also possible. In the present invention, the dimension of the annealing parameter (AP) is a dimensionless parameter related to the distance over which the iron atoms are diffused by the applied thermal energy, in other words, the distance over which the grain boundary has moved. Therefore, the larger the AP, the greater the effect of annealing. Therefore, soft annealing has the significance of releasing the strain introduced by cold rolling by annealing to impart formability to the steel sheet. It has been found that such formability can be uniquely expressed by AP. This AP can be expressed by the following equation.
AP = 1 n { ( 1 / T ( t ) exp ( - Q / RT ( t ) dt } 但し、 Q : Feの自己拡散のための活性化エネルギー (60kca l / mo l )  AP = 1 n {(1 / T (t) exp (-Q / RT (t) dt} where Q: activation energy for self-diffusion of Fe (60 kcal / mol)
R : ガス常数  R: gas constant
T : 絶対温度  T: Absolute temperature
次に、 本発明では、 加熱した鋼板表面に水と窒素ガスを主成分と する炉内ガスとからなる 2流体を吹き付けることにより冷却する。 本冷却方式は、 均一で極めて高い冷却速度が得られ、 気体と水の比 率や水の絶対量の調整により冷却能力や冷却終点温度を制御できる 等の利点があり、 例えば、 板厚 0. 7隱の鋼板を 50〜200 でノ秒の冷 却速度範囲で冷却が可能であり、 また、 板温 250〜550 °Cの範囲で 土 10°Cの精度で終点温度制御が可能である。 気液による冷却では、 鋼板と水蒸気との反応で鋼板の表面に薄い酸化被膜が生成するが、 被膜の厚みは数ミ クロンオーダーであり、 簡単な酸洗で容易に除去 可能である。  Next, in the present invention, cooling is performed by spraying two fluids consisting of water and an in-furnace gas mainly composed of nitrogen gas onto the heated steel sheet surface. This cooling method has the advantage that a uniform and extremely high cooling rate can be obtained, and that the cooling capacity and the cooling end point temperature can be controlled by adjusting the ratio of gas to water and the absolute amount of water. 7 It is possible to cool a steel plate at a cooling speed range of 50 to 200 in a nosec range, and it is possible to control the end point temperature with an accuracy of 10 ° C for soil at a plate temperature range of 250 to 550 ° C. In gas-liquid cooling, a thin oxide film is formed on the surface of the steel sheet by the reaction between the steel sheet and water vapor, but the thickness of the film is on the order of a few micron and can be easily removed by simple pickling.
通電による加熱および気液による冷却には前記の利点があり、 各 々単独で十分に効果を発揮できるものであるが、 本発明は通電によ る加熱と気液による冷却を併用するものであり、 以下に示す特有の 効果を奏することができる。 ① 連続焼鈍設備の一層のコンパク ト化がはかれる。 Heating by energization and cooling by gas-liquid have the above-mentioned advantages.Each of them can exert sufficient effects alone, but the present invention combines heating by energization and cooling by gas-liquid. However, the following specific effects can be obtained. ① The continuous annealing equipment will be made more compact.
通電による加熱、 気液による冷却は、 従来のラジアン トチューブ 加熱、 ガスジ ッ ト冷却に比べ、 炉内の鋼板長さが加熱帯で 1 / 8 に、 一次冷却帯で 1 Z 4 となり、 かなりの設備のコンパク ト化がは かれる。 さらに、 通常 10〜20°C Z秒と加熱速度が遅い場合には、 昇 温から加熱過程において、 セメ ンタイ 卜から溶出した固溶炭素が再 結晶粒の成長を遅くするために均熱時間を 20秒以上とる必要がある 。 これに対して、 セメ ンタイ トからの炭素の再固溶速度を上回る加 熱速度で急速加熱するならば、 最少 5秒という短い均熱時間で再結 晶を終わらせることができるばかりでなく、 加熱、 均熱過程で固溶 した少量の炭素も急速冷却後の短時間の過時効処理で析出させるこ とが可能であり、 その結果、 短時間ヒー トサイクルで加工性の優れ た材料を得ることができる。 このように、 通電による加熱、 気液に よる冷却の併用は加熱帯、 冷却帯のみならず、 均熱帯、 過時効帯の 短縮にも繫がり、 設備費が安価な極めてコンパク 卜な連続焼鈍設備 を実現できる。  Heating by energization and cooling by gas and liquid compared to conventional radiant tube heating and gas jet cooling, the steel plate length in the furnace is 1/8 in the heating zone and 1Z4 in the primary cooling zone, and considerable equipment is used. Is compacted. Furthermore, when the heating rate is slow, usually 10 to 20 ° CZ seconds, the soaking time is set to 20 because the dissolved carbon eluted from the cementite slows the growth of recrystallized grains during the heating process from the heating. You need to take more than a second. On the other hand, rapid heating at a heating rate that exceeds the rate of solid solution of carbon from cementite can not only end recrystallization in a short soaking time of at least 5 seconds, but also Even a small amount of carbon dissolved in the heating and soaking process can be precipitated by a short overaging treatment after rapid cooling, resulting in a material with excellent workability in a short heat cycle. be able to. In this way, the combined use of heating by energization and cooling by gas-liquid is not only a heating zone and a cooling zone, but also leads to shortening of the solitary tropics and the overaging zone. Can be realized.
② 板温の制御性が向上し、 自在なヒー トパターンが実現できる。  (2) The controllability of the plate temperature is improved, and a flexible heat pattern can be realized.
通電による加熱は元々極めて熱制御性に優れた加熱方法であり、 常温から再結晶温度以上まで加熱する場合も、 600 °C程度から均熱 温度までの部分加熱に使用する場合にも、 予め設定した電流値の制 御だけで、 加熱速度や加熱温度を自在に精度良く制御できる。 しか し、 連続焼鈍全体では加熱だけ熱制御性が良くても、 要求される全 てのヒー トパター ンに対応できるわけではない。 熱制御性の良い冷 却との併用により初めて自在なヒー トパターンを精度良く実現する ことが可能となる。 気液による冷却は前記したように冷却速度や終 点温度制御が容易であることから、 通電による加熱と気液による冷 却との併用により自在な焼鈍ヒー トパターンが実現でき、 多品種少 量生産の需要にも対応可能となる。 Heating by energization is originally a heating method with extremely excellent thermal controllability.It is set in advance when heating from room temperature to the recrystallization temperature or higher, or when using it for partial heating from around 600 ° C to soaking temperature. The heating rate and heating temperature can be freely and precisely controlled simply by controlling the current value. However, in the continuous annealing as a whole, even if the heat controllability is good only for heating, it cannot meet all the required heat patterns. For the first time, a flexible heat pattern can be realized with high precision by using cooling with good thermal control. As described above, gas-liquid cooling makes it easy to control the cooling rate and the end point temperature, so that it is possible to realize a flexible annealing heat pattern by using both heating by energizing and cooling by gas-liquid. It will be possible to meet the demand for mass production.
③ 生産能力が向上する。  ③ Production capacity is improved.
