JPH05102060A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPH05102060A
JPH05102060A JP3259001A JP25900191A JPH05102060A JP H05102060 A JPH05102060 A JP H05102060A JP 3259001 A JP3259001 A JP 3259001A JP 25900191 A JP25900191 A JP 25900191A JP H05102060 A JPH05102060 A JP H05102060A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
substrate
laser light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3259001A
Other languages
Japanese (ja)
Other versions
JP3186114B2 (en
Inventor
Hiroshi Tanabe
浩 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25900191A priority Critical patent/JP3186114B2/en
Publication of JPH05102060A publication Critical patent/JPH05102060A/en
Application granted granted Critical
Publication of JP3186114B2 publication Critical patent/JP3186114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce an irregularity in TFT characteristics by annealing a semiconductor thin film by continuously scanning a pulse laser light, and incorporating no side parallel to the scanning direction in a condensing shape of a pulse laser light irradiating surface. CONSTITUTION:A method for manufacturing a semiconductor thin film having an annealing step comprises the steps of moving an X-Y stage 308 and scanning the surface of a substrate with a pulse laser light. In this case, the light is condensed in a square shape, and the substrate 307 is moved in the direction of an arrow 101 while holding an angle of 45 deg. to one side of a square 100 to be formed by the light. Then, all the sides of the condensing shape to be formed by the light are not parallel to the scanning direction 101. The number of forming boundaries between irradiated surfaces and nonirradiated surfaces and regions formed repeatedly continuously at the same position of the substrate 307 are reduced. Thus, a TFT having a small irregularity in characteristics can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体薄膜の製造方法に
関するものであり、とくに液晶ディスプレイ、イメージ
センサ等に応用可能な高速応答性を有する薄膜トランジ
スタ用半導体薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film, and more particularly to a method for manufacturing a semiconductor thin film for a thin film transistor having a high-speed response applicable to a liquid crystal display, an image sensor and the like.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイ(LCD)用周
辺駆動回路などの高速動作を必要とする薄膜集積回路へ
の応用を目的として、多結晶Si薄膜を用いた薄膜トラ
ンジスタの開発が進められている。上述の多結晶Si薄
膜は、合成石英ガラスなどの基板上に、化学的気相堆積
法、固相成長法、光照射による結晶成長法等を用いて形
成される。なかでもXeC1エキシマレーザなどの紫外
パルスレーザを用いたレーザアニール工程を有する半導
体薄膜の製造法は、ソーダライムガラスなどの低融点基
板上に高移動度の薄膜トランジスタを作製できる方法と
して注目されている。エキシマレーザは数十nsec程
度の超短パルスレーザであるため、薄膜表面のみの溶融
再結晶化を可能とし、基板への熱的な影響を小さく抑え
ることができるからである。
2. Description of the Related Art In recent years, a thin film transistor using a polycrystalline Si thin film has been developed for the purpose of application to a thin film integrated circuit requiring a high speed operation such as a peripheral drive circuit for a liquid crystal display (LCD). The above-mentioned polycrystalline Si thin film is formed on a substrate such as synthetic quartz glass by a chemical vapor deposition method, a solid phase growth method, a crystal growth method by light irradiation, or the like. Above all, a method of manufacturing a semiconductor thin film having a laser annealing step using an ultraviolet pulse laser such as XeC1 excimer laser has attracted attention as a method of manufacturing a thin film transistor having high mobility on a low melting point substrate such as soda lime glass. This is because the excimer laser is an ultra-short pulse laser of about several tens of nanoseconds, so that only the thin film surface can be melted and recrystallized, and the thermal influence on the substrate can be suppressed to a small level.

