JPH05255813A - High strength alloy excellent in workability and damping capacity - Google Patents

High strength alloy excellent in workability and damping capacity

Info

Publication number
JPH05255813A
JPH05255813A JP34121291A JP34121291A JPH05255813A JP H05255813 A JPH05255813 A JP H05255813A JP 34121291 A JP34121291 A JP 34121291A JP 34121291 A JP34121291 A JP 34121291A JP H05255813 A JPH05255813 A JP H05255813A
Authority
JP
Japan
Prior art keywords
alloy
workability
weight
vibration damping
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34121291A
Other languages
Japanese (ja)
Inventor
Manabu Takahashi
学 高橋
Hiroshi Endo
紘 遠藤
Kosaku Shioda
浩作 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34121291A priority Critical patent/JPH05255813A/en
Publication of JPH05255813A publication Critical patent/JPH05255813A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high strength alloy excellent in workability and damping capacity by regulating the components of an alloy. CONSTITUTION:This high strength alloy excellent in workability and damping capacity is an Fe alloy contg., by weight, 10 to 27% Mn, in which the micro structure in the stage of practical use is constituted of a mixed one of austenite and epsilon martensite or a mixed one of which alpha' martensite is partially included therein and having >=0.005 vibration loss factor. Furthermore, one or >=two kinds among <=4.0% Cu, <=7.0% Cr, <=4.0 Si and <=8.0% Ni or 0.0005 to 0.2% C are incorporated therein. In this way, by applying it to automobiles and other structures, the alloy reducing vibration and noise can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車や他の構造物に適
用することによって振動、騒音を低減させることが可能
な加工性と制振性に優れた高強度合金に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength alloy excellent in workability and vibration-damping property capable of reducing vibration and noise when applied to automobiles and other structures.

【0002】[0002]

【従来の技術】自動車や他の構造物における振動と騒音
の防止は環境上の問題であると共に、より快適な生活空
間確保への強い要望から、今後開発されるべき重要な技
術となっている。振動、騒音の防止は振動エネルギーの
反射(例えば隔壁材料の表面で音波を反射)と吸収の両
面から行うことができる。
2. Description of the Related Art The prevention of vibration and noise in automobiles and other structures is an environmental problem and a strong demand for securing a more comfortable living space has become an important technology to be developed in the future. .. Vibration and noise can be prevented from both sides of reflection (for example, reflection of sound waves on the surface of the partition wall material) and absorption of vibration energy.

【0003】本発明が対象としているのは後者の場合で
あり、特に音源近傍での固体の振動エネルギーを吸収す
る材料の供給を目的としている。このような制振材料と
しては、複合型、強磁性型、転位型、双晶型、
等の合金材料と共に異種材料を組み合わせた複層型が
ある。は、ねずみ鋳鉄やZn−Al合金等に見られる
ように、マトリックスと第2相界面での塑性流動や粘性
流動を利用するものであるが、一般に強度が低く、また
温度依存性も大きい。
The present invention is directed to the latter case, and particularly aims to supply a material that absorbs vibration energy of a solid in the vicinity of a sound source. Such damping materials include composite type, ferromagnetic type, dislocation type, twin type,
There is a multi-layer type in which different materials are combined with alloy materials such as. Uses plastic flow or viscous flow at the interface between the matrix and the second phase, as found in gray cast iron, Zn-Al alloy, etc., but generally has low strength and large temperature dependence.

【0004】はサイレンタロイ(Fe−12Cr−2
Al)に代表されるように、90℃磁区壁の非可逆移動
過程による応力−歪曲線のヒステリシスを利用するもの
であるが、減衰がある応力振幅で最大を示し、利用時に
特別な注意が必要であり、また塑性加工により著しく特
性が劣化する。はMgやMg−Zr合金に見られるよ
うに、不純物元素による弱く固着された転位の離脱によ
るヒステリシスを利用するものであるが、強度が低く、
塑性加工で特性が劣化する。は、熱弾性マルテンサイ
ト変態によって生じた内部双晶境界や一部特定の温度領
域においてはマルテンサイトとマトリックスの相境界が
移動することによるヒステリシスを利用するものである
が、一般に比較的低温域(高々100℃以下)でのみこ
の効果が認められ、また塑性加工により著しく特性が劣
化する。一方鋼板と特殊な樹脂を複合化した樹脂複合鋼
板はの例であり、非常に高い減衰能を示すが、制振性
能をもたらす樹脂の特性として、加工性、溶接性、高温
での制振性能等は他の材料に劣る。
Is a Silentalloy (Fe-12Cr-2)
As is represented by Al), the hysteresis of the stress-strain curve due to the irreversible movement process of the 90 ° domain wall is used, but it shows the maximum at a stress amplitude with damping, and special attention is required when using it. In addition, the characteristics are significantly deteriorated by plastic working. Utilizes the hysteresis due to the dislocation of the weakly fixed dislocations due to the impurity element, as seen in Mg and Mg-Zr alloys, but the strength is low,
The characteristics deteriorate due to plastic working. Uses the hysteresis due to the movement of the phase boundary between the martensite and the matrix in the internal twin boundary generated by the thermoelastic martensite transformation and in a part of a specific temperature range, but generally in a relatively low temperature range ( This effect is observed only at a temperature of 100 ° C. or less), and the characteristics are significantly deteriorated by plastic working. On the other hand, a resin composite steel plate that is a composite of a steel plate and a special resin shows an extremely high damping capacity, but the characteristics of the resin that bring about the vibration damping performance are workability, weldability, and vibration damping performance at high temperatures. Etc. are inferior to other materials.