通電による加熱、 気液による冷却共に熱制御性と同様に熱応答性 も極めて優れた方法であるため、 通板サイズや焼鈍温度等の条件変 更に速やかに対応可能である。 例えば、 ラジアン トチューブ加熱、 ガスジェッ ト冷却タイプの連続焼鈍設備では、 板厚の変更あるいは 焼鈍温度の変更に際して、 所定の焼鈍条件に到達するまで調整用コ ィルを通板したり減速通板したり して生産能力を犠牲にせざるを得 なかった。 しかし、 通電による加熱と気液による冷却の併用により 、 前言己のような生産性の犠牲を解消し、 生産能力を向上させること ができる。 また、 設備をコンパク 卜にすることができるので、 ハ ー スロール起因の通板不良が軽減され、 高速通板が可能となるために 一層の生産性向上も期待できる。  Both the heating by energization and the cooling by gas-liquid are extremely excellent in thermal responsiveness as well as thermal controllability. Therefore, it is possible to respond quickly to changes in conditions such as threading size and annealing temperature. For example, in the continuous annealing equipment of the radiant tube heating and gas jet cooling type, when changing the thickness or the annealing temperature, the adjusting coil is passed or the speed is reduced until the specified annealing conditions are reached. Production capacity had to be sacrificed. However, the combined use of heating by energization and cooling by gas-liquid eliminates the sacrifice of productivity as described above, and can improve production capacity. In addition, since the equipment can be made compact, it is possible to reduce defects in sheet passing caused by heart rolls, and to achieve high-speed sheet passing.
④ 品質が向上する。  ④ Quality is improved.
通電による加熱と気液による冷却との併用により急速加熱急速冷 却や高温加熟急速冷却が可能となることから、 前記①記載の加工用 鋼板の短時間ヒー トサイクルの実現のほか、 焼き付き硬化性 (BH性 ) の向上、 高張力鋼板の結晶の微細化がはかれ、 穴拡げ性等が向上 する。 特に、 Tiおよび または Nb添加極低炭素鋼および低炭素 A 1 - キル ド鋼の場合においては、 焼鈍パラメータ (AP) の値を— 33以上 に加熱制御することにより、 深絞り性の指標である平均 r値および 張出し性の指標である延び (E I % ) ; 降伏強度性、 引張強度 TSが深 絞り用薄鋼板としての性能である目標以上を得るこ とが出来る。  Rapid heating and rapid cooling and high-temperature aging rapid cooling can be achieved by the combined use of heating by energization and cooling by gas-liquid.Therefore, in addition to realizing a short heat cycle of the steel sheet for processing described in (1) above, seizure hardening The BH property is improved, and the crystal of the high-strength steel sheet is refined, and the hole expandability and the like are improved. In particular, in the case of Ti and / or Nb-added ultra-low carbon steel and low-carbon A 1 -killed steel, it is an index of deep drawability by controlling the annealing parameter (AP) value to -33 or more. Elongation (EI%) as an index of average r value and overhanging property; Yield strength and tensile strength TS can be higher than the target, which is the performance as a steel sheet for deep drawing.
以上述べたように、 通電による加熱と気液による冷却の併用は、 両者の総和以上の効果を生み出す。 さらに、 コンパク トな設備とな るため炉内の雰囲気制御が容易となる。 例えば、 気液による冷却に おいては、 冷却帯で発生する水蒸気の加熱帯、 均熱帯への浸入防止 が容易である。 これは、 加熱帯、 均熱帯の容積がコンパク トにでき るために各帯の雰囲気圧力制御が容易であり、 そのために均熱帯と 冷却帯との圧力差を安定して確保できるからであり、 鋼板酸化膜の 制御や加熱、 均熱帯耐火物の劣化防止等の効果がある。 As described above, the combined use of heating by energization and cooling by gas-liquid produces an effect that is greater than the sum of the two. Furthermore, since the equipment is compact, it is easy to control the atmosphere in the furnace. For example, in gas-liquid cooling, the water vapor generated in the cooling zone is prevented from entering the heating zone and the solitary tropics. Is easy. This is because the volume of the heating zone and the soaking zone can be made compact, so that the atmospheric pressure in each zone can be easily controlled, and the pressure difference between the soaking zone and the cooling zone can be stably secured. It is effective in controlling and heating the oxide film on the steel sheet and preventing deterioration of the refractory material.
通電による加熱と気液による冷却を含む連続焼鈍方法における代 表的ヒー トパターンは、 通電による加熱工程で 700〜900 °Cに加熱 した後、 5秒以上均熱し、 気液による冷却工程で 1 0〜300 て/秒の 冷却速度で冷却するものである。 例えば、 加工用の軟質鋼板の場合 、 700〜900 °Cの均熱温度は、 圧延組織の再結晶および粒成長に必 要な温度であり、 また、 加熱手段に通電を用いることにより、 セメ ンタイ トからの固溶速度を上回る加熱速度で加熱できるために固溶 炭素による再結晶速度の遅れを防止でき、 5秒程度の短時間均熱で も鋼板に優れた加工性を付与できるのである。 気液による冷却速度 の上限を 300°C Z秒としたのは、 非時効性や強度向上等のために添 加される合金元素の量は、 通常冷却速度の上昇とともに少なくでき るのであるが、 その効果が 300°C Z秒で飽和すること、 冷却に伴う 鋼板の形状不良が発生しやすく なることからである。 一方、 下限を 1 0 °C /秒としたのは、 冷却時間がかかりすぎるために設備が長大化 すること、 鋼板表面の酸化被膜厚が増大することからである。 通常 、 気液による冷却における噴霧状況を安定に保持するために、 50〜 200 °C Z秒の範囲で冷却するのが望ま しい。  A typical heat pattern in the continuous annealing method that includes heating by energization and cooling by gas-liquid is as follows: after heating to 700 to 900 ° C in the heating process with energization, soaking for 5 seconds or more, and cooling in the gas-liquid cooling process. It cools at a cooling rate of 0 to 300 t / s. For example, in the case of a soft steel sheet for processing, a soaking temperature of 700 to 900 ° C. is a temperature necessary for recrystallization and grain growth of a rolled structure. Since the heating rate can be higher than the rate of solid solution from the steel, the delay in recrystallization speed due to solid solution carbon can be prevented, and excellent workability can be imparted to the steel sheet even with a short soaking time of about 5 seconds. The upper limit of the gas-liquid cooling rate was set to 300 ° CZ seconds because the amount of alloying elements added for non-aging and improvement of strength can usually be reduced with increasing cooling rate. This is because the effect saturates at 300 ° CZ seconds, and the steel sheet is likely to be inferior in shape due to cooling. On the other hand, the lower limit was set to 10 ° C / sec because the cooling time was too long, resulting in longer equipment and an increase in the oxide film thickness on the steel sheet surface. Usually, it is desirable to perform cooling in the range of 50 to 200 ° C. Z seconds in order to stably maintain the spray state in gas-liquid cooling.
通電による加熟を加熱帯の一部に採用する場合に、 前記のセメ ン タイ トからフ ライ トへのカーボンの再固溶を防ぎ、 優れた加工性 を付与するためには、 フ ライ ト中のカーボンの固溶限界濃度が高 く なる 600 °Cから、 セメ ン夕イ トからの固溶速度を上回る 40°C /秒 以上の加熱速度が必要となる。 以上のヒー トパターンを実現するた めには、 通電による加熱手段を既存の均熱帯を含む加熱帯の後段に 設け、 既存の加熱手段で 600°Cまで昇温した後、 通電による加熱に より 700〜900 °Cまで急速加熱すればよい。 When ripening by energization is used for a part of the heating zone, it is necessary to prevent the solid from re-dissolving carbon from cementite to the fly and to provide excellent workability. From 600 ° C, where the solid solution limit of carbon in the solution increases, a heating rate of 40 ° C / sec or more, which exceeds the rate of solid solution from cementite, is required. In order to realize the above heat pattern, the heating means by energization should be placed after the heating zone including the existing solitary zone. After heating up to 600 ° C with the existing heating means, it can be heated to 700 to 900 ° C rapidly by energizing.
