JPH0489238A - High strength composite vibration-damping material - Google Patents

High strength composite vibration-damping material

Info

Publication number
JPH0489238A
JPH0489238A JP20546090A JP20546090A JPH0489238A JP H0489238 A JPH0489238 A JP H0489238A JP 20546090 A JP20546090 A JP 20546090A JP 20546090 A JP20546090 A JP 20546090A JP H0489238 A JPH0489238 A JP H0489238A
Authority
JP
Japan
Prior art keywords
intermediate layer
based metal
metal
vickers hardness
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20546090A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Murakawa
村川 義行
Takehiro Tanaka
田中 武宥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP20546090A priority Critical patent/JPH0489238A/en
Publication of JPH0489238A publication Critical patent/JPH0489238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide superior strength, resistance to wear and vibration attenuation properties by limiting an Fe metal component of an intermediate layer after the heat treatment of a composite vibration-damping material composed of three layers, providing specified Vickers hardness and internal friction Q<-1> and also providing an Fe metal on an outer layer with 360 Vickers hardness or more. CONSTITUTION:A composite vibration-damping material is composed of three layers, an Fe metal intermediate layer and outer Fe metal layers bonded with both faces of the intermediate layer. The material is heat treated for hardening the same at 800-1100 deg.C heating temperature and tempering at 150-550 deg.C temperature. The Fe metal of the intermediate layer is of 200 or more Vickers hardness and 3X10 or more internal friction Q<-1>. The Fe metal of the intermediate layer is an alloy composed of 5-25wt.% Cr, 0.3-5wt.% Al, and Fe and unavoidable impurities for the remaining portion. On the other hand, Fe metal of the outer layer is composed of martensite, troostite or sorbite composition formed by hardening and tempering. As for the material quality, the composition is not particularly restricted so far as 360 Vickers hardness is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大きな振動減衰能を有し、がっ、高強度を備え
た高強度の複合防振材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-strength composite anti-vibration material having a large vibration damping ability and high strength.

〔従来の技術〕[Conventional technology]

近年、各種機器の振動、騒音を防止するために、防振材
料が用いられている。この防振材料には、まず、振動減
衰特性が優れていることが要求される。また、この防振
材料を各種機器の部材または工具の構造部分等として使
用する場合には、上記振動減衰特性が優れていることの
他に、耐摩耗性、強度が優れていることが要求される。
In recent years, anti-vibration materials have been used to prevent vibration and noise from various types of equipment. First of all, this vibration-proofing material is required to have excellent vibration damping properties. In addition, when using this vibration isolating material as a component of various equipment or a structural part of a tool, in addition to the excellent vibration damping properties mentioned above, it is also required to have excellent wear resistance and strength. Ru.

従来、単体の防振合金としては、F e−Cr−A 1
合金、Mn−Cu合金、黒鉛鋳鉄等が使用されている。
Conventionally, as a single anti-vibration alloy, Fe-Cr-A 1
Alloys, Mn-Cu alloys, graphite cast iron, etc. are used.

また、複合の防振材料としては、鋼板と粘弾性物質(樹
脂等)とのクラッドあるいはサンドイツチ板が周知であ
る。しかし、これらは減衰特性は優れているものの、強
度、耐摩耗性が劣っている。
Further, as a composite vibration-proofing material, a cladding made of a steel plate and a viscoelastic substance (resin, etc.) or a sandwich plate is well known. However, although these have excellent damping characteristics, they are inferior in strength and wear resistance.

また、表面の耐摩耗性を考慮した複合防振材としては、
特公昭60−53112、特開昭64−11982およ
び特公昭56−43308に開示された、それぞれ防振
合金の表面にAl酸化物、酸化クロム層およびN1メツ
キを20μm程度被覆したものが開示されている。
In addition, as a composite vibration damping material that takes into account the wear resistance of the surface,
Japanese Patent Publication No. 60-53112, Japanese Patent Publication No. 64-11982, and Japanese Patent Publication No. 56-43308 each disclose an anti-vibration alloy whose surface is coated with Al oxide, a chromium oxide layer, and N1 plating to a thickness of approximately 20 μm. There is.