【0003】ところで、LCD用周辺駆動回路などの長
尺デバイスを形成するためには、LSI等に比べ広範囲
における均一性が要求される。その点において、エキシ
マレーザはビーム内に強度分布を有すること、及びビー
ムサイズに対し大きいデバイスを形成する場合ビームの
走査が必要であること、が均一な半導体薄膜を形成する
上での障壁となっている。前者のビーム内強度分布の均
一化に関しては、光学レンズ群を用いたレーザ光の分散
・集光による方法が知られている。この時フライアイレ
ンズと呼ばれる正方形の断面を有するレンズアレイが用
いられるため、強度分布が平滑化されると同時にレーザ
光は正方形に集光され、均一なレーザ照射が行われる。
後者のビーム走査は、レーザの被照射面と非被照射面と
の境界に発生する急激な温度勾配による半導体薄膜微細
構造の不連続性が、面内の均一性を劣化させる。
By the way, in order to form a long device such as an LCD peripheral drive circuit, uniformity in a wider range is required as compared with an LSI or the like. In that respect, the fact that the excimer laser has an intensity distribution in the beam and that scanning of the beam is necessary when forming a device larger than the beam size is a barrier in forming a uniform semiconductor thin film. ing. Regarding the former homogenization of the intensity distribution within the beam, a method is known in which the laser light is dispersed / focused using an optical lens group. At this time, since a lens array having a square cross-section called a fly-eye lens is used, the intensity distribution is smoothed, and at the same time, the laser light is focused into a square and uniform laser irradiation is performed.
In the latter beam scanning, the discontinuity of the semiconductor thin film microstructure due to the rapid temperature gradient generated at the boundary between the irradiated surface and the non-irradiated surface of the laser deteriorates the in-plane uniformity.

【0004】[0004]

【発明が解決しようとする課題】上述のようにレーザア
ニール法においては、図2に示すように、基板を矢印
(201)方向に移動させることによってレーザ光が集
光される正方形の1辺に平行に走査される。したがっ
て、パルスレーザを重畳し、走査方向と平行な境界(2
02)の形成が同一箇所に連続する場合、薄膜構造の変
質がより顕著に進む。したがってTFTの製造工程にお
けるチャネルの形成がこの不連続部分に相当する時TF
T電子移動度が60(cm2 /V・sec)以下とな
り、ビームの中心を用いたレーザアニールによるTFT
特性(120(cm2 /V・sec))にたいし、バラ
ツキ及び劣化が大きくなるという問題があった。
As described above, in the laser annealing method, as shown in FIG. 2, by moving the substrate in the direction of the arrow (201), one side of the square on which the laser light is focused is formed. Scanned in parallel. Therefore, the pulse laser is superimposed and the boundary (2
When the formation of No. 02) continues at the same location, the deterioration of the thin film structure proceeds more significantly. Therefore, when the channel formation in the TFT manufacturing process corresponds to this discontinuity, TF
TFT with T electron mobility of 60 (cm 2 / V · sec) or less and laser annealing using the center of the beam
The characteristics (120 (cm 2 / V · sec)) have a problem that variations and deterioration are large with respect to the characteristics (120 (cm 2 / V · sec)).

【0005】[0005]

【課題を解決するための手段】基板上に形成された半導
体薄膜のアニール工程を有する半導体薄膜製造方法にお
いて、上記半導体薄膜のアニールがパルスレーザ光の連
続的な走査によるものであり、上記パルスレーザ光の照
射面における集光形状が走査方向と平行な辺を有さない
ことを特徴とする半導体薄膜の製造方法。
In a method of manufacturing a semiconductor thin film having a step of annealing a semiconductor thin film formed on a substrate, the annealing of the semiconductor thin film is performed by continuous scanning with pulse laser light, and the pulse laser is used. A method of manufacturing a semiconductor thin film, characterized in that the light-converging shape on the irradiation surface does not have a side parallel to the scanning direction.

【0006】[0006]

【作用】本発明の方法によれば、走査方向に平行にレー
ザ被照射部分と非被照射部分との境界が形成されること
がなくなるため、重畳による変質の進行を阻止できる。
境界の形成、即ち膜構造の不連続性は、ビーム内におけ
る溶融・冷却プロセスとビーム周辺部における溶融・冷
却プロセスとが異なるために生じている。ビーム内にお
いては、Siに吸収された熱エネルギーが主に基板方向
に方散され冷却されるが、ビーム周辺部においては基板
方向ばかりでなく横方向への熱の拡散が生じるため最高
到達温度、及び冷却形態が異なる。従って、いったんレ
ーザ照射されたビーム周辺部は、ビーム内とも非被照射
部分とも異なる特性(吸収係数、微細構造等)を有す
る。この部分にさらにレーザ照射を行った場合、溶融す
るに十分なエネルギーの照射であれば均一な構造を形成
することができるが、再びビームの周辺部が照射される
と、いったん形成された構造とも異なる構造に変化す
る。このようにして、ビーム周辺部による変質が進んで
行くが、周辺部の重畳を防ぐことにより、変質の進行を
阻止することができる。
According to the method of the present invention, the boundary between the laser-irradiated portion and the non-irradiated portion is not formed parallel to the scanning direction, so that the deterioration due to superposition can be prevented.
The boundary formation, that is, the discontinuity of the film structure is caused by the difference between the melting / cooling process in the beam and the melting / cooling process in the periphery of the beam. In the beam, the thermal energy absorbed by Si is mainly diffused in the substrate direction and cooled, but in the peripheral part of the beam, not only the substrate direction but also the lateral direction causes the diffusion of heat, so that the maximum attainable temperature, And the cooling mode is different. Therefore, the peripheral portion of the beam that has been once laser-irradiated has characteristics (absorption coefficient, fine structure, etc.) that are different from those in the beam and the non-irradiated portion. When laser irradiation is further performed on this portion, a uniform structure can be formed by irradiation with energy sufficient for melting, but when the peripheral portion of the beam is irradiated again, the structure is not formed once. Change to a different structure. In this way, although the deterioration due to the peripheral portion of the beam proceeds, the deterioration can be prevented by preventing the peripheral portion from overlapping.