通電による加熱を行う場合には、 通電加熱設備を加熱帯全域の前 段に設けてもよい。 この場合には材質上の効果はないが、 熱応答性 のよぃ通電による加熱の利点を活かし、 通板サイズや焼鈍条件の変 更に速やかに対応できるために、 生産性の向上効果が期待できる。 加熱帯全域の後段に通電による加熱手段を設ける場合にも同様な効 果が期待できるが、 鋼板温度の低い領域での通電による加熱手段の 採用は、 高温耐久性の不要な安価な設備とすることができるばかり でなく、 既存の炉設備と切り放して加熱帯の前面に設けることも可 能であるため、 既存の炉の改造が不要となることから、 さらに安価 な設備とすることもできる。  When heating by energization, an energization heating facility may be provided before the entire heating zone. In this case, there is no effect on the material, but the thermal responsiveness is used.The advantage of heating by energization can be taken advantage of, and it is possible to respond promptly to changes in the threading size and annealing conditions, so that an improvement in productivity can be expected. . The same effect can be expected when a heating means by energization is provided after the entire heating zone.However, adoption of heating means by energization in a region where the temperature of the steel sheet is low makes inexpensive equipment that does not require high-temperature durability. Not only can this be done, but it is also possible to cut off the existing furnace equipment and install it in front of the heating zone, eliminating the need to modify the existing furnace, thus making it possible to make the equipment even cheaper.
以下、 図面を用いて本発明の詳細を説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
図 1 は連続焼鈍設備の全体を示す図で、 捲取機 1 、 入側剪断機 2 、 溶接機 3、 洗浄機 4、 入側ルーパー 5、 通電加熱装置を含む加熱 帯 6を含んでいる。 均熱帯 7には、 電気ヒーター、 通電加熱装置ま たは誘導加熱装置が設けられており徐冷帯 8 にはガスジェッ ト等の 冷却装置が設けられている。 徐冷帯 8は場合によっては設けないこ ともある。 一次冷却帯 9は気液冷却装置を備えた例であり、 そのた め乾燥帯 1 0が設けられており、 過時効帯 1 1、 二次冷却帯 12、 冷却槽 1 3を経て後処理槽 14が設けられている。 後処理槽 14は、 通常、 酸洗 槽、 一次水洗槽、 電解処理槽、 二次水洗槽の計 4槽よりなる。 ドラ ィヤー 1 5、 出側ルーパー 1 6、 調質圧延機 17、 検査精整部 1 8、 出側剪 断機 1 9、 捲取機 20が設けられている。  Fig. 1 shows the entire continuous annealing equipment, which includes a winding machine 1, an inlet shearing machine 2, a welding machine 3, a washing machine 4, an inlet looper 5, and a heating zone 6 including an electric heating device. An electric heater, a current-carrying heating device or an induction heating device is provided in the solitary zone 7, and a cooling device such as a gas jet is provided in the slow cooling zone 8. The slow cooling zone 8 may not be provided in some cases. The primary cooling zone 9 is an example equipped with a gas-liquid cooling device.Therefore, a drying zone 10 is provided, and an overaging zone 11, a secondary cooling zone 12, a cooling tank 13 and a post-treatment tank are provided. 14 are provided. The post-treatment tank 14 usually includes four pickling tanks, a primary washing tank, an electrolytic treatment tank, and a secondary washing tank. It has a dryer 15, an exit looper 16, a temper rolling mill 17, an inspection and refinement section 18, an exit shearing machine 19, and a winder 20.
図 2は本発明の連続焼鈍設備の加熱帯、 均熱帯、 一次冷却帯の例 を示す図である。 冷間圧延工程を経てコイル状に巻き取られた鋼板 21は、 連続的に送り出されて加熱帯 6 に装入される。 加熱帯 6 には 、 環状トランス 24を用いて鋼板 21に誘導電流を発生させる通電加熱 装置が備えてあり、 導電性部材で接続された通電ロール 22, 23を介 して鋼板 21に電流を流してジュール熱により鋼板 21を加熱する。 急 速加熱された鋼板 21は引き続き均熱帯 7で均熱処理される。 この例 では、 均熱帯 7にも通電ロール 25, 26を配置して、 通電による加熱 による均熱処理が行われる。 この例では、 加熱帯 6 は横型炉で、 均 熱帯 7は竪型炉であるが、 横型、 竪型は設備能力に応じて選択すれ ばよい。 即ち、 高生産設備である場合には、 ライ ン長が長大になる ため竪型設備が必須であるが、 低生産設備の場合には、 横型のほう が操業が容易である。 次に鋼板 21は一次冷却帯 9に導かれ、 気液冷 却装置 27により急速冷却される。 その後、 鋼板 21は必要に応じて再 加熱、 過時効処理され、 鋼板表面に発生した酸化膜が除去される。 FIG. 2 is a diagram showing an example of a heating zone, a solitary tropical zone, and a primary cooling zone of the continuous annealing equipment of the present invention. The steel sheet 21 wound in a coil shape through the cold rolling step is continuously sent out and charged into the heating zone 6. In heating zone 6 An electric current heating device for generating an induced current in the steel sheet 21 using the annular transformer 24 is provided, and an electric current is supplied to the steel sheet 21 through the current supply rolls 22 and 23 connected by a conductive member, and the steel sheet is heated by Joule heat. Heat 21. The rapidly heated steel plate 21 is then soaked in the soaking zone 7. In this example, current-carrying rolls 25 and 26 are also arranged in the soaking zone 7, and soaking treatment is performed by heating by energization. In this example, the heating zone 6 is a horizontal furnace and the tropical zone 7 is a vertical furnace, but the horizontal and vertical furnaces may be selected according to the equipment capacity. In other words, in the case of a high production facility, a vertical facility is indispensable because the line length becomes long, but in the case of a low production facility, the horizontal type is easier to operate. Next, the steel sheet 21 is guided to the primary cooling zone 9 and rapidly cooled by the gas-liquid cooling device 27. Thereafter, the steel sheet 21 is reheated and overaged if necessary, to remove an oxide film generated on the steel sheet surface.
図 3は横型通電加熱装置の概略説明図である。 被加熱材の鋼板 21 の下面には通電ロール 22, 23が、 またその上部には通電ロール 22, 23に対向して押さえロール 28, 29が配置されている。 押さえロール 28 , 29は、 例えば、 それぞれシリ ンダ 30, 31などからなる加圧手段 によって対向する通電ロール 22, 23とで鋼板 21を挟持している。 ま た、 低温側通電ロール 22と高温側通電ロール 23の間には鋼板 21の外 周囲に環状トランス 24が配置されている。 これら通電ロール 22, 23 を、 電気抵抗値が鋼板 21より もはるかに小さい銅等の導電性部材 32 で接続して、 鋼板 21、 通電ロール 22, 23および導電性部材 32により 閉回路を構成し、 環状トランス 24に外部電源 33から交流電流を通電 することにより上記閉回路を二次コイルとして誘導電流を発生させ 、 この誘導電流によるジュール熱で鋼板 21を加熱する。 加熱速度や 加熱温度は被加熱材の固有抵抗値および板厚、 板幅、 板速等の条件 の元に算出される所定の交流電流量で制御可能である。 通電加熱装 置にはこの変圧器型通電加熱方式と直接外部より電気を供給する方 式とがあるが、 効率良く大電流を鋼板に流せることから前者の方式 がより望ま しい。 FIG. 3 is a schematic explanatory view of a horizontal electric heating device. Current-carrying rolls 22 and 23 are provided on the lower surface of the steel plate 21 to be heated, and presser rolls 28 and 29 are provided on the upper surface thereof in opposition to the current-carrying rolls 22 and 23. The holding rolls 28 and 29 hold the steel plate 21 between the opposing energizing rolls 22 and 23 by pressing means made of, for example, cylinders 30 and 31, respectively. An annular transformer 24 is disposed between the low-temperature side energizing roll 22 and the high-temperature side energizing roll 23 around the steel plate 21. These energized rolls 22 and 23 are connected by a conductive member 32 such as copper, whose electric resistance value is much smaller than that of the steel plate 21, and a closed circuit is formed by the steel plate 21, the energized rolls 22 and 23 and the conductive member 32. An AC current is supplied from an external power supply 33 to the annular transformer 24 to generate an induced current using the closed circuit as a secondary coil, and the steel sheet 21 is heated by Joule heat caused by the induced current. The heating rate and the heating temperature can be controlled by the specific resistance value of the material to be heated and a predetermined amount of alternating current calculated based on conditions such as sheet thickness, sheet width, and sheet speed. The current-carrying heating device uses this transformer-type current-carrying heating method and a method for directly supplying electricity There is a formula, but the former is more desirable because a large current can be efficiently passed through the steel plate.