【0005】[0005]

【発明が解決しようとする課題】上記のように、これま
でに開発された制振合金もしくは複合型の制振材料は制
振性能と材料強度とのバランスが必ずしも十分でなく、
例えば自動車用材料として現在非常に強く要望されてい
る車体軽量化に貢献するには至っていない。また、制振
性能を示す温度範囲、塑性加工条件、使用周波数条件等
に制約があることから、利用環境が著しく制限され、結
果的に実環境では十分に利用されるに至っていない。本
発明は、このような種々の課題を解決し、自動車や他の
構造物に適用することのできる、高強度で制振性能に優
れた合金を提供するためのものである。
As described above, the damping alloys or composite damping materials that have been developed so far do not always have a sufficient balance between damping performance and material strength.
For example, as a material for automobiles, it has not yet contributed to the weight reduction of vehicle bodies, which is strongly demanded at present. Further, since there are restrictions on the temperature range showing the vibration damping performance, the plastic working conditions, the operating frequency conditions, etc., the use environment is remarkably limited, and as a result, the use environment is not sufficiently utilized. The present invention solves these various problems and is intended to provide an alloy that can be applied to automobiles and other structures and has high strength and excellent vibration damping performance.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の種々
の課題を解決し、自動車や他の構造物に適用可能な、制
振性、加工性に優れた高強度合金を製造するためにこれ
までに行った実験の結果、使用環境下でのミクロ組織が
オーステナイトとイプシロンマルテンサイトの混合もし
くはこれに一部フェライトを含む混合組織の場合でかつ
特殊な成分条件の場合に優れた制振性能と加工性が両立
する高強度制振合金の製造が可能であることを見いだし
た。すなわち、本発明はこのような知見に基づいて完成
したものであって、Mnを10〜27重量%含むFe合
金で、実使用段階でのミクロ組織がオーステナイトとイ
プシロンマルテンサイトの混合もしくはこれに一部α′
マルテンサイトを含む混合組織であり、合金の振動損失
係数ηが0.005以上であることを特徴とする、加工
性と制振性に優れた高強度合金を要旨とするものであ
る。上記本発明合金には、更にCu≦4.0重量%、C
r≦7.0重量%、Si≦4.0重量%、Ni≦8.0
重量%の範囲内でこれらの合金の1種もしくは2種以上
を含有させてもよい。また上記本発明の各合金には、更
にCを0.0005〜0.2重量%を含有させることも
できる。
In order to solve the above-mentioned various problems and to produce a high-strength alloy which is applicable to automobiles and other structures and which is excellent in vibration damping property and workability, As a result of the experiments conducted so far, excellent vibration damping was achieved when the microstructure in the environment of use was a mixture of austenite and epsilon martensite or a mixture of microstructures containing some ferrite, and under special composition conditions. It was found that it is possible to manufacture a high-strength damping alloy that has both performance and workability. That is, the present invention has been completed based on such knowledge, and is an Fe alloy containing 10 to 27% by weight of Mn, and the microstructure at the actual use stage is a mixture of austenite and epsilon martensite or Part α '
The gist is a high-strength alloy having excellent workability and vibration damping characteristics, which is a mixed structure containing martensite and has a vibration loss coefficient η of 0.005 or more. The above alloy of the present invention further comprises Cu ≦ 4.0% by weight, C
r ≦ 7.0 wt%, Si ≦ 4.0 wt%, Ni ≦ 8.0
You may contain 1 type, or 2 or more types of these alloys in the range of weight%. Further, each alloy of the present invention may further contain 0.0005 to 0.2% by weight of C.