また、純鉄、あるいはF e−2%Ni合金を芯材とし
てその表面に5KS5を接合した例が報告されている。
Furthermore, examples have been reported in which pure iron or Fe-2%Ni alloy is used as a core material and 5KS5 is bonded to the surface thereof.

(CA M P −l5IJ vol、2(1989)
、P13281〔発明が解決しようとする課題〕 しかし、前記の第1の方法、つまり、酸化物層、あるい
は、N1メツキ等を被覆するものは、被覆層を厚くする
と減衰特性か低下し、一方被覆層か薄いと、表面の耐摩
耗性に問題を生じ、さらに、芯部の防振合金自身は一般
に低硬度であるために、複合材全体としての強度は不足
である。
(CAM P-15IJ vol, 2 (1989)
, P13281 [Problem to be Solved by the Invention] However, in the first method described above, that is, coating with an oxide layer or N1 plating, etc., as the coating layer becomes thicker, the damping characteristics deteriorate; If the layer is thin, there will be a problem with the wear resistance of the surface, and furthermore, since the vibration-proofing alloy itself in the core generally has low hardness, the strength of the composite material as a whole is insufficient.

また、前記の第2の方法において、純鉄、あるいはF 
e−N i合金に5KS5を接合する場合は、十分な減
衰能が得られないことと、芯部の硬度が低いために十分
な強度が得られない。
In addition, in the second method, pure iron or F
When 5KS5 is bonded to e-Ni alloy, sufficient strength cannot be obtained due to insufficient damping ability and low hardness of the core.

上記のように、減衰特性を優れたものにしようとすると
、一般に強度、耐摩耗性か低下してしまう。
As mentioned above, when trying to improve the damping characteristics, the strength and wear resistance generally decrease.

本発明は強度、耐摩耗性が優れており、かつ減衰能が大
きくて振動減衰特性の優れた高強度の複合防振材料を提
供するものである。
The present invention provides a high-strength composite anti-vibration material that has excellent strength, wear resistance, large damping capacity, and excellent vibration damping properties.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、中間層のFe基金属および該中間層のFe基
金属の両面にそれぞれ接合された外層のFe基金属の三
層からなる複合防振材料において、焼入れ、焼もどし熱
処理された後、前記外層のFe基金属は硬さがビッカー
ス硬さ360以上であり、前記中間層のFe基金属は重
量比で、Cr5〜25%、Al.0.3〜5%を含むF
e基合金でビッカース硬さ200以上かつ内部摩擦Q−
1が3 X 10−3以上であることを特徴とする高強
度複合防振材料である。すなわち、本発明の材料は、加
熱温度800〜1100℃で焼入、150〜550℃で
焼もどしする程度の焼入れ、焼もどしの熱処理が施され
る。
The present invention provides a composite anti-vibration material consisting of three layers of an intermediate layer of Fe-based metal and an outer layer of Fe-based metal bonded to both surfaces of the intermediate layer, after being subjected to quenching and tempering heat treatment. The Fe-based metal of the outer layer has a Vickers hardness of 360 or more, and the Fe-based metal of the intermediate layer has a weight ratio of 5 to 25% Cr, Al. F containing 0.3-5%
E-based alloy with Vickers hardness of 200 or more and internal friction Q-
This is a high-strength composite anti-vibration material characterized in that 1 is 3 x 10-3 or more. That is, the material of the present invention is subjected to heat treatment such as quenching at a heating temperature of 800 to 1100°C and tempering at 150 to 550°C.

