JP3534069B2 - Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus - Google Patents

Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus

Info

Publication number
JP3534069B2
JP3534069B2 JP2000393158A JP2000393158A JP3534069B2 JP 3534069 B2 JP3534069 B2 JP 3534069B2 JP 2000393158 A JP2000393158 A JP 2000393158A JP 2000393158 A JP2000393158 A JP 2000393158A JP 3534069 B2 JP3534069 B2 JP 3534069B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
manufacturing
laser light
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000393158A
Other languages
Japanese (ja)
Other versions
JP2001223167A (en
Inventor
浩 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000393158A priority Critical patent/JP3534069B2/en
Publication of JP2001223167A publication Critical patent/JP2001223167A/en
Application granted granted Critical
Publication of JP3534069B2 publication Critical patent/JP3534069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体薄膜、その製造方
ならびに半導体薄膜の製造装置に関するものであり、
とくに液晶ディスプレイ、イメージセンサ等に応用可能
な高速応答性を有する薄膜トランジスタ用半導体薄膜
の製造方法ならびに半導体薄膜の製造装置に関する。
The present invention relates is related to the semiconductor thin film manufacturing apparatus of a manufacturing method and a semiconductor thin film of that,
Especially, semiconductor thin film for thin film transistor having high-speed response, which can be applied to liquid crystal displays, image sensors, etc. ,
Its related manufacturing apparatus manufacturing method and a semiconductor thin film.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイ(LCD)用周
辺駆動回路などの高速動作を必要とする薄膜集積回路へ
の応用を目的として、多結晶Si薄膜を用いた薄膜トラ
ンジスタの開発が進められている。上述の多結晶Si薄
膜は、合成石英ガラスなどの基板上に、化学的気相堆積
法、固相成長法、光照射による結晶成長法等を用いて形
成される。なかでもXeC1エキシマレーザなどの紫外
パルスレーザを用いたレーザアニール工程を有する半導
体薄膜の製造法は、ソーダライムガラスなどの低融点基
板上に高移動度の薄膜トランジスタを作製できる方法と
して注目されている。エキシマレーザは数十nsec程
度の超短パルスレーザであるため、薄膜表面のみの溶融
再結晶化を可能とし、基板への熱的な影響を小さく抑え
ることができるからである。
2. Description of the Related Art In recent years, a thin film transistor using a polycrystalline Si thin film has been developed for the purpose of application to a thin film integrated circuit requiring high speed operation such as a peripheral drive circuit for a liquid crystal display (LCD). The above-mentioned polycrystalline Si thin film is formed on a substrate such as synthetic quartz glass by a chemical vapor deposition method, a solid phase growth method, a crystal growth method by light irradiation, or the like. Above all, a method of manufacturing a semiconductor thin film having a laser annealing step using an ultraviolet pulse laser such as an XeC1 excimer laser attracts attention as a method capable of manufacturing a thin film transistor having high mobility on a low melting point substrate such as soda lime glass. This is because the excimer laser is an ultra-short pulse laser of about several tens of nanoseconds, so that only the thin film surface can be melted and recrystallized, and the thermal influence on the substrate can be suppressed to a small level.