【0007】[0007]

【作用】以下に本発明の作用の詳細を述べる。本発明は
従来技術に述べた〜のどの制振材料にも属さない新
しい機構により、従来の知見にない制振合金を提供する
ものである。Mnを比較的大量に含有する鋼において
は、加熱によりオーステナイト(γ:bcc構造の結
晶)化された後の冷却により、室温近傍に生成する相が
フェライト(α′:fcc構造の結晶)及びイプシロン
マルテンサイト(ε:hcp構造の結晶)の2種類が存
在することが知られている。Fe−Mn2元系では、M
n<10重量%ではα′が主相となり、10〜27重量
%ではεの量がα′の量を上回り、それ以上のMn添加
では室温においてもγが安定相として存在する。これら
の各相の存在割合はMn以外の合金の種類と添加量によ
って大きく変化し、合金の特性を決定する重要な要因で
ある。γとεとが共存する合金の中で特にFeベースに
10〜27重量%のMnを添加した材料では加工の初期
段階でγからεへの変態による軟化に加えて、転位の移
動が容易なαに変態することで極めて低い降伏強度を有
し、積層欠陥エネルギーが低いことの影響としてγの高
い加工硬化と、γからε、α′への応力誘起変態塑性
(TRIP:Transformation Indu
ces Plasticity)の重畳効果として非常
に大きな延性を示すことが知られている。この特性は他
の合金(例えばNi,Cr,Si,Cu等)を適量添加
することで強調され、例えばFe−C−Mn−Ni合金
では60kgf/mm2 以上の破断強度で60%以上の破断
伸びを示すような極めて良好な強度−延性バランスを示
す合金の設計が可能である。
The function of the present invention will be described in detail below. The present invention provides a damping alloy which has not been found in the conventional knowledge, by a new mechanism which does not belong to any of the damping materials (1) to (3) described in the prior art. In a steel containing a relatively large amount of Mn, the phases formed near room temperature due to austenite (γ: bcc structure crystal) heating and subsequent cooling are ferrite (α ': fcc structure crystal) and epsilon. It is known that there are two types of martensite (crystals having an ε: hcp structure). In the Fe-Mn binary system, M
When n <10% by weight, α'becomes the main phase, and at 10 to 27% by weight, the amount of ε exceeds the amount of α ', and when Mn is added more than that, γ exists as a stable phase even at room temperature. The abundance ratio of each of these phases greatly changes depending on the type of alloy and addition amount other than Mn, and is an important factor that determines the properties of the alloy. Among alloys in which γ and ε coexist, especially in a material in which 10 to 27% by weight of Mn is added to the Fe base, in addition to the softening due to the transformation from γ to ε at the initial stage of processing, dislocation migration is easy. It has an extremely low yield strength by being transformed into α, and the work hardening with a high γ as an effect of the low stacking fault energy, and the stress-induced transformation plasticity (TRIP) from γ to ε, α ′.
It is known that a very large ductility is exhibited as a superposition effect of ces plasticity). This property is emphasized by adding an appropriate amount of another alloy (for example, Ni, Cr, Si, Cu, etc.). For example, in a Fe-C-Mn-Ni alloy, a breaking strength of 60 kgf / mm 2 or more and a breaking strength of 60% or more. It is possible to design an alloy that exhibits a very good strength-ductility balance that exhibits elongation.

【0008】このような鉄系高Mn合金では、冷却中の
γからεへの変態と、昇温中のεからγへの変態が可逆
的に起こる成分系が存在する。このような合金におい
て、応力付加により変態が促進されることは上記のTR
IP効果と同一であるが、γからεへの変態では体積収
縮が起こり、逆にεからγへの変態では体積膨張が起こ
ることから応力状態(引張、圧縮)の違いにより、初期
状態で存在したγからεへもしくはεからγへの変態が
可能となる。
In such an iron-based high Mn alloy, there is a component system in which the transformation from γ to ε during cooling and the transformation from ε to γ during temperature rise reversibly occur. In such alloys, the transformation is accelerated by the stress application, which means that the above TR
Although it is the same as the IP effect, volume contraction occurs in the transformation from γ to ε, and conversely volume expansion occurs in the transformation from ε to γ, so it exists in the initial state due to the difference in stress state (tensile, compression). The transformation from γ to ε or ε to γ is possible.