本発明材料は、上記のように焼入れ、焼もどしの熱処理
により外層のFe基金属の機械的強度を得るものであり
、この強度としてビッカース硬さ360以上とした。ビ
ッカース硬さ360未満の硬さは、焼入れ、焼もどしの
熱処理によらずとも達成でき、また、木工丸鋸用ディス
ク材等比較的低硬さ用途にも不向きであるため、本発明
範囲から除外した。
The material of the present invention obtains the mechanical strength of the Fe-based metal of the outer layer through the heat treatment of quenching and tempering as described above, and this strength is defined as a Vickers hardness of 360 or more. Vickers hardness of less than 360 can be achieved without heat treatment such as quenching and tempering, and it is also unsuitable for relatively low hardness applications such as disk materials for woodworking circular saws, so it is excluded from the scope of the present invention. did.

また、本発明に係る中間層のFe基金属は、上記熱処理
によって、過度の焼なまし効果を受けて軟化すること、
または焼入れ硬化を受けて硬化し、内部摩擦Q−’を低
下しないものである。すなわち、広い焼入れ焼もどし熱
処理条件の範囲に亘り、フェライト組織を維持し、硬さ
はビッカース硬さ200〜360の範囲で用途に応じて
調整可能であり、かつこの広い条件範囲内で内部摩擦Q
−’は3X]O’以上と高い値が得られるものである。
In addition, the Fe-based metal of the intermediate layer according to the present invention is softened by an excessive annealing effect by the heat treatment,
Alternatively, it is hardened by quenching and does not reduce internal friction Q-'. In other words, the ferrite structure can be maintained over a wide range of quenching and tempering heat treatment conditions, the hardness can be adjusted depending on the application within the Vickers hardness range of 200 to 360, and the internal friction Q can be maintained within this wide range of conditions.
-' is a value as high as 3X]O' or more.

このため、複合体全体の耐摩耗性、機械的強度を従来材
に比し大幅に向上することが可能となった。
For this reason, it has become possible to significantly improve the wear resistance and mechanical strength of the composite as a whole compared to conventional materials.

以上から本発明の中間層のFe基金属としては、ビッカ
ース硬さ200以上、内部摩擦Q−’を3X10−3以
上と規定した。
From the above, the Fe-based metal of the intermediate layer of the present invention is specified to have a Vickers hardness of 200 or more and an internal friction Q-' of 3X10-3 or more.

本発明において中間層のFe基金属は、重量%でCr 
5〜25%、Al 0.3〜5%、残部Feおよび不可
避不純物からなる合金とする他、さらにそれぞれ特定量
のNi、Si、Cu、Moの1種または2種以上を添加
され、ビッカース硬さ220以上としたもの。さらに、
これにTi、 Nb、  B の1種または2種以上を
2%以下添加した材料とすることが望ましい。
In the present invention, the Fe-based metal of the intermediate layer is Cr in weight%.
5-25% Al, 0.3-5% Al, balance Fe and unavoidable impurities, and a specific amount of one or more of Ni, Si, Cu, and Mo is added to achieve Vickers hardness. Those with a diameter of 220 or more. moreover,
It is desirable to use a material to which 2% or less of one or more of Ti, Nb, and B is added.

次に中間層のFe基金属の成分限定理由を述べる。Next, the reason for limiting the composition of the Fe-based metal in the intermediate layer will be described.

Crは振動減衰能を高めるための成分であって、5%未
満では十分な減衰能が得られない。また、25%を越え
ると減衰能は低下し、がっ、加工性が劣化する。
Cr is a component for increasing vibration damping ability, and if it is less than 5%, sufficient damping ability cannot be obtained. Moreover, if it exceeds 25%, the damping ability will decrease and the workability will deteriorate.

AlもCrと同様に、振動減衰能を増加させるが、0.
3%未満ではその効果が得られず、5%を越えると加工
性が劣化するのでAl 0.3〜5%とした。
Similar to Cr, Al also increases vibration damping ability, but 0.
If the Al content is less than 3%, the effect cannot be obtained, and if it exceeds 5%, the workability deteriorates, so the Al content is set to 0.3 to 5%.