図 4 は冷却帯の概略説明図である。 一次冷却帯 9にはダウンパス 36に複数個の気液冷却チヤ ンバー 34が配列され、 各チヤンバー 34の すぐ下側に液切り装置 35が設けられている。 一次冷却帯としては、 表裏の冷却対称性を碓保し、 鋼板 21高温部での垂れ水による不均一 冷却を防止するために、 竪型ダウンパスが最も効果的である。 気液 冷却チャ ンバ一 34内には、 図 5に示すように、 気液噴射ノズルへッ ダー 39と液体噴射ノズルへッダー 38とからなる複数個の気液混合ノ ズルュ二'ッ ト 37が、 鋼板 21を挟んで通板方向に沿って竪型に配設さ れている。 この気液混合ノズルュニッ 卜 37により、 霧化状態を安定 に保っために吹き付け直前気液混合が行われる。 気液による冷却で の冷却速度は、 液体噴射ノズルへッダー 38に導通する液管 40中に設 けられた液体流量制御弁 41を調整することにより 1分問、 1 m 2 あ たりの水量で表される液量密度で、 また終点温度は、 液体流量制御 弁 41のオン オフによるノズルュニッ トの個数で、 制御するのであ る o Figure 4 is a schematic explanatory diagram of the cooling zone. In the primary cooling zone 9, a plurality of gas-liquid cooling chambers 34 are arranged in a down path 36, and a liquid draining device 35 is provided immediately below each chamber 34. As the primary cooling zone, a vertical downpass is the most effective in order to maintain the cooling symmetry of the front and back surfaces and to prevent uneven cooling due to dripping water in the high temperature part of the steel plate 21. In the gas-liquid cooling chamber 34, as shown in FIG. 5, a plurality of gas-liquid mixing nozzles 37 including a gas-liquid injection nozzle header 39 and a liquid injection nozzle header 38 are provided. It is arranged vertically along the passing direction with the steel plate 21 interposed therebetween. The gas-liquid mixing unit 37 performs gas-liquid mixing immediately before spraying to keep the atomization state stable. Cooling rate in cooling by the gas-liquid is 1 minute question by adjusting the liquid flow rate control valve 41 which kicked set in the liquid pipe 40 which conducts the liquid injection nozzle to Dda 38, in the amount of water or 1 m 2 Ah The liquid density expressed and the end point temperature are controlled by the number of nozzle units by turning on and off the liquid flow control valve 41.o
図 6は、 通電加熱装置 6 ' をラジアン トチューブによる加熱帯 6 の前面に設けた連続焼鈍設備および焼鈍ヒー トサイクルの例を図 6 ( A ) および図 6 ( B ) にそれぞれ示す。 通電加熱装置 6 ' を設け ることにより、 焼鈍温度や通板サイズの変更に際し、 通電加熱装置 のみの電流制御にて速やかに対応できるために、 スケジュールフ リ 一焼鈍が可能となり、 生産能力の向上に繫がる。  Figure 6 (A) and Figure 6 (B) show examples of continuous annealing equipment and an annealing heat cycle, respectively, in which an electric heating device 6 'is provided in front of the heating zone 6 using a radiant tube. By providing the electric heating device 6 ′, when the annealing temperature and the plate size are changed, current control of only the electric heating device can be used immediately, so schedule-free one annealing becomes possible and the production capacity is improved. Nygal
図 7は、 通電加熱装置 6 ' を均熱帯 7 と一次冷却帯 9 との間に設 けた連続焼鈍設備および焼鈍ヒー トサイ クルの例を図 7 ( A ) およ び図 7 ( B ) にそれぞれ示す。 通電加熱装置 6 ' を均熱帯 7 と気液 冷却装置の間に設けることにより、 焼鈍温度や通板サイズの変更に 際し、 通電加熱装置 6 ' を加熱帯 6の前面に設けた場合以上に速や かに対応できるばかりでなく、 既存のラジアン トチューブの加熱能 力以上の高温まで加熱できるために、 加工性の向上や BH性の付与等 、 新たな品質向上も可能となる。 図面の簡単な説明 Figures 7 (A) and 7 (B) show examples of continuous annealing equipment and an annealing heat cycle in which a current-carrying heating device 6 'is installed between the soaking zone 7 and the primary cooling zone 9, respectively. Show. By installing the electric heating device 6 ′ between the soaking zone 7 and the gas-liquid cooling device, it is possible to change the annealing temperature and the strip size. In this case, not only can the heating device 6 ′ be installed at the front of the heating zone 6, but also it can be heated more quickly than the heating capacity of the existing radiant tube. New quality improvement such as improvement and BH property is also possible. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 連続焼鈍設備の全体を示す図である。  Figure 1 is a diagram showing the entire continuous annealing equipment.
図 2 は、 本発明の連続焼鈍設備の例を示す図である。  FIG. 2 is a diagram showing an example of the continuous annealing equipment of the present invention.
図 3 は、 通電加熱装置の詳細を示す図である。  FIG. 3 is a diagram showing details of the electric heating device.
図 4 は、 気液冷却装置の概要を示す図である。  FIG. 4 is a diagram showing an outline of the gas-liquid cooling device.
図 5 は、 気液冷却装置の詳細を示す図である。  FIG. 5 is a diagram showing details of the gas-liquid cooling device.
図 6 ( A) は、 本発明の連続焼鈍設備および図 6 ( B ) は焼鈍ヒ 一トサイクルの例を示す図である。  FIG. 6A is a diagram showing an example of the continuous annealing equipment of the present invention, and FIG. 6B is a diagram showing an example of an annealing heat cycle.
図 7 ( A) は、 本発明の実施例 4を実施した連続焼鈍設備および 図 7 ( B ) はその実施例で実施したヒー トパターンの一例を示し た図である。  FIG. 7A is a diagram illustrating an example of a continuous annealing facility in which the fourth embodiment of the present invention is performed, and FIG. 7B is a diagram illustrating an example of a heat pattern performed in the fourth embodiment.
図 8 ( A) 、 図 8 ( B ) および図 8 ( C) は、 本発明に係る焼鈍 パラメータ (AP) と! 7値、 E1値及び YP, TSとの関係を示す図である 8 (A), 8 (B) and 8 (C) show the annealing parameters (AP) according to the present invention! FIG. 7 is a diagram showing a relationship between a seven value, an E1 value, and YP and TS.
発明を実施するための最良な形態 BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明を実施するための最良な形態を実施例に基づいて説明 する。 実施例 1  Next, the best mode for carrying out the present invention will be described based on examples. Example 1
枚厚 0.7mmの①低炭アルミキル ド、 ② Ti_SULCの各加工用鋼板、 および③高張力鋼板の 3鋼種を比較例ではラ ジアン トチューブ加熱 (RT加熱) とガスジェ ッ ト冷却(GJC) 、 実施例では通電による加熱 と気液による冷却で焼鈍処理を行い、 比較した。 実施例の設備は比 較例の設備の一部を改造することにより、 容易に実現できる。 その 結果を表 1 に示す。 Radiant tube heating of three steel types, 0.7mm in sheet thickness, ① low-carbon aluminum kill, ② Ti_SULC processing steel plate, and ③ high-tensile steel plate (RT heating) and gas jet cooling (GJC). In the examples, annealing treatment was performed by heating by energization and cooling by gas-liquid, and compared. The equipment of the embodiment can be easily realized by modifying a part of the equipment of the comparative example. The results are shown in Table 1.