【0009】本発明はこの可逆的なγとεとの相遷移
(界面の移動)を利用したもので、固体振動による歪エ
ネルギーをγからε、及びεからγへの相遷移に伴うヒ
ステリシスにより吸収することを特徴としている。γか
らεへの変態開始温度(Ms)及びεからγへの変態開
始温度(As)は同一成分のγとεが同一の自由エネル
ギーを持つ温度T0 の上下に位置し、通常の場合Asが
Msより高温に位置している。従って、上記のようなγ
とεの可逆的な相遷移を固体振動のような比較的小さな
応力で起こすためには、AsとMsとのギャップがそれ
ほど大きくならないことが要求される。またこの種の材
料は塑性加工によってその変態挙動が影響されるもの
の、比較的軽度の加工(相当塑性歪で0.5程度以下の
歪領域)では変態温度自身を変化させるのみでγとεと
の可逆的な相遷移性を悪くすることはない。このことか
ら、本発明合金は塑性加工(プレス成形、鍛造、圧延、
引き抜き等)により利用部品の所定の形状に成形された
後も付加的な熱処理無しに良好な制振性能を維持するこ
とができる。しかしながら、これ以上の塑性加工が施さ
れた場合には、加工されたγが必要以上に安定化するこ
とによって上記のγとεの可逆的な相遷移が困難とな
る。このような場合には成形後に所定の熱処理を施すこ
とによって再度良好な制振性能を現出させられることは
他の制振材料と同様である。このγとεの可逆的相遷移
の現出のためには下記に示すような合金添加の範囲を満
足する必要がある。
The present invention utilizes this reversible phase transition between γ and ε (movement of the interface), and strain energy due to solid state vibration is caused by hysteresis accompanying the phase transition from γ to ε and ε to γ. It is characterized by absorbing. The transformation start temperature (Ms) from γ to ε and the transformation start temperature (As) from ε to γ are located above and below the temperature T 0 at which γ and ε of the same component have the same free energy. Is located higher than Ms. Therefore, γ
In order to cause the reversible phase transitions of ε and ε with a relatively small stress such as solid state vibration, it is required that the gap between As and Ms does not become so large. In addition, although the transformation behavior of this type of material is affected by plastic working, γ and ε can be obtained only by changing the transformation temperature itself in relatively light working (strain region of equivalent plastic strain of about 0.5 or less). The reversible phase transition property of is not deteriorated. From this, the alloy of the present invention is plastically worked (press forming, forging, rolling,
Good vibration-damping performance can be maintained without additional heat treatment even after the component is formed into a predetermined shape by drawing or the like). However, when the plastic working is further performed, the processed γ is stabilized more than necessary, so that the reversible phase transition between γ and ε becomes difficult. In such a case, good vibration damping performance can be reappeared by performing a predetermined heat treatment after molding, as with other vibration damping materials. In order to reveal the reversible phase transition of γ and ε, it is necessary to satisfy the range of alloy addition as shown below.

【0010】以下に本発明の構成要素の作用の詳細を示
す。 Mn:Mnは本発明において最も重要な合金元素であ
り、本発明に示すミクロ組織を得ることのできる最も安
価な合金元素である。またFeベースの高Mn合金は非
常に低い降伏応力と、低い積相欠陥エネルギーに起因す
る大きな加工硬化挙動により、特筆すべき高延性(高加
工性)の達成も可能とする合金元素である。しかしなが
ら、13重量%以下のMnの単独添加では室温における
ミクロ組織が本発明の範囲であるγ+εもしくはγ+ε
+αとならず、他の合金添加元素であるCu,Cr,N
i,Si,C等との複合添加の条件下でもMn<10重
量%ではこのミクロ組織が達成できないのでこれをMn
添加量の下限値とした。一方、全く他の合金元素を含ま
ないFe−Mn2元系においても、Mnが27重量%を
超えると室温でγが十分に安定となり、γとεとの可逆
的相遷移の温度が実用上現出しなくなるのでこれをMn
添加量の上限値とした。
The details of the operation of the components of the present invention will be described below. Mn: Mn is the most important alloying element in the present invention, and is the cheapest alloying element with which the microstructure shown in the present invention can be obtained. In addition, the Fe-based high Mn alloy is an alloy element that can achieve remarkable ductility (high workability) due to its extremely low yield stress and large work hardening behavior resulting from low product phase defect energy. However, when 13% by weight or less of Mn is added alone, the microstructure at room temperature falls within the range of γ + ε or γ + ε within the scope of the present invention.
It does not become + α, and Cu, Cr, N which are other alloy addition elements
Even under the condition of composite addition with i, Si, C, etc., if Mn <10 wt%, this microstructure cannot be achieved.
The lower limit of the amount added was set. On the other hand, even in the Fe-Mn binary system containing no other alloying element, when Mn exceeds 27% by weight, γ becomes sufficiently stable at room temperature, and the temperature of the reversible phase transition between γ and ε is practically realized. Since it will not come out, this is Mn
The upper limit of the amount added was set.