Ni、Cu、Si、Moは、800−1100℃からの
焼入、150〜550℃での焼もどしの熱処理により、
減衰能を低下させることなく、硬さを増大させるために
必要な元素であり、単独また、複合で添加されて効果を
示す。そしてその添加量はNi O,5〜6%、Cu 
0.1〜3%、Mo 0.5〜4%、Si 0.3〜2
%である。上記それぞれの下限を切る場合、その効果は
認められない。また、上限を越えても添加に見合う効果
は望められないから、それぞれその範囲内に止める。た
だし、全体で10%を越えると加工性が劣化するから、
複合添加の場合10%以下とする。
Ni, Cu, Si, and Mo are hardened at 800-1100°C and tempered at 150-550°C.
It is an element necessary to increase hardness without reducing damping ability, and is effective when added alone or in combination. The amount of addition is NiO, 5-6%, Cu
0.1-3%, Mo 0.5-4%, Si 0.3-2
%. If the lower limit of each of the above is exceeded, the effect will not be recognized. Further, since no effect commensurate with the addition can be expected even if the upper limit is exceeded, the amount should be kept within each range. However, if the total amount exceeds 10%, the workability will deteriorate, so
In the case of composite addition, it should be 10% or less.

Ti、Nb、Bは焼入加熱に伴う結晶粒の粗大化を防止
し靭性を保つために有効であるので、特に焼入加熱温度
か高い場合に有効である。しかし、2%を越えると加工
性を害するので2%以下に制限した。
Ti, Nb, and B are effective for preventing coarsening of crystal grains due to quenching heating and maintaining toughness, and are particularly effective when the quenching heating temperature is high. However, if it exceeds 2%, workability will be impaired, so it was limited to 2% or less.

以上の組成による中間層のFe基金属は焼入焼もどし後
も前記のようにフェライト相であることが特徴である。
The Fe-based metal of the intermediate layer having the above composition is characterized in that it remains in the ferrite phase even after quenching and tempering, as described above.

一方、外層のFe基金属は、耐摩耗性等必要な機械的性
質を得るため、焼入れ、焼もどしにより、マルテンサイ
ト、トルースタイトまたはソルバイト組織とする。材質
的には、ビッカース硬さ360以上が得られるものであ
ればよく、組成はとくに限定されない。
On the other hand, the Fe-based metal of the outer layer is hardened and tempered to form a martensite, troostite, or sorbite structure in order to obtain necessary mechanical properties such as wear resistance. The material may be any material as long as it has a Vickers hardness of 360 or more, and the composition is not particularly limited.

〔実施例〕〔Example〕

第1表に示す中間層のFe基金属用と外層のFe基金属
用より、それぞれ厚さ5mmtの板材を作製し、No、
1〜N o、 13の組合せで中間層のFe基金属用合
金板を芯材と、その両面に外層のFe基金属用合金板を
重ね合わせて熱間圧延により接合し、圧延後の板厚が合
計で3mmtになるように仕上げた。
Plate materials with a thickness of 5 mm were prepared from the Fe-based metal intermediate layer and the Fe-based metal outer layer shown in Table 1.
In the combinations 1 to No. 13, the intermediate layer Fe-based metal alloy plate is superimposed on both sides of the core material, and the outer layer Fe-based metal alloy plate is superimposed and joined by hot rolling, and the plate thickness after rolling is It was finished so that the total weight was 3mmt.

なお、従来材No、14は、単体材で板厚は同じく31
II[ltとした。
In addition, conventional material No. 14 is a single material with the same plate thickness of 31.
II [lt.