表 1 焼 鈍 条 件 材 料 特 性 Table 1 Annealing conditions Material characteristics
鋼 鋼 種 Steel Steel type
板 ?御 力 麵 過降効時 雌時間 強 度 伸び 7値 n¾ BH 細ナ' カェ ι、、 ¾ 職显 カ Board? Control 麵 Female time at the time of over-fall The strength elongation 7 value n¾ BH ナ ', ¾ 显 、
(°C ) 度 (。C) 間 (秒) 間(秒) (秒) (N/nm2) (%) (-) (-) (N/mm2) (―)(° C) Degree (.C) Between (seconds) Between (seconds) (seconds) (N / nm 2 ) (%) (-) (-) (N / mm 2 ) (-)
(雄例) (Male example)
① 瞧 15 750 60 40 180 302 45 0.20  ① 瞧 15 750 60 40 180 302 45 0.20
加 /IJJし アルミ Aluminum / IJJ
ェ キルド E-killed
用 (難例) For (difficult example)
鋼 通動口 300 750 10 200 90 110 50 0.25 Steel passage 300 750 10 200 90 110 50 0.25
极 気 気 ki
( 例) 1 r* (Example) 1 r *
② RT¾口熱 10 830 30 4U lUd 2.0 0 加 ZGJC  ② RT heat 10 830 30 4U lUd 2.0 0 Addition ZGJC
E
用 (難例) SULC (Difficult example) SULC
鋼 RT、通 700°C t 200 100 2.0 40 板 1 ¾tif Steel RT, through 700 ° C t 200 100 2.0 40 plate 1 ¾tif
/気液 860°Cまで急熱  / Rapid heating to 860 ° C
ίχιム卩  ίχι ム
瞧) Si:1.0  瞧) Si: 1.0
① RT¾口熱 Mn:1.5 15 770 < 1 40 690 1.2 问 /GJC C:0.1  ① RT heat Mn: 1.5 15 770 <1 40 690 1.2 问 / GJC C: 0.1
力 (鎌例) Si:1.0 Force (sickle example) Si: 1.0
鋼 通動口 Mn:1.0 300 770 < 1 200 690 1.6 板 気 C:0.1 Steel passage Mn: 1.0 300 770 <1 200 690 1.6 Plate C: 0.1
低炭アルミキルド鋼板の焼鈍においては、 実施例は比較例に比べIn the annealing of low-carbon aluminum-killed steel sheet,
、 焼鈍時間が 1 / 3の短時間ヒー トサイクルが実現しているばかり でなく、 伸びや n値の向上もみられた。 これは、 急速加熱急速冷却 焼鈍により Cの固溶が抑制され、 溶解した少量の Cも析出促進され た結果であると思われる。 However, not only a short heat cycle of 1/3 of the annealing time was realized, but also the elongation and the n value were improved. This is considered to be the result of suppressing the solid solution of C by rapid heating and rapid cooling annealing and promoting the precipitation of a small amount of dissolved C.
T i一 SULC鋼板の焼鈍においては、 実施例では、 860°Cの高温まで 通電加熱装置で瞬間的に到達させた後急速冷却の焼鈍サイ クルを用 いることにより、 RT加熱、 GJC方式の比較例と同様な高い!7値を保 持しつつ、 BH性を付与できた。 これは、 瞬間的でも高温処理するこ とにより Cが溶出する現象を活用している。 In the annealing of the SU-i SULC steel sheet, in this example, the instantaneous temperature reached 860 ° C by a current-carrying heating device, and then the rapid cooling annealing cycle was used. As high as the example! BH property was able to be given while maintaining 7 values. This utilizes the phenomenon that C is eluted by a high-temperature treatment even for a moment.
また、 高張力鋼板の焼鈍においては、 実施例では、 急速加熱急速 冷却焼鈍により、 合金成分の Mnを 1. 5 %から 1. 0 %に減らしても同 様な強度を発現でき、 また、 穴拡げ性も向上した。 これは、 急速加 熱により Cの固溶を抑制し、 高 C濃度のオーステナイ ト 2相域から 焼き入れることにより、 結晶が微細化するためである。  In the annealing of high-strength steel sheets, in the embodiment, the same strength can be achieved even if the Mn of the alloy component is reduced from 1.5% to 1.0% by rapid heating and rapid cooling annealing. Expandability also improved. This is because the solid solution of C is suppressed by rapid heating, and the crystal is refined by quenching from the austenitic two-phase region with a high C concentration.
実施例 2 Example 2
加熱温度 750°C、 冷却終点温度 400°Cにて板厚 0. 7mmの鋼板を焼 鈍中に、 加熱温度を 750°Cから 800°Cに変更した際の所定の焼鈍条 件に到達するまでの所要時間を、 ① RT加熱 Z GJ C 方式と、 ② RT加熱 気液による冷却方式と、 ③通電による加熱/ GJ C 方式と、 ④通電 による加熱 気液による冷却方式とで比較した。 なお、 冷却終点温 度所要時問は加熱温度に依存するために、 加熱温度が所定の温度に 到達後から冷却を調整して所定の冷却終点温度に到達するまでの時 間を冷却終点所要時間と した。 その結果を表 2 に示す。 表 2 During annealing of a 0.7 mm thick steel sheet at a heating temperature of 750 ° C and a cooling end point temperature of 400 ° C, the specified annealing conditions are reached when the heating temperature is changed from 750 ° C to 800 ° C. The time required for the comparison was compared between (1) RT heating Z GJC method, (2) RT heating gas-liquid cooling method, (3) Heating / GJC method by energization, and (4) Heating gas-liquid cooling method by energization. Since the time required for the cooling end point temperature depends on the heating temperature, the time from when the heating temperature reaches the specified temperature to when the cooling is adjusted to reach the specified cooling end point temperature is the required cooling end point time. And The results are shown in Table 2. Table 2
Figure imgf000020_0001
Figure imgf000020_0001
表 2からは、 熱応答性は RT加熱が極めて悪く、 次いで GJCが悪く 、 一方通電による加熱や気液による冷却は非常によいことがわかる 。 所定の焼鈍ヒー トサイクルに到達するまでの時間は、 熱応答性の 悪い方式が律速となるために、 焼鈍条件の変更に速やかに対応する ためには、 熱応答性の良好な加熱、 冷却技術の組み合わせ、 即ち通 電による加熱、 気液による冷却の組み合わせがべス トである。  From Table 2, it can be seen that the thermal responsiveness is very poor for RT heating, followed by GJC, while heating by energization and cooling by gas-liquid are very good. The time required to reach the predetermined annealing heat cycle is determined by the method with poor thermal response, which is rate-determining.To respond quickly to changes in annealing conditions, heating and cooling technologies with good thermal response are required. The best combination is the combination of heating by conduction and the cooling by gas-liquid.
実施例 3 Example 3
表 1 に示す②加工用鋼板の Ti-SULC 冷延鋼板を図 7 ( B ) に示し たヒー トサイクルで a (加熱速度) : 10°CZsec 、 b : 700°C x 40 sec 、 c : 100°C/sec 、 d : 675°Cまで 5 °C/sec で冷却した後 空冷したものを供試材とした。 この場合の設備としては、 均熱する 均熱帯の任意部位、 例えば均熱帯の最終部に急速かつ短時間の昇温 を補助的に行う通電加熱装置又は誘道加熱装置によって行った。 図 7 ( B ) は、 本発明で実施されるヒー トパターンの一例を示し た図である。 この図に示すように、 aは冷延ままの鋼帯を巻戻して 連続焼鈍炉にて加熱する段階であり、 その加熱パターンは加熱速度 1〜200 °C/sec 、 到達温度が 500〜900 でである。 bは鋼帯を均 熱する段階であり、 均熱温度は 500〜900 °C、 保持時間は 0〜300s ecである。 cは本発明の特徴とするところの通電加熱などにより急 速かつ短時間の昇温をする。 加熱速度は、 40〜 1000°CZsec であり 、 750〜900 °Cまで加熱する。 dは短時間の急速加熱後に、 直ちに 冷却する段階である。 また、 eは過時効帯を有する設備の場合であ つて、 急冷加熱の後に直ちに冷却され、 過時効温度 250〜450 に 保定された後常温まで冷却する。 The Ti-SULC cold-rolled steel sheets for processing shown in Table 1 were subjected to the heat cycle shown in Fig. 7 (B), a (heating rate): 10 ° CZsec, b: 700 ° C x 40sec, c: 100 ° C / sec, d: The sample was cooled to 675 ° C at 5 ° C / sec and air-cooled. The equipment used in this case was an energization heating device or an induction heating device that assists the rapid and short-term temperature rise to an arbitrary part of the soaking zone, for example, the final part of the soaking zone. FIG. 7 (B) is a diagram showing an example of a heat pattern implemented in the present invention. As shown in this figure, a is a stage in which a cold-rolled steel strip is unwound and heated in a continuous annealing furnace. The heating pattern is a heating rate of 1 to 200 ° C / sec, and an ultimate temperature of 500 to 900. It is. b is the stage of soaking the steel strip, the soaking temperature is 500-900 ° C, and the holding time is 0-300 sec. c is abrupt due to current heating, which is a feature of the present invention. Raise the temperature quickly and for a short time. The heating rate is 40 ~ 1000 ° CZsec, and heating up to 750 ~ 900 ° C. d is the stage of cooling immediately after rapid heating for a short time. In the case of equipment with an overaging zone, e is cooled immediately after quenching and heated, and is maintained at an overaging temperature of 250 to 450 and then cooled to room temperature.