【0011】その他の合金元素添加は、本発明合金の加
工性及び強度向上に有利なばかりでなく、Mnの添加量
との関係を適度に調整することで加工性の向上と制振性
能の向上を同時に達成することを可能にしている。以下
に各添加元素の添加理由について説明する。 Cu:Cuはγの強度をそれほど上昇させないが、Ms
やAsを下げることによって合金中のMn添加量との組
合せを最適にすることで合金の加工性を大きく向上さ
せ、同時に制振性能も向上させることができる。しかし
ながら、4重量%以上の添加はγ中の限界固溶量以上と
なって実製造上意味をなさないのみならず、製造工程に
おいて、再加熱処理した後に熱間加工を行う場合には熱
間での割れが多発することから、これをCu添加の上限
とした。製造工程での熱間加工割れを十分に回避し、必
要な特性を得るためには望ましくは3.0重量%以下の
添加が望ましく、またNiとの複合添加を行うと熱間割
れの回避が容易になることから4重量%までのCu添加
が有効となる。Fe−Mn合金にCuを単独添加し、合
金の変態挙動を調整し、上記の機構による制振性能を現
出できるようにするためには図1に示したような成分範
囲とすることが必要である。
The addition of other alloying elements is not only advantageous for improving the workability and strength of the alloy of the present invention, but also the workability and the damping performance are improved by appropriately adjusting the relationship with the amount of Mn added. It is possible to achieve at the same time. The reason for adding each additive element will be described below. Cu: Cu does not increase the strength of γ so much, but Ms
By lowering the value of As and As, the workability of the alloy can be significantly improved by optimizing the combination with the amount of Mn added in the alloy, and at the same time, the vibration damping performance can be improved. However, addition of 4% by weight or more does not make sense in actual production because it exceeds the limit amount of solid solution in γ, and in the production process, when hot working is performed after reheating treatment, hot working is performed. Since cracks frequently occur in (3), this was set as the upper limit of Cu addition. In order to sufficiently avoid hot work cracking in the manufacturing process and obtain necessary characteristics, it is desirable to add 3.0% by weight or less. Further, if combined with Ni, hot cracking can be avoided. Since it becomes easy, addition of Cu up to 4% by weight is effective. It is necessary to add Cu alone to the Fe-Mn alloy, adjust the transformation behavior of the alloy, and make the composition range shown in FIG. Is.

【0012】Cr:CrはCuに比べてMsやAsへの
影響が穏やかであるのでCuよりも多量の添加が可能で
あるが、多量に添加し過ぎるとフェライトが主体となる
ので、7.0重量%以上の添加では上記の機構による制
振性能を付与することはできない。Crを添加すること
は鋼材の機械的特性、特に延性を著しく改善すると同時
に耐腐食性を向上させるので比較的大量の添加が望まし
い。しかし鋼材中にCが必要以上に含有されている場合
には、Crの炭化物生成によって生成するCr窮乏層起
因の応力腐食割れが起こることから、炭素濃度が例えば
0.02重量%以上の場合には応力腐食割れが重要とな
る部材へはCr添加量を5重量%以下に制限することが
望ましい。Fe−Mn合金にCrを単独添加し、合金の
変態挙動を調整し、上記の機構による制振性能を現出で
きるようにするためには図1に示したような成分範囲と
することが必要である。
Cr: Cr has a milder effect on Ms and As than Cu, so it can be added in a larger amount than Cu. However, if it is added in an excessively large amount, ferrite becomes the main component. If it is added in an amount of more than wt%, the vibration damping performance by the above mechanism cannot be imparted. The addition of Cr significantly improves the mechanical properties of the steel material, particularly ductility, and at the same time improves the corrosion resistance, so a relatively large amount of addition is desirable. However, when C is contained more than necessary in the steel material, stress corrosion cracking due to the Cr depletion layer generated by the formation of carbide of Cr occurs, so that when the carbon concentration is, for example, 0.02 wt% or more. It is desirable to limit the Cr addition amount to 5% by weight or less for members where stress corrosion cracking is important. It is necessary to add Cr alone to the Fe-Mn alloy, adjust the transformation behavior of the alloy, and make the composition range as shown in FIG. Is.

【0013】Si:Siはγからεへの変態を遅らせる
ことを通じて鋼材の延性を著しく向上させると同時に鋼
板の強度を著しく向上させることができる。これは、S
iを添加することによってγ→ε変態の進行が遅れる
(高歪領域までγ→ε変態が持続する)ことに起因す
る。更にMsやAsへの影響が非常に小さいことから比
較的自由に添加量を決定できる。しかし、Siの添加量
が4.0重量%を超えると鋼材を著しく脆化することか
らこれをSi添加量の上限とする。
Si: Si can remarkably improve the ductility of the steel material by delaying the transformation from γ to ε and at the same time, remarkably improve the strength of the steel sheet. This is S
This is because the addition of i delays the progress of the γ → ε transformation (the γ → ε transformation continues up to the high strain region). Further, since the influence on Ms and As is very small, the addition amount can be determined relatively freely. However, if the added amount of Si exceeds 4.0% by weight, the steel material is significantly embrittled, so this is made the upper limit of the added amount of Si.