これらにそれぞれ第2表に示す熱処理を施し、それぞれ
の外層のFe基金属および単体材No、14の熱処理後
の硬さ、本体で測定した内部摩擦Q−″および引張強さ
を測定した。その結果を第2表に示す。一方No、1〜
No、13の中間層のFe基金属に単体で第2表に示す
熱処理を施し、硬さ、および内部摩擦Q−1を測定して
第2表中間層のFe基金属欄に示すデータを得た。
Each of these was subjected to the heat treatment shown in Table 2, and the hardness after heat treatment of the Fe-based metal of each outer layer and single material No. 14, internal friction Q-'' measured on the main body, and tensile strength were measured. The results are shown in Table 2. On the other hand, No. 1~
The Fe-based metal of the intermediate layer of No. 13 was subjected to the heat treatment shown in Table 2 alone, and the hardness and internal friction Q-1 were measured to obtain the data shown in the Fe-based metal column of the intermediate layer of Table 2. Ta.

なお第2表の内部摩擦Q−1は、静電駆動型振動の減衰
曲線より求めた値であり、歪振幅lサイクル当りの失わ
れるエネルギの大きさを示すものである。Q−”が大き
いほど振動エネルギを合金内部で熱に変換する割合が大
きく、防振効果が大であることを意味する。
Note that the internal friction Q-1 in Table 2 is a value determined from the attenuation curve of electrostatically driven vibration, and indicates the amount of energy lost per 1 cycle of strain amplitude. The larger the value of Q-'', the greater the rate at which vibration energy is converted into heat within the alloy, which means that the vibration-proofing effect is greater.

第2表によると、本発明材No、10の中間層のFe基
金属は、比較材No、12の低Al材に対し、硬さ、内
部摩擦Q−1がともに高く、この内部摩擦Q−’は本体
の内部摩擦を高める結果となっている。
According to Table 2, the Fe-based metal of the intermediate layer of the invention material No. 10 has higher hardness and internal friction Q-1 than the low Al material of comparative material No. 12, and this internal friction Q- ' results in increased internal friction of the main body.

また、Ni、Cu、Mo、Siを含むNo、1−9はそ
のN095と前記No、10との対比から判るように、
内部摩擦Q−1を低下することなく硬さを大幅に上昇し
ており、結果として本体の引張強さを増加している。こ
れに対して、比較例No、11は中間層のFe基金属の
成分が不適正のため、焼入、焼もどし後の内部摩擦Q−
’が0.8X10−3と低く、複合後の本体の内部摩擦
Q−”も0.3X10−3と低く、防振特性が劣る。ま
た、No、12は、中間層のFe基金属が低Alのため
、硬さも低く、内部摩擦Q−’も小さい。そのため、本
体の内部摩擦Q−”は1.8×10−3と小さく、引張
強さも低めである。No、13は中間層のFe基金属が
ほぼ純鉄と同一のため焼入焼もどし後の内部摩擦Q−”
は3X10−3以上であるが、硬さかビッカース硬さ1
10と極端に低いため、本体の引張強さは85kgf 
/m+n’と低い値である。なお、中間層材として、F
e−2%Ni材料を使用するものも強度的にはほぼNo
、13と同様である(Ni添加の目的は外層材との接合
強度を向上するためである)。
In addition, No. 1-9 containing Ni, Cu, Mo, and Si, as seen from the comparison between No. 10 and No. 10,
The hardness is significantly increased without decreasing the internal friction Q-1, and as a result, the tensile strength of the main body is increased. On the other hand, in Comparative Example No. 11, the internal friction after quenching and tempering Q-
' is as low as 0.8X10-3, and the internal friction Q-'' of the main body after composite is also as low as 0.3X10-3, resulting in inferior vibration damping properties.In addition, No. 12 has a low Fe-based metal in the intermediate layer. Since it is made of Al, the hardness is low and the internal friction Q-' is also small. Therefore, the internal friction Q-' of the main body is as small as 1.8 x 10-3, and the tensile strength is also low. No. 13 has internal friction after quenching and tempering because the Fe-based metal in the intermediate layer is almost the same as pure iron.
is 3X10-3 or more, but the hardness or Vickers hardness is 1
10, which is extremely low, so the tensile strength of the main body is 85kgf.
/m+n', which is a low value. In addition, as an intermediate layer material, F
Those using e-2%Ni material are also almost No. 1 in terms of strength.
, 13 (the purpose of adding Ni is to improve the bonding strength with the outer layer material).