【0003】ところで、LCD用周辺駆動回路などの長
尺デバイスを形成するためには、LSI等に比べ広範囲
における均一性が要求される。その点において、エキシ
マレーザはビーム内に強度分布を有すること、及びビー
ムサイズに対し大きいデバイスを形成する場合ビームの
走査が必要であること、が均一な半導体薄膜を形成する
上での障壁となっている。前者のビーム内強度分布の均
一化に関しては、光学レンズ群を用いたレーザ光の分散
・集光による方法が知られている。この時フライアイレ
ンズと呼ばれる正方形の断面を有するレンズアレイが用
いられるため、強度分布が平滑化されると同時にレーザ
光は正方形に集光され、均一なレーザ照射が行われる。
後者のビーム走査は、レーザの被照射面と非被照射面と
の境界に発生する急激な温度勾配による半導体薄膜微細
構造の不連続性が、面内の均一性を劣化させる。
By the way, in order to form a long device such as an LCD peripheral drive circuit, uniformity in a wider range is required as compared with an LSI or the like. In that respect, the fact that the excimer laser has an intensity distribution in the beam and that the beam needs to be scanned when forming a device larger than the beam size is a barrier in forming a uniform semiconductor thin film. ing. Regarding the former homogenization of the intensity distribution in the beam, a method of dispersing and condensing laser light using an optical lens group is known. At this time, since a lens array having a square cross-section called a fly-eye lens is used, the intensity distribution is smoothed, and at the same time, the laser light is focused into a square and uniform laser irradiation is performed.
In the latter beam scanning, the discontinuity of the semiconductor thin film microstructure due to the rapid temperature gradient generated at the boundary between the irradiated surface and the non-irradiated surface of the laser deteriorates the in-plane uniformity.

【0004】[0004]

【発明が解決しようとする課題】上述のようにレーザア
ニール法においては、図2に示すように、基板を矢印
(201)方向に移動させることによってレーザ光が集
光される正方形の1辺に平行に走査される。したがっ
て、パルスレーザを重畳し、走査方向と平行な境界(2
02)の形成が同一箇所に連続する場合、薄膜構造の変
質がより顕著に進む。したがってTFTの製造工程にお
けるチャネルの形成がこの不連続部分に相当する時TF
T電子移動度が60(cm2 /V・sec)以下とな
り、ビームの中心を用いたレーザアニールによるTFT
特性(120(cm2 /V・sec))にたいし、バラ
ツキ及び劣化が大きくなるという問題があった。
As described above, in the laser annealing method, as shown in FIG. 2, by moving the substrate in the direction of the arrow (201), one side of the square on which the laser light is focused is formed. Scanned in parallel. Therefore, the pulse laser is superimposed and the boundary (2
When the formation of (02) continues at the same location, the deterioration of the thin film structure proceeds more significantly. Therefore, when the channel formation in the TFT manufacturing process corresponds to this discontinuity, TF
TFT with T electron mobility of 60 (cm 2 / V · sec) or less and laser annealing using the center of the beam
There was a problem that the characteristics (120 (cm 2 / V · sec)) were greatly varied and deteriorated with respect to the characteristics.

【0005】本発明は、基板上に形成された半導体薄膜
のアニール工程を有する半導体薄膜の製造方法におい
て、上記半導体薄膜のアニールがパルスレーザ光の連続
的な走査によるものであり、上記パルスレーザ光の照射
面における集光形状が四辺形で、かつ、四辺形のいずれ
の辺も走査方向と所定の角度を有することを特徴とする
半導体薄膜の製造方法である。
According to the present invention, in a method for manufacturing a semiconductor thin film having a step of annealing a semiconductor thin film formed on a substrate, the annealing of the semiconductor thin film is performed by continuous scanning of pulse laser light, and the pulse laser light is used. in condensing shape quadrilateral in the irradiation surface, and any quadrilateral
Even sides is a manufacturing method of a semiconductor thin film characterized Rukoto that having a scanning direction at a predetermined angle.

【0006】[0006]