【0014】Ni:Niの添加はγを安定化させること
によって鋼材の強度を低下させるが、鋼材の延性を著し
く向上させることから、加工性の観点からは非常に有効
な添加元素である。しかしながら、8重量%以上の添加
では室温でεを残留させることができなくなり、上記の
機構による制振性能を現出できず、また大量の添加は鋼
材の製造コストを増加させることから8重量%を添加の
上限とした。Fe−Mn合金にNiを単独添加する場合
には、合金の変態挙動を調整し、上記の機構による制振
性能を現出できるようにするために図1に示したような
成分範囲とすることが必要である。
Ni: The addition of Ni reduces the strength of the steel material by stabilizing γ, but it significantly improves the ductility of the steel material and is a very effective additive element from the viewpoint of workability. However, when 8 wt% or more is added, ε cannot be left at room temperature, the vibration damping performance by the above mechanism cannot be exhibited, and a large amount of addition increases the manufacturing cost of steel materials, so 8 wt% Was the upper limit of addition. When Ni alone is added to the Fe-Mn alloy, the compositional range shown in FIG. 1 should be set in order to adjust the transformation behavior of the alloy and to make the damping performance by the above mechanism appear. is necessary.

【0015】図1はFe−Mn合金にそれぞれCu,C
r,Niを単独添加した合金において制振性能を測定し
た結果、損失係数ηが0.005以上になる領域を示し
たものである。Fe−Mn合金にCuを単独添加した場
合には、図1において曲線1と曲線Cu及び第3元素添
加量=0(X軸)にて囲まれた領域でのみ損失係数ηが
0.005以上になる合金が得られた。CrやNiの単
独添加の場合にも曲線Cr、曲線Niで上記の曲線Cu
を置き換えた場合に、各々の場合で損失係数ηが0.0
05以上になる領域を示している。
FIG. 1 shows a Fe-Mn alloy containing Cu and C, respectively.
As a result of measuring the vibration damping performance of the alloy containing only r and Ni, the loss coefficient η shows a region in which it is 0.005 or more. When Cu alone is added to the Fe-Mn alloy, the loss coefficient η is 0.005 or more only in the area surrounded by the curve 1 and the curve Cu and the third element addition amount = 0 (X axis) in FIG. An alloy was obtained. Even when Cr or Ni is added alone, the above-mentioned curve Cu is the curve Cr and the curve Ni.
, The loss factor η is 0.0 in each case.
The area is equal to or greater than 05.

【0016】以上のような合金元素を複合添加する場合
には、上記のごとく各元素の添加量を制限するのみなら
ず、これらの元素の組み合わせの結果が下記(1),
(2)式の条件を満足する範囲内に限定することで初め
て良好な制振性能の現出が可能であることが判明した。
すなわち、各元素の添加量を重量%で測定した場合に、
Mn当量を表現するK1と図1の曲線1を示すK2が
In the case where the above alloying elements are added in combination, not only the addition amount of each element is limited as described above, but also the result of the combination of these elements is as follows (1),
It has been found that good vibration damping performance can be achieved only by limiting the condition of the expression (2) within the range satisfying the condition.
That is, when the addition amount of each element is measured in% by weight,
K1 expressing the Mn equivalent and K2 showing the curve 1 in FIG. 1 are

【数1】 の両式を満足する場合である。[Equation 1] This is the case when both equations are satisfied.