以上述べたように、本発明の金属の組合せは、引張強さ
100kgf/mm”が得られ、内部摩擦Q−’も大き
く、優れた防振特性を有することがわかる。
As described above, it can be seen that the metal combination of the present invention has a tensile strength of 100 kgf/mm'', a large internal friction Q-', and excellent vibration damping properties.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の防振材料は焼入れ焼もどし熱
処理により、外層のFe基金属に必要な耐摩耗性を与え
るもので、中間層のFe基金属は、その広い熱処理条件
範囲に亘り高い内部摩擦Q−”と高い機械的強度を兼備
するものである。この防振材料は従来中間層材として、
純鉄やF e−2%Ni合金を使用するものに比し、格
段に高い機械的強度を有して、各種工具、機械構造用と
して有益な防振材料の提供が可能となった。
As described above, the anti-vibration material of the present invention imparts the necessary wear resistance to the Fe-based metal of the outer layer through quenching and tempering heat treatment, and the Fe-based metal of the intermediate layer has high wear resistance over a wide range of heat treatment conditions. It has both internal friction Q-'' and high mechanical strength.This vibration-proof material has traditionally been used as an intermediate layer material.
Compared to those using pure iron or Fe-2%Ni alloy, it has become possible to provide a vibration isolating material that has significantly higher mechanical strength and is useful for various tools and machine structures.

【図面の簡単な説明】[Brief explanation of the drawing]

中間層のFe基金属、外層のFe基金属からなる複合防
振材料において本発明材の中間層のFe基金属は、外層
のFe基金属に所定の耐摩耗性、機械的性質を付与する
ための広範な焼入れ、焼もどしの熱処理条件に亘り、高
い内部摩擦Q’と高い機械的強度を示し、従来困難であ
った複合体全体の内部摩擦Q−”と高強度の両立を達成
するものである。
In a composite anti-vibration material consisting of an Fe-based metal in the intermediate layer and a Fe-based metal in the outer layer, the Fe-based metal in the intermediate layer of the material of the present invention imparts predetermined wear resistance and mechanical properties to the Fe-based metal in the outer layer. It exhibits high internal friction Q' and high mechanical strength over a wide range of quenching and tempering heat treatment conditions, and achieves both internal friction Q' and high strength for the entire composite, which was previously difficult. be.

Claims (1)