図 8 は、 本発明に係る焼鈍パラメータ (AP) と "F値、 E1値及び YP , TSとの関係を示す図であり、 それぞれ図 8 (A) 、 図 8 (B) 、 図 8 ( C) と して示した。  FIG. 8 is a diagram showing the relationship between the annealing parameter (AP) according to the present invention and "F value, E1 value, YP, TS, and FIG. 8 (A), FIG. 8 (B), FIG. ).
この図 8 に示すように、 焼鈍パラメータ (AP) の値を— 33以上に なるように加熱制御することによって、 深絞り性の指標である平均 r値及び張出し性の指標である伸び E1 ( %) 並びに降伏強度 YP、 引 張り強度 TSが深絞り用薄鋼板としての性能である目標値以上を得る ことが出来たことを示している。 すなわち、 平均 r値は ΑΡがー 33以 上の場合に 1.5以上となり、 また E1 (%) は 42%以上、 YPは 180N 匪2 以上、 TSは 320NZmm2 以上を得ることが出来る。 As shown in Fig. 8, by controlling the heating so that the value of the annealing parameter (AP) becomes -33 or more, the average r value as an index of deep drawability and the elongation E1 (% This indicates that the yield strength YP and the tensile strength TS were able to be higher than the target values, which are the performances of a steel sheet for deep drawing. That is, the average r value is 1.5 or more when ΑΡ is -33 or more, E1 (%) is 42% or more, YP is 180N bandage 2 or more, and TS is 320NZNZmm 2 or more.
なお、 このことは表 1 に示す Ti添加極低炭素鋼に限定するもので なく、 Nb添加極低炭素鋼板や、 Tiと Nbを複合添加した極低炭素鋼お よび低炭素 A1—キルド鋼板の場合にも同様の結果が得られる。 また 、 APが同じであれば、 焼鈍ヒー トサイクルによらず得られる鋼板の 引張特性が同じであることが確認された。  Note that this is not limited to the Ti-added ultra-low carbon steel shown in Table 1, but is applied to the Nb-added ultra-low carbon steel, the ultra-low carbon steel with the combined addition of Ti and Nb, and the low-carbon A1-killed steel. A similar result is obtained in this case. In addition, it was confirmed that when the AP was the same, the tensile properties of the obtained steel sheets were the same regardless of the annealing heat cycle.
この場合の通電加熱あるいは誘導加熱が均熱帯のパス間に配設さ れることによって、 部分加熱は 0.5〜15sec の範囲で実施すること が出来る。 なお、 本発明において、 通電加熱装置あるいは誘導加熱 装置を用いた理由は、 例えば冷廷鋼板の連続焼鈍炉内における加熱 方式と しては直火型無酸化加熱方式や輻射管加熱方式などが用いら れているが、 これら各方式はいずれも伝熱による加熱方式であるの で単位時間当たりの加熱能力はあまり高く なく、 必要な総熱量を確 保するためには、 加熱時間を長く取らねばならず、 必然的に加熱帯 の長さが長くなる。 それに対して通電加熱の場合は入側及び出側に それぞれコンダクターロールに沿って鋼帯を通板させながら加熱す るものであり、 このような導電性材料である鋼帯を案内するロール に通電し、 ロール間に導電性材料である鋼帯を介し、 電流を流すこ とにより鋼帯の電気抵抗により鋼帯自身が発熱して急速、 かつ短時 間に加熱されるからである。 In this case, the partial heating can be performed in the range of 0.5 to 15 seconds by arranging the electric heating or the induction heating between the equal-tropical passes. In the present invention, the reason why the electric heating device or the induction heating device is used is that, for example, as a heating method in a continuous annealing furnace for cold steel sheets, a direct-fired non-oxidizing heating method or a radiation tube heating method is used. However, since each of these methods is a heating method using heat transfer, the heating capacity per unit time is not very high, and the required total amount of heat can be ascertained. In order to maintain the temperature, the heating time must be long, which necessarily increases the length of the heating zone. On the other hand, in the case of electric heating, heating is performed while passing steel strips along the conductor rolls on the inlet and outlet sides, respectively, and the rolls that guide the steel strip, which is a conductive material, are energized. However, when a current is passed between the rolls through a steel strip, which is a conductive material, the steel strip itself generates heat due to the electrical resistance of the steel strip and is heated quickly and quickly.
また、 誘導加熱は鋼帯の周囲に加熱コイルを配置して高周波電源 から給電し、 加熱コイルにより作られた磁界により鋼帯に誘導電流 を鐧帯の長手方向に平行もしく は鋼帯の長手方向に対し鉛直方向に 流して鋼帯をジュール熱により加熱するもので急速加熱が可能であ るからである。 これらの通電加熱又は誘導加熱装置を用いて補助的 な加熱を行い、 これによつて焼鈍パラメ一夕 (AP) を容易に制御す ることが出来ると同時に前述の鋼帯長手方向もしく は鋼帯の長手方 向に対し鉛直方向に直接加熱もしく は熱補償し、 均一な特性を得る ことが可能となる。 産業上の利用可能性  In induction heating, a heating coil is arranged around the steel strip and power is supplied from a high-frequency power source. An induction current is applied to the steel strip by the magnetic field generated by the heating coil, parallel to the longitudinal direction of the steel strip or the length of the steel strip. This is because the steel strip is heated by Joule heat by flowing in a direction perpendicular to the direction, and rapid heating is possible. Auxiliary heating is performed using these electric heating or induction heating devices, whereby the annealing parameter (AP) can be easily controlled, and at the same time, the above-mentioned steel strip longitudinal direction or steel strip is used. Direct heating or thermal compensation in the vertical direction with respect to the longitudinal direction of the band makes it possible to obtain uniform characteristics. Industrial applicability
本発明のジュール熱、 好ま しく は通電による加熱と気液による冷 却とを含む連続焼鈍方法および設備は、 極めてコンパク トな設備に できる、 板温の制御性が向上し、 自在なヒー トパターンが実現でき る、 生産能力が向上する、 品質が向上する等の効果を奏する。 また 、 ヒー トバッ クルや板破断などのない通板性の良好で、 しかも表面 疵などの発生のない高表面品位を得ることが出来ると共に、 通板ス ケジュールフ リー化による生産性の向上とコス ト低減が図られ、 か つ、 APの値を— 33以上に制御することによる加工性と BH性に優れた 冷延鋼板を製造することが出来る工業上極めて優れた効果を奏する ものである。 The continuous annealing method and equipment including Joule heat, preferably heating by energization and cooling by gas-liquid, according to the present invention can be made into extremely compact equipment. It has the effects of improving production capacity and improving quality. In addition, it is possible to obtain a high surface quality without heat backlash or breakage of the sheet, and no surface flaws, etc., and to improve productivity and cost by using a free time through the sheet. By controlling the value of AP to -33 or more, it is possible to manufacture cold-rolled steel sheets with excellent workability and BH properties. Things.