【0017】C:Cは固溶の状態ではγを安定化し、強
度を上げると共に、少量の添加では延性も増加させる。
0.02重量%程度以上では延性の向上は飽和するもの
の、更なる添加は強度の上昇により全体としてみた強度
−延性のバランスを向上させる。しかしながら、固溶C
は室温もしくは室温よりも高温で時効現象を示し、γ中
に生成するε相の界面の移動を妨げることでγとεの可
逆的な相遷移を困難にし、結果として上記の機構による
制振性能を劣化させる。従ってCを含有する場合にはC
起因の時効現象を起こさないような注意が必要である。
0.2重量%以下程度の少量のC添加の場合には使用前
に軽度の加工を与えることで上記の機構による制振性能
の現出が可能になるが、それ以上の量のCを添加した場
合には注意深く時効を抑えても環境によっては使用中に
時効し、制振性能の劣化を招き、使用前の加工ではもは
や制振性能を改善することができなくなる。従ってこれ
をC添加量の上限とする。Cによる時効劣化を防ぐ意味
で炭素量を低下させることは有意義であるが、0.00
05重量%以下にすることは製鋼段階における経済性か
ら大きな不利益をもたらす。従ってこれをC添加量の下
限値とした。しかしながら、鋼材に含まれるC原子を時
効しないように他の元素(例えばTi,Nb,V,Z
r,Mo等)によって炭化物としてCを固着させること
は特に有効である。
C: C stabilizes γ in a solid solution state, increases strength, and increases ductility when added in a small amount.
Although the improvement of the ductility is saturated at about 0.02% by weight or more, the further addition improves the strength-ductility balance as a whole due to the increase in the strength. However, solid solution C
Shows an aging phenomenon at room temperature or at a temperature higher than room temperature, and makes the reversible phase transition between γ and ε difficult by interfering with the movement of the interface of the ε phase formed in γ. Deteriorate. Therefore, when C is contained, C
Care must be taken not to cause the aging phenomenon.
In case of adding a small amount of C such as 0.2% by weight or less, it is possible to reveal the damping performance by the above mechanism by giving a slight processing before use, but adding a larger amount of C In such a case, even if the aging is carefully suppressed, it will be aged during use depending on the environment, leading to deterioration of the vibration damping performance, and it will no longer be possible to improve the vibration damping performance by machining before use. Therefore, this is the upper limit of the amount of C added. It is significant to reduce the carbon content in order to prevent aging deterioration due to C, but 0.00
The amount of less than 05% by weight brings about a great disadvantage from the economical efficiency in the steelmaking stage. Therefore, this was set as the lower limit of the amount of C added. However, other elements (for example, Ti, Nb, V, Z) are included so that the C atoms contained in the steel material are not aged.
It is particularly effective to fix C as a carbide with (r, Mo, etc.).

【0018】また以上の元素以外に、Pの添加は鋼材の
靭性を著しく低下させることから、望ましくは0.04
重量%以下の添加が望ましく、高い機械特性と制振性能
の両立を期待する場合にはP<0.005重量%とする
ことが望ましい。NについてはCと同様に時効劣化を起
こすので、望ましくは0.005重量%以下の添加にと
どめることが望ましく、またCの場合と同様に、特殊な
窒化物形成元素(例えばTi,Nb,B,Al等)を添
加することによって窒化物の形でNを固着することは制
振性能を高める上で有効である。
In addition to the above elements, addition of P remarkably lowers the toughness of the steel material, so 0.04 is desirable.
Addition of less than or equal to wt% is desirable, and P <0.005 wt% is desirable if both high mechanical properties and vibration damping performance are expected. As with C, aging deterioration occurs with respect to N, so it is desirable to add only 0.005% by weight or less, and as with C, special nitride-forming elements (eg Ti, Nb, B , Al, etc.) to fix N in the form of a nitride is effective in improving the vibration damping performance.

【0019】本発明において、合金の振動損失係数ηは
高い程良好な制振性能を示すが、その値が0.005以
下では従来の合金系と比べて特に大きな実用上の効果は
認められないことから、制振性能を期待する使用環境下
ではηの値としては最低0.005以上が必要であるの
でこれを期待される制振性能の下限値とした。
In the present invention, the higher the vibration loss coefficient η of the alloy is, the better the vibration damping performance is. However, when the value is 0.005 or less, a particularly large practical effect is not recognized as compared with the conventional alloy system. Therefore, at least 0.005 or more is required as the value of η under the use environment in which the vibration damping performance is expected, and this is set as the lower limit of the expected vibration damping performance.

【0020】また上記の成分系の合金は鋳造まま、もし
くは圧延や鍛造等の熱間加工ままのみでなく、冷間加工
後焼鈍しても、また冷間加工無しに熱処理をしても良好
な制振性能と良好な加工性を示す。また、相当塑性歪で
0.5以下の加工を加えることで制振性能の劣化はな
く、相当塑性歪0.2以下ではむしろ制振性能は上昇
し、0.2〜0.5程度の相当塑性歪でも際だった制振
特性の劣化が認められない。従って、使用前に冷間もし
くは温間で、相当塑性歪0.2程度以下の加工を加える
ことは制振性能を上昇させる意味で望ましく、またそれ
以上の歪の場合でも、相当塑性歪で0.5程度以下の加
工であれば実用上問題ない。このような加工による制振
特性の向上は従来の制振合金では認められていない特性
であり、冷間もしくは温間でのプレス成形、ロール成
形、鍛造、圧延、引張り、圧縮、曲げ等の加工により最
終製品を製造する場合に特に適している。またショット
ブラストのような外力によっても加工の場合と同様な効
果が得られる。
Further, the alloys of the above-mentioned constituents are good not only as cast or as hot-worked as rolled or forged, but also when annealed after cold-working or heat-treated without cold-working. It exhibits vibration damping performance and good workability. In addition, there is no deterioration of the vibration damping performance by adding a work of 0.5 or less with the equivalent plastic strain, and the vibration damping performance is rather increased with the equivalent plastic strain of 0.2 or less, which is equivalent to about 0.2 to 0.5. Even with plastic strain, no noticeable deterioration in damping characteristics is observed. Therefore, it is desirable to add a work of equivalent plastic strain of about 0.2 or less in cold or warm before use in the sense that the vibration damping performance is increased, and even if the strain is more than that, the equivalent plastic strain is 0 or less. There is no practical problem if the processing is about 0.5 or less. The improvement of damping characteristics by such processing is a characteristic that is not recognized in conventional damping alloys, and processing such as cold or warm press forming, roll forming, forging, rolling, tensioning, compression, bending, etc. Are particularly suitable for producing the final product according to. Further, the same effect as in the case of processing can be obtained by an external force such as shot blast.