【作用】本発明の方法によれば、走査方向に平行にレー
ザ被照射部分と非被照射部分との境界が形成されること
がなくなるため、重畳による変質の進行を阻止できる。
境界の形成、即ち膜構造の不連続性は、ビーム内におけ
る溶融・冷却プロセスとビーム周辺部における溶融・冷
却プロセスとが異なるために生じている。ビーム内にお
いては、Siに吸収された熱エネルギーが主に基板方向
に方散され冷却されるが、ビーム周辺部においては基板
方向ばかりでなく横方向への熱の拡散が生じるため最高
到達温度、及び冷却形態が異なる。従って、いったんレ
ーザ照射されたビーム周辺部は、ビーム内とも非被照射
部分とも異なる特性(吸収係数、微細構造等)を有す
る。この部分にさらにレーザ照射を行った場合、溶融す
るに十分なエネルギーの照射であれば均一な構造を形成
することができるが、再びビームの周辺部が照射される
と、いったん形成された構造とも異なる構造に変化す
る。このようにして、ビーム周辺部による変質が進んで
行くが、周辺部の重畳を防ぐことにより、変質の進行を
阻止することができる。
According to the method of the present invention, since the boundary between the laser-irradiated portion and the non-irradiated portion is not formed in parallel with the scanning direction, the progress of alteration due to superposition can be prevented.
The boundary formation, that is, the discontinuity of the film structure, occurs because the melting / cooling process in the beam and the melting / cooling process in the periphery of the beam are different. In the beam, the thermal energy absorbed by Si is mainly diffused in the substrate direction and cooled, but in the peripheral part of the beam, not only the substrate direction but also the lateral direction causes the diffusion of heat. And the cooling mode is different. Therefore, the peripheral portion of the beam that has been once irradiated with the laser has different characteristics (absorption coefficient, fine structure, etc.) from the inside of the beam and the non-irradiated part. When laser irradiation is further performed on this portion, a uniform structure can be formed by irradiation with energy sufficient for melting, but when the peripheral portion of the beam is irradiated again, the structure is not formed once. Change to a different structure. In this way, although the alteration due to the peripheral portion of the beam progresses, it is possible to prevent the alteration from occurring by preventing the overlapping of the peripheral portion.

【0007】[0007]

【実施例】実施例を以下に示す。図3に示すようにエキ
シマレーザ装置(301)から発振されるXeClエキ
シマレーザ光(波長308nm)は、強度分布を平滑化
するために設けられた光学レンズ群による光強度平滑化
装置(305)及びレーザ光の向きを変化させるために
設けられたミラー(302、303、304)を介し、
基板(307)が配置された真空チャンバ(309)内
に導入される。比照射材料として、高周波スパッタリン
グ法により堆積されたアモルファスSi薄膜(厚さ20
0nm)が基板上に形成されており、XYステージ(3
08)の移動と共に、レーザ光が基板表面に走査され
る。この時、基板表面に到達するレーザ光は正方形状に
集光され、図1に示すように、レーザ光(100)が形
成する正方形の1辺に対し45度の角度を保ちながら基
板が矢印(101)方向に移動する。この時の照射エネ
ルギー密度280(mJ/cm2 )、ビームサイズ3m
m×3mm、照射レート20(ショット/cm)であ
る。
EXAMPLES Examples are shown below. As shown in FIG. 3, the XeCl excimer laser light (wavelength 308 nm) oscillated from the excimer laser device (301) has a light intensity smoothing device (305) by an optical lens group provided to smooth the intensity distribution, and Via mirrors (302, 303, 304) provided to change the direction of the laser beam,
It is introduced into the vacuum chamber (309) in which the substrate (307) is placed. As a specific irradiation material, an amorphous Si thin film (thickness 20
0 nm) is formed on the substrate, and the XY stage (3
08), the laser beam is scanned on the substrate surface. At this time, the laser light that reaches the surface of the substrate is condensed into a square shape, and as shown in FIG. 1, the substrate has an arrow ( 101) direction. Irradiation energy density at this time 280 (mJ / cm2), beam size 3m
m × 3 mm, irradiation rate 20 (shot / cm).