【0007】[0007]

【実施例】実施例を以下に示す。図3に示すようにエキ
シマレーザ装置(301)から発振されるXeClエキ
シマレーザ光(波長308nm)は、強度分布を平滑化
するために設けられた光学レンズ群による光強度平滑化
装置(305)及びレーザ光の向きを変化させるために
設けられたミラー(302、303、304)を介し、
基板(307)が配置された真空チャンバ(309)内
に導入される。比照射材料として、高周波スパッタリン
グ法により堆積されたアモルファスSi薄膜(厚さ20
0nm)が基板上に形成されており、XYステージ(3
08)の移動と共に、レーザ光が基板表面に走査され
る。この時、基板表面に到達するレーザ光は正方形状に
集光され、図1に示すように、レーザ光(100)が形
成する正方形の1辺に対し45度の角度を保ちながら基
板が矢印(101)方向に移動する。この時の照射エネ
ルギー密度280(mJ/cm2 )、ビームサイズ3m
m×3mm、照射レート20(ショット/cm)であ
る。
EXAMPLES Examples are shown below. As shown in FIG. 3, the XeCl excimer laser light (wavelength 308 nm) oscillated from the excimer laser device (301) has a light intensity smoothing device (305) and an optical lens group provided by an optical lens group provided to smooth the intensity distribution. Via mirrors (302, 303, 304) provided to change the direction of the laser beam,
The substrate (307) is introduced into the vacuum chamber (309). As a specific irradiation material, an amorphous Si thin film (thickness 20
0 nm) is formed on the substrate, and the XY stage (3
08), the laser beam is scanned on the substrate surface. At this time, the laser light that reaches the surface of the substrate is condensed into a square shape, and as shown in FIG. 1, the substrate shows an arrow mark while keeping an angle of 45 degrees with respect to one side of the square formed by the laser light (100). 101) direction. Irradiation energy density at this time 280 (mJ / cm 2 ), beam size 3 m
m × 3 mm, irradiation rate 20 (shot / cm).

【0008】このようにして行われるアニール工程は、
同一箇所におけるレーザビーム周辺部による連続したア
ニール回数が6回から1回(交差部分)に、その交差部
分の面積も連続した直線からある間隔をおいた点(面積
比10%以下)に減少する。以上のように形成される多
結晶Si薄膜をTFT作製に応用した結果、チャネルの
形成が前記交差部分に相当するTFTの電子移動度のば
らつきは、ビーム中央に相当するTFTのそれに対し2
0%以内となった。
The annealing process performed in this way is
The number of consecutive annealings by the laser beam peripheral portion at the same location is reduced from 6 to 1 (intersection), and the area of the intersection is also reduced from a continuous straight line to a point (area ratio 10% or less). .. As a result of applying the polycrystalline Si thin film formed as described above to the fabrication of a TFT, the variation in electron mobility of the TFT corresponding to the intersection where the channel is formed is 2 times that of the TFT corresponding to the beam center.
It was within 0%.

【0009】[0009]

【発明の効果】以上説明したように本発明により、レー
ザ光により形成される集光形状のいずれの辺においても
走査方向と平行でなく、基板上の同一箇所において繰り
返し連続して照射・非照射面の境界が形成される回数及
び領域が減少するため、より特性のバラツキの少ないT
FTを形成し得る半導体薄膜の製造が行われた。
As described above, according to the present invention, neither side of the converging shape formed by laser light is parallel to the scanning direction, and irradiation / non-irradiation is repeated continuously at the same position on the substrate. Since the number of times a surface boundary is formed and the area are reduced, T with less variation in characteristics can be obtained.
A semiconductor thin film capable of forming an FT has been manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のレーザ光の照射方法を示す
図。
FIG. 1 is a diagram showing a laser light irradiation method according to an embodiment of the present invention.