Claims

請 求 の 範 囲 The scope of the claims
1 . 均熱を含む加熱工程、 および冷却工程を含む鋼板の連続焼鈍 方法において、 前記加熱工程にはジュール熱による加熱工程を含み 、 前記冷却工程には気液による冷却工程を含むことを特徴とする鋼 板の連続焼鈍方法。 1. A continuous annealing method for a steel sheet including a heating step including soaking and a cooling step, wherein the heating step includes a heating step using Joule heat, and the cooling step includes a cooling step using gas-liquid. Continuous annealing method for steel sheet.
2 . 加熱工程におけるジュール熱による加熱が、 通電加熱による 加熱手段であることを特徴とする請求項 1記載の鋼板の連続焼鈍方  2. The continuous annealing method for a steel sheet according to claim 1, wherein the heating by Joule heat in the heating step is heating means by electric heating.
3 . 通電による加熱工程にて 500〜900 でに加熱速度 40〜1 000 °C / s e c で加熱した後、 5〜300 秒均熱し、 気液による冷却工程にて 1 0〜300 °C /秒の冷却速度で冷却することを特徴とする請求項 1記 載の鋼板の連続焼鈍方法。 3. In the heating process by energization, after heating at a heating speed of 500 to 900 at a heating speed of 40 to 1 000 ° C / sec, soak for 5 to 300 seconds, and in a gas-liquid cooling process, 10 to 300 ° C / sec. 2. The method for continuous annealing of steel sheets according to claim 1, wherein the steel sheets are cooled at a cooling rate.
4 . 通電による加熱工程にて、 少なく とも 600°Cから 700〜900 での温度まで 40で 秒以上の加熱速度で加熱することを特徴とする 請求項 1記載の鋼板の連続焼鈍方法。  4. The continuous annealing method for a steel sheet according to claim 1, wherein in the heating step by energization, the steel sheet is heated from a temperature of at least 600 ° C to a temperature of 700 to 900 at a heating rate of 40 seconds or more.
5 . 通電による加熱工程にて 400 てまで加熱昇温した後、 非酸化 性または還元性雰囲気による他の加熱手段にて 700〜900 °Cに加熱 することを特徴とする請求項 1記載の鋼板の連続焼鈍方法。  5. The steel sheet according to claim 1, wherein the steel sheet is heated to 700 to 900 ° C by another heating means in a non-oxidizing or reducing atmosphere after heating to 400 degrees in a heating step by energization. Continuous annealing method.
6 . 鋼板を所定温度に加熱した後、 引続く均熱の任意部位で急速 かつ短時間の昇温を行い、 焼鈍パラメータ (AP ) の値が一 33以上に なるよう加熱制御を行う ことを特徵とする請求項 1 記載の鋼板の連 続焼鈍方法。  6. After heating the steel sheet to the specified temperature, the temperature is rapidly and quickly increased at any part of the subsequent soaking, and the heating control is performed so that the value of the annealing parameter (AP) becomes 133 or more. The continuous annealing method for a steel sheet according to claim 1, wherein:
7 . 加熱帯、 均熱帯および冷却帯を含む鋼板の連続焼鈍設備にお いて、 前記均熱帯を含む加熱帯の全域にジュール熱による加熱手段 を含み、 前記冷却帯には気液による冷却手段を含むことを特微とす る鋼板の連続焼鈍設備。 7. In a continuous annealing facility for a steel sheet including a heating zone, a soaking zone and a cooling zone, heating means using Joule heat is included in the entire heating zone including the soaking zone, and a cooling means using gas and liquid is provided in the cooling zone. Continuous annealing equipment for steel sheets characterized as containing.
8 . 加熱帯全域におけるジュール熱による加熱手段が、 通電加熱 による加熱手段であることを特徵とする請求項 7記載の鋼板の連続 焼鈍設備。 8. The continuous annealing equipment for steel sheets according to claim 7, wherein the heating means by Joule heat in the entire heating zone is heating means by electric heating.
9 . 鋼板を所定温度に加熱し、 引続く均熱帯の任意部位で急速か つ短時間の昇温を行い、 焼鈍パラメ一夕 (AP) の値が— 33以上にな るよう加熱制御を行う加熱装置を配設したことを特徴する請求項 7 記載の鋼板の連続焼鈍設備。  9. Heat the steel sheet to the specified temperature, and then raise the temperature quickly and briefly in any part of the soaking zone, and control the heating so that the value of the annealing parameter (AP) becomes -33 or more. The continuous annealing equipment for steel sheets according to claim 7, wherein a heating device is provided.
10. 通電による加熱手段が、 鋼板を環状ト ラ ンス内を貫通させ、 環状ト ラ ンスに交流電流を通して鋼板に誘導電流を発生させて加熱 する手段であることを特徴とする請求項 2記載の鋼板の連続焼鈍設 備。  10. The heating method according to claim 2, wherein the heating means by applying electric current is means for causing the steel sheet to penetrate through the annular transformer, generating an induced current in the steel sheet by passing an alternating current through the annular transformer, and heating the steel sheet. Equipment for continuous annealing of steel sheets.
1 1 . 連続焼鈍設備の構成が加熱帯、 均熱帯、 一次冷却帯、 過時効 処理帯および二次冷却帯よりなる請求項 7〜 1 0記載の連続焼鈍設 備。  11. The continuous annealing equipment according to claim 7, wherein the continuous annealing equipment comprises a heating zone, a soaking zone, a primary cooling zone, an overaging treatment zone, and a secondary cooling zone.
12. 均熱帯の任意の部位で急速かつ短時間の昇温を行う手段が、 通電加熱装置または誘導加熱装置である請求項 6および 9記載の連 続焼鈍設備。  12. The continuous annealing equipment according to claim 6, wherein the means for raising the temperature rapidly and in a short time at an arbitrary part of the solitary tropics is an electric heating device or an induction heating device.
PCT/JP1995/002111 1995-06-23 1995-10-13 Method of continuous annealing of cold rolled steel plate and equipment therefor WO1997000975A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019970701147A KR100221789B1 (en) 1995-06-23 1995-10-13 Method of continuous annealing of cold rolled steel plate and equipment thereof
BR9508762A BR9508762A (en) 1995-06-23 1995-10-13 Process for continuous annealing of cold rolled steel sheet and its installation
EP95934304A EP0779370A1 (en) 1995-06-23 1995-10-13 Method of continuous annealing of cold rolled steel plate and equipment therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP15817295 1995-06-23
JP7/158172 1995-06-23
JP7/189732 1995-07-04
JP18973295 1995-07-04