【0008】このようにして行われるアニール工程は、
同一箇所におけるレーザビーム周辺部による連続したア
ニール回数が6回から1回(交差部分)に、その交差部
分の面積も連続した直線からある間隔をおいた点(面積
比10%以下)に減少する。以上のように形成される多
結晶Si薄膜をTFT作製に応用した結果、チャネルの
形成が前記交差部分に相当するTFTの電子移動度のば
らつきは、ビーム中央に相当するTFTのそれに対し2
0%以内となった。
The annealing process performed in this way is
The number of consecutive annealings by the laser beam peripheral portion at the same location is reduced from 6 to 1 (intersection), and the area of the intersection is also reduced from a continuous straight line to a point (area ratio 10% or less). . As a result of applying the polycrystalline Si thin film formed as described above to the fabrication of a TFT, the variation in the electron mobility of the TFT corresponding to the intersection where the channel is formed is 2 times that of the TFT corresponding to the beam center.
It was within 0%.

【0009】[0009]

【発明の効果】以上説明したように本発明により、レー
ザ光により形成される集光形状のいずれの辺においても
走査方向と平行でなく、基板上の同一箇所において繰り
返し連続して照射・非照射面の境界が形成される回数及
び領域が減少するため、より特性のバラツキの少ないT
FTを形成し得る半導体薄膜の製造が行われた。
As described above, according to the present invention, neither side of the converging shape formed by laser light is parallel to the scanning direction, and irradiation / non-irradiation is repeated continuously at the same position on the substrate. Since the number of times a surface boundary is formed and the area are reduced, T with less variation in characteristics can be obtained.
A semiconductor thin film capable of forming an FT has been manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例のレーザ光の照射方法を示す
図。
FIG. 1 is a diagram showing a laser light irradiation method according to an embodiment of the present invention.

【図2】 従来のレーザ光照射方法を示す図。FIG. 2 is a diagram showing a conventional laser light irradiation method.

【図3】 本発明の実施例におけるレーザ光照射装置の
ブロック図。
FIG. 3 is a block diagram of a laser light irradiation apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 基板移動方向 201 基板移動方向 202 ビーム周辺部が連続的に照射される部分 301 XeClエキシマレーザ装置 302 光学ミラー 303 光学ミラー 304 光学ミラー 305 光強度平滑化装置 307 基板 308 XYステージ 309 真空チャンバ 101 substrate movement direction 201 substrate movement direction 202 Area where the beam periphery is continuously irradiated 301 XeCl excimer laser device 302 optical mirror 303 Optical mirror 304 optical mirror 305 Light intensity smoothing device 307 substrate 308 XY stage 309 vacuum chamber

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/20 H01L 21/268 H01L 21/336 H01L 29/786 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/20 H01L 21/268 H01L 21/336 H01L 29/786