【図2】従来のレーザ光照射方法を示す図。FIG. 2 is a diagram showing a conventional laser light irradiation method.

【図3】本発明の実施例におけるレーザ光照射装置のブ
ロック図。
FIG. 3 is a block diagram of a laser light irradiation apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 基板移動方向 201 基板移動方向 202 ビーム周辺部が連続的に照射される部分 301 XeClエキシマレーザ装置 302 光学ミラー 303 光学ミラー 304 光学ミラー 305 光強度平滑化装置 307 基板 308 XYステージ 309 真空チャンバ 101 Substrate moving direction 201 Substrate moving direction 202 Portion where beam peripheral part is continuously irradiated 301 XeCl excimer laser device 302 Optical mirror 303 Optical mirror 304 Optical mirror 305 Light intensity smoothing device 307 Substrate 308 XY stage 309 Vacuum chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された半導体薄膜のアニー
ル工程を有する半導体薄膜の製造方法において、上記半
導体薄膜のアニールがパルスレーザ光の連続的な走査に
よるものであり、上記パルスレーザ光の照射面における
集光形状が走査方向と平行な辺を有さないことを特徴と
する半導体薄膜の製造方法。
1. A method of manufacturing a semiconductor thin film, comprising a step of annealing a semiconductor thin film formed on a substrate, wherein annealing of the semiconductor thin film is performed by continuous scanning with pulsed laser light, and irradiation with the pulsed laser light is performed. A method of manufacturing a semiconductor thin film, characterized in that the light collecting shape on the surface does not have a side parallel to the scanning direction.
JP25900191A 1991-10-07 1991-10-07 Semiconductor thin film manufacturing method Expired - Lifetime JP3186114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25900191A JP3186114B2 (en) 1991-10-07 1991-10-07 Semiconductor thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25900191A JP3186114B2 (en) 1991-10-07 1991-10-07 Semiconductor thin film manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000393158A Division JP3534069B2 (en) 2000-12-25 2000-12-25 Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH05102060A true JPH05102060A (en) 1993-04-23
JP3186114B2 JP3186114B2 (en) 2001-07-11

Family

ID=17327980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25900191A Expired - Lifetime JP3186114B2 (en) 1991-10-07 1991-10-07 Semiconductor thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3186114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367923A (en) * 2001-06-11 2002-12-20 Japan Steel Works Ltd:The Irradiation method of laser beam, and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367923A (en) * 2001-06-11 2002-12-20 Japan Steel Works Ltd:The Irradiation method of laser beam, and its device

Also Published As

Publication number Publication date
JP3186114B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US6755909B2 (en) Method of crystallizing amorphous silicon using a mask
US6590228B2 (en) LCD device with optimized channel characteristics
TWI524384B (en) High throughput crystallization of thin films
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
KR100542645B1 (en) Method of forming semiconductor thin-film and laser apparatus used therefor
JP2001007045A (en) Optical system for laser thermal treatment and laser thermal treatment apparatus
JP2002110544A (en) Thin film crystal growth by laser annealing
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
JP3054310B2 (en) Laser processing method for semiconductor device
JP2004311906A (en) Laser processing device and laser processing method
JPH01256114A (en) Laser annealing method
JP2001053021A (en) Semiconductor thin film manufacturing equipment
KR100674061B1 (en) Semiconductor devices and methods of manufacture thereof
KR20050065335A (en) Crystallization apparatus and method, manufacturing method of electronic device, electronic device, and optical modulation element
JPH118205A (en) Manufacture of semiconductor device and laser beam irradiation device
US20030148566A1 (en) Production method for flat panel display
JP2001274088A (en) Crystallization treatment of semiconductor film region on substrate and device being manufactured thereby
JP2004153232A (en) Method for manufacturing semiconductor element and semiconductor element manufactured by the method
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPH08213341A (en) Laser annealing and irradiation with laser beam
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP3186114B2 (en) Semiconductor thin film manufacturing method
JP2003243322A (en) Method of manufacturing semiconductor device
JP3534069B2 (en) Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus
JP4417613B2 (en) Method and apparatus for crystallizing semiconductor thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11