Publications (1)

Publication Number Publication Date
WO1997000975A1 true WO1997000975A1 (en) 1997-01-09

Family

ID=26485382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002111 WO1997000975A1 (en) 1995-06-23 1995-10-13 Method of continuous annealing of cold rolled steel plate and equipment therefor

Country Status (5)

Country Link
EP (1) EP0779370A1 (en)
KR (1) KR100221789B1 (en)
CN (1) CN1158641A (en)
BR (1) BR9508762A (en)
WO (1) WO1997000975A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062219A (en) * 2013-11-04 2016-10-26 萨穆珀独资股份有限公司 Resistance annealing furnace for annealing a metal wire, strand, string, wire rod or strap
CN106133156A (en) * 2013-11-04 2016-11-16 萨穆珀独资股份有限公司 For making metal wire, twisted wire, filament, wire rod or the electric resistance annealing stove of band annealing
JPWO2022209364A1 (en) * 2021-03-30 2022-10-06

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012934A3 (en) * 1999-10-13 2001-06-05 Ct Rech Metallurgiques Asbl Manufacturing method of steel strip for cold rolled deep.
KR100928820B1 (en) * 2002-12-28 2009-11-27 주식회사 포스코 Method for removing oxide film of hot-rolled annealed steel sheet for manufacturing electrical steel sheet, manufacturing method and apparatus for hot-rolled annealed steel sheet for electrical steel sheet manufacturing
CN100457926C (en) * 2006-09-08 2009-02-04 南京钢铁股份有限公司 High-strength low-alloy steel temperature control plate blank acceleration cooling system
US9290823B2 (en) * 2010-02-23 2016-03-22 Air Products And Chemicals, Inc. Method of metal processing using cryogenic cooling
JP4840518B2 (en) 2010-02-24 2011-12-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN102747213B (en) * 2011-04-22 2014-04-30 宝山钢铁股份有限公司 Cooling method for continuous heat treatment of high-strength steel
KR101489425B1 (en) 2012-12-28 2015-02-03 주식회사 포스코 Multi stage rapid cooling apparatus for heat treatment of steel strip
KR101568547B1 (en) * 2013-12-25 2015-11-11 주식회사 포스코 Equipment for continuous annealing strip and method of continuous annealing same
CN104357770A (en) * 2014-11-20 2015-02-18 安徽省新方尊铸造科技有限公司 Aluminum casting heat treatment furnace by using PTC (positive temperature coefficient) ceramic auxiliary heating
CN108148956B (en) * 2016-12-02 2019-10-25 宝山钢铁股份有限公司 A kind of jumbo jet heating equipment of continuous annealing unit
KR102410519B1 (en) * 2017-07-25 2022-06-17 현대자동차주식회사 Continuous annealing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156778A (en) * 1980-05-02 1981-12-03 Nippon Steel Corp Manufacture of continuously annealed steel strip with superior suitability to phosphating and superior corrosion resistance after coating
JPS5716133A (en) * 1980-07-03 1982-01-27 Nippon Steel Corp Continuous annealer for thin steel strip
JPS5794524A (en) * 1980-12-04 1982-06-12 Nippon Kokan Kk <Nkk> Method for continuous annealing
JPS59577B2 (en) * 1979-08-13 1984-01-07 新日本製鐵株式会社 Short-time continuous annealing method for cold-rolled steel strip
JPH02166234A (en) * 1988-12-20 1990-06-26 Sumitomo Metal Ind Ltd Method for continuously annealing steel sheet
JPH0790391A (en) * 1993-09-14 1995-04-04 Nippon Steel Corp Method for continuously annealing steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59577B2 (en) * 1979-08-13 1984-01-07 新日本製鐵株式会社 Short-time continuous annealing method for cold-rolled steel strip
JPS56156778A (en) * 1980-05-02 1981-12-03 Nippon Steel Corp Manufacture of continuously annealed steel strip with superior suitability to phosphating and superior corrosion resistance after coating
JPS5716133A (en) * 1980-07-03 1982-01-27 Nippon Steel Corp Continuous annealer for thin steel strip
JPS5794524A (en) * 1980-12-04 1982-06-12 Nippon Kokan Kk <Nkk> Method for continuous annealing
JPH02166234A (en) * 1988-12-20 1990-06-26 Sumitomo Metal Ind Ltd Method for continuously annealing steel sheet
JPH0790391A (en) * 1993-09-14 1995-04-04 Nippon Steel Corp Method for continuously annealing steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0779370A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062219A (en) * 2013-11-04 2016-10-26 萨穆珀独资股份有限公司 Resistance annealing furnace for annealing a metal wire, strand, string, wire rod or strap
CN106133156A (en) * 2013-11-04 2016-11-16 萨穆珀独资股份有限公司 For making metal wire, twisted wire, filament, wire rod or the electric resistance annealing stove of band annealing
CN106133156B (en) * 2013-11-04 2018-10-19 萨穆珀独资股份有限公司 For making metal wire, twisted wire, filament, wire rod or the electric resistance annealing stove of band annealing
JPWO2022209364A1 (en) * 2021-03-30 2022-10-06
WO2022209364A1 (en) * 2021-03-30 2022-10-06 Jfeスチール株式会社 Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method

Also Published As

Publication number Publication date
CN1158641A (en) 1997-09-03
KR100221789B1 (en) 1999-09-15
KR970705648A (en) 1997-10-09
EP0779370A4 (en) 1997-07-30
EP0779370A1 (en) 1997-06-18
BR9508762A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP6797901B2 (en) Yield strength 600MPa class High elongation Aluminum Zinc Hot-dip galvanized steel sheet and color-plated steel sheet manufacturing method
JP5130733B2 (en) Continuous annealing equipment
CN102080192B (en) Low-yield ratio, high-plasticity, ultrafine-grain and high-strength steel and manufacturing method thereof
WO1997000975A1 (en) Method of continuous annealing of cold rolled steel plate and equipment therefor
CN106715726A (en) Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
US11649520B2 (en) Continuous hot dip galvanizing apparatus
CN107923013A (en) High-strength steel sheet and its manufacture method
JP7388570B2 (en) Continuous annealing equipment, continuous hot-dip galvanizing equipment, and steel plate manufacturing method
CN103757536B (en) The high-strength tie of thin strap continuous casting economy of tensile strength &gt;=1100MPa and manufacture method thereof
CN103757533B (en) The high-strength tie of thin strap continuous casting economy of tensile strength &gt;=1000MPa and manufacture method thereof
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JPH093552A (en) Continuous hot dip galvanizing equipment for effectively producing hot dip galvanized steel sheet
CN108914014A (en) Cold-rolled high-strength hot-dip galvanizing sheet steel and preparation method
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
JP2954339B2 (en) Continuous annealing furnace
JP5556483B2 (en) Continuous annealing method for steel sheet using continuous annealing furnace
EP3395964A1 (en) Method and device for manufacturing martensite-containing steel sheet
WO2023181820A1 (en) Continuous annealing apparatus, continuous hot dip galvanization apparatus, and method for producing steel sheet
WO2024070278A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
KR910001607B1 (en) Continous annealing extra-low carbon steel
JPH0762447A (en) Manufacture of cold rolled steel sheet for high quality working
KR20150074862A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2954340B2 (en) Continuous carburizing / nitriding furnace and carburizing / nitriding method
JPH01188630A (en) Manufacture of cold rolled steel sheet having superior press formability
KR950003538B1 (en) Method of manufacturing arc welding bar wire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195187.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995934304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970701147

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995934304

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701147

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970701147

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1995934304

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995934304

Country of ref document: EP