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成された半導体薄膜のアニー
ル工程を有する半導体薄膜の製造方法において、上記半
導体薄膜のアニールがパルスレーザ光の連続的な走査に
よるものであり、上記パルスレーザ光の照射面における
集光形状が四辺形で、かつ、四辺形のいずれの辺も走査
方向と所定の角度を有することを特徴とする半導体薄膜
の製造方法。
1. A method of manufacturing a semiconductor thin film, comprising a step of annealing a semiconductor thin film formed on a substrate, wherein annealing of the semiconductor thin film is performed by continuous scanning with pulsed laser light, and irradiation with the pulsed laser light is performed. The light collecting shape on the surface is a quadrilateral, and any side of the quadrilateral is scanned.
The method of manufacturing a semiconductor thin film characterized Rukoto which have a direction at a predetermined angle.
【請求項2】 強度分布が平滑化されたパルスレーザ光2. A pulsed laser beam having a smoothed intensity distribution.
の連続的な走査工程を経て形成される半導体薄膜であっIt is a semiconductor thin film formed through the continuous scanning process of
て、hand, 同一箇所において繰り返し、レーザビーム周辺部によるRepeat at the same location, depending on the laser beam periphery
照射・非照射面の境界が交差した部分が間隔を置いた点The point where the part where the boundaries of the irradiated and non-irradiated surfaces intersect is spaced
であることを特徴とする半導体薄膜。Is a semiconductor thin film.
【請求項3】 基板上に形成された半導体薄膜のアニー3. Annealing of a semiconductor thin film formed on a substrate
ル工程を有する半導体薄膜の製造方法において、上記半In the method for manufacturing a semiconductor thin film having a
導体薄膜のアニールが強度分布が平滑化されたパルスレAnnealing of the conductor thin film is performed with a pulsed laser whose intensity distribution is smoothed.
ーザ光の連続的な走査によるものであり、Laser light is continuously scanned, 上記パルスレーザビーム周辺部による連続したレーザ被A continuous laser beam is received by the peripheral portion of the pulsed laser beam.
照射部分と非被照射部分との境界が形成される回数がThe number of times the boundary between the irradiated part and the non-irradiated part is formed 11
回であり、その交差部が間隔を置いた点であることを特Is a turn and its intersections are spaced points.
徴とする半導体薄膜の製造方法。A method of manufacturing a semiconductor thin film.
【請求項4】 パルスレーザ光源、パルスレーザ光の強4. A pulse laser light source, the intensity of the pulse laser light
度分布を平滑化する光強度平滑化装置、Light intensity smoothing device to smooth the intensity distribution, XYXY ステージを有Have a stage
する半導体薄膜形成装置において、In the semiconductor thin film forming apparatus XYXY ステージの走査方向に対し平行なレーザ被照射部分とThe laser irradiation area parallel to the scanning direction of the stage
非被照射部分との境界が形成されることがないように、In order not to form a boundary with the non-irradiated part,
レーザ光の集光形状の外周が配置されることを特徴とすThe outer periphery of the condensing shape of the laser light is arranged
る半導体薄膜形成装置。Semiconductor thin film forming equipment.
JP2000393158A 2000-12-25 2000-12-25 Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus Expired - Lifetime JP3534069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393158A JP3534069B2 (en) 2000-12-25 2000-12-25 Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393158A JP3534069B2 (en) 2000-12-25 2000-12-25 Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25900191A Division JP3186114B2 (en) 1991-10-07 1991-10-07 Semiconductor thin film manufacturing method

Publications (2)

Publication Number Publication Date
JP2001223167A JP2001223167A (en) 2001-08-17
JP3534069B2 true JP3534069B2 (en) 2004-06-07

Family

ID=18859021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393158A Expired - Lifetime JP3534069B2 (en) 2000-12-25 2000-12-25 Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3534069B2 (en)

Also Published As

Publication number Publication date
JP2001223167A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
US6755909B2 (en) Method of crystallizing amorphous silicon using a mask
US6590228B2 (en) LCD device with optimized channel characteristics
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
US7481880B2 (en) Mask and method for crystallizing amorphous silicon
US20020197759A1 (en) Amorphous silicon crystallization method
KR100542645B1 (en) Method of forming semiconductor thin-film and laser apparatus used therefor
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
JP2002110544A (en) Thin film crystal growth by laser annealing
JP2004311906A (en) Laser processing device and laser processing method
JP2001053021A (en) Semiconductor thin film manufacturing equipment
JPH07249592A (en) Laser treatment method of semiconductor device
KR100674061B1 (en) Semiconductor devices and methods of manufacture thereof
JPH11102864A (en) Manufacturing of polycrystalline thin film
JP2001274088A (en) Crystallization treatment of semiconductor film region on substrate and device being manufactured thereby
US20030148566A1 (en) Production method for flat panel display
JP2001091970A (en) Method for manufacturing liquid crystal display panel
JP4769491B2 (en) Crystallization method, thin film transistor manufacturing method, thin film transistor, and display device
JP3534069B2 (en) Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus
US20060183303A1 (en) Crystallized semiconductor device, method for producing same and crystallization apparatus
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP3186114B2 (en) Semiconductor thin film manufacturing method
JP2004311618A (en) Laser annealing method, its equipment, and method for manufacturing mask and display device
KR20040077516A (en) Crystal growth apparatus and crystal growth method for semiconductor thin film
JP2624223B2 (en) Thin film integrated circuit
JP2001319892A (en) Laser annealing apparatus and method for fabricating transistor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8