【特許請求の範囲】 1、中間層のFe基金属および該中間層のFe基金属の
両面にそれぞれ接合された外層のFe基金属の三層から
なる複合防振材料において、焼入れ、焼もどし熱処理さ
れた後、前記外層のFe基金属は硬さがビッカース硬さ
360以上であり、前記中間層のFe基金属は重量比で
、Cr5〜25%、Al0.3〜5%を含むFe基合金
でビッカース硬さ200以上かつ内部摩擦Q^−^1が
3×10^−^3以上であることを特徴とする高強度複
合防振材料。 2、中間層のFe基金属は重量比で、Cr5〜25%、
Al0.3〜5%を含有し、さらにNi0.5〜6%、
Cu0.1〜3%、Mo0.5〜4%、Si0.3〜2
%の1種または2種以上、ただし合計で10%以下を含
有し、残部Feおよび不可避不純物からなり、ビッカー
ス硬さ220以上である請求項1記載の高強度複合防振
材料。 3、中間層のFe基金属は重量比で、Cr5〜25%、
Al0.3〜5%を含有し、Ni0.5〜6%、Cu0
.1〜3%、Mo0.5〜4%、Si0.3〜2%の1
種または、2種以上ただし合計で10%以下を含有し、
さらにTi、Nb、Bの1種または2種以上を合計で2
%以下を含有し、残部Feおよび不可避不純物からなり
、ビッカース硬さ220以上である請求項1記載の高強
度複合防振材料。
[Claims] 1. In a composite vibration damping material consisting of three layers of an intermediate layer of Fe-based metal and an outer layer of Fe-based metal bonded to both surfaces of the intermediate layer, quenching and tempering heat treatment are performed. The Fe-based metal of the outer layer has a Vickers hardness of 360 or more, and the Fe-based metal of the intermediate layer is an Fe-based alloy containing 5 to 25% Cr and 0.3 to 5% Al by weight. A high-strength composite anti-vibration material having a Vickers hardness of 200 or more and an internal friction Q^-^1 of 3x10^-^3 or more. 2. The Fe-based metal in the intermediate layer has a weight ratio of 5 to 25% Cr;
Contains 0.3-5% Al, further 0.5-6% Ni,
Cu0.1-3%, Mo0.5-4%, Si0.3-2
2. The high-strength composite anti-vibration material according to claim 1, wherein the high-strength composite anti-vibration material has a Vickers hardness of 220 or more. 3. The Fe-based metal in the intermediate layer has a weight ratio of 5 to 25% Cr;
Contains Al0.3-5%, Ni0.5-6%, Cu0
.. 1-3%, Mo0.5-4%, Si0.3-2% 1
Contains a species or two or more species but not more than 10% in total,
Furthermore, one or more of Ti, Nb, and B are added in total to 2
% or less, the remainder consisting of Fe and unavoidable impurities, and has a Vickers hardness of 220 or more.
JP20546090A 1990-08-02 1990-08-02 High strength composite vibration-damping material Pending JPH0489238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20546090A JPH0489238A (en) 1990-08-02 1990-08-02 High strength composite vibration-damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20546090A JPH0489238A (en) 1990-08-02 1990-08-02 High strength composite vibration-damping material

Publications (1)

Publication Number Publication Date
JPH0489238A true JPH0489238A (en) 1992-03-23

Family

ID=16507246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20546090A Pending JPH0489238A (en) 1990-08-02 1990-08-02 High strength composite vibration-damping material

Country Status (1)

Country Link
JP (1) JPH0489238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021012A1 (en) * 1992-04-20 1993-10-28 Nippon Steel Corporation Thin-sheet-clad steel sheet and method of production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021012A1 (en) * 1992-04-20 1993-10-28 Nippon Steel Corporation Thin-sheet-clad steel sheet and method of production thereof

Similar Documents

Publication Publication Date Title
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
KR20210075219A (en) Low temperature hardenable steels with excellent machinability
WO2008126939A1 (en) Forging steel
JP5186753B2 (en) Damping alloy sheet and manufacturing method thereof
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JP4284405B2 (en) Tapping screw and its manufacturing method
JP4998672B2 (en) Manufacturing method of damping alloy sheet
JP4209514B2 (en) High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JPH0489238A (en) High strength composite vibration-damping material
JP3386514B2 (en) Damping alloy steel sheet and method of manufacturing the same
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
JPH05255814A (en) Stainless steel thin sheet excellent in damping capacity and its manufacture
KR20220010185A (en) Non-magnetic austenitic stainless steel
JPS59190321A (en) Production of parts for machine structural use having excellent soft nitriding characteristic and machinability
JPH0227408B2 (en)
JPH05125489A (en) High strength laminated high damping material
JPH0447023B2 (en)
JPH06228734A (en) Production of steel for clutch diaphragm spring
JPH09157794A (en) High damping alloy and its production
JP2971709B2 (en) Manufacturing method of mechanical structural parts excellent in vibration damping characteristics and wear resistance
JP2005226126A (en) Vibration-proofing alloy
JPH0672280B2 (en) High toughness carburizing steel
JPH08157946A (en) Production of steel member having high vibration damping capacity and high surface hardness