【0021】[0021]

【実施例】表1に示す化学成分(全て重量%にて表示)
の合金を用いて、最終板厚を2.5mmに熱延し、巻取り
処理ままもしくは700℃〜1100℃の範囲で熱処理
した合金(表2の第4列にHOTと表示)、及び一部の
合金はその後1.0mm厚まで冷延した後に900℃−1
分の焼鈍を行い、これらの合金の種々の特性を室温で調
査した。合金の機械的性質はJIS5号引張り試験片を
用いて10mm/分の引張り速度で行ったものである。ま
た制振特性は損失係数ηを測定した。表1中のA〜Mは
本発明の対象となる合金成分を示し(表1の最終列に本
発明材と表示)、AAとBBはK2の値が、CCはK1
の値が、DDはC量が、EEとFFはK1の値が本発明
の範囲外となる比較例である。また表2中において、T
Sは破断速度(kgf/mm2 )を示し、T−El(%)は
破断伸びを示す。P.S.は制振性能測定前の予加工量
を示し、各数字は冷延によって与えた相当塑性歪の大き
さをあらわし、NONは予加工無しである。さらにミク
ロ組織は制振性能測定前の合金のミクロ組織の構成を示
し、γはオーステナイト、εはイプシロンマルテンサイ
ト、α′はα′マルテンサイトを示す。これらの表から
明らかなように本発明合金は優れた加工性と制振特性を
兼ね備えていることがわかる。
[Examples] Chemical components shown in Table 1 (all expressed in% by weight)
Alloys hot-rolled to a final thickness of 2.5 mm using the above alloy and heat-treated in the as-rolled state or in the range of 700 ° C to 1100 ° C (indicated as HOT in the fourth column of Table 2), and some Alloy is then cold rolled to 1.0mm thickness and then 900 ℃ -1
Minute annealing was performed and various properties of these alloys were investigated at room temperature. The mechanical properties of the alloy were measured using a JIS No. 5 tensile test piece at a tensile speed of 10 mm / min. For the damping characteristics, the loss coefficient η was measured. A to M in Table 1 represent alloy components to be the subject of the present invention (indicated as the present invention material in the last column of Table 1), AA and BB have K2 values, and CC has K1.
Is a comparative example in which the amount of C, the amount of C in DD, and the value of K1 in EE and FF are out of the range of the present invention. In Table 2, T
S indicates the breaking speed (kgf / mm 2 ), and T-El (%) indicates the breaking elongation. P. S. Indicates the amount of pre-processing before measuring the damping performance, each number represents the magnitude of the equivalent plastic strain given by cold rolling, and NON indicates no pre-processing. Further, the microstructure shows the structure of the alloy microstructure before vibration damping performance measurement, γ is austenite, ε is epsilon martensite, and α ′ is α ′ martensite. As is apparent from these tables, the alloy of the present invention has both excellent workability and vibration damping characteristics.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明は上記の実施例に示すごとく、こ
れまでの制振合金に無い新しい制振機構を利用すること
によって、塑性加工による制振性能の劣化の無い、加工
性に優れた高強度制振合金を供給することを可能にした
ものであり、自動車や他の構造物に適用することによっ
て、振動、騒音を低減させることを通じて、社会環境の
改善に大きく貢献することができる。
As shown in the above embodiment, the present invention utilizes a new damping mechanism that has not been present in damping alloys so far, and has excellent workability without deterioration of damping performance due to plastic working. It is possible to supply a high-strength damping alloy, and by applying it to automobiles and other structures, it is possible to greatly contribute to the improvement of the social environment by reducing vibration and noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe−Mn合金において、Mn添加量とη≧
0.005以上となるCu,Cr,Niのそれぞれの添
加範囲を示す図である。
FIG. 1 shows the amount of Mn added and η ≧ in an Fe—Mn alloy.
It is a figure which shows each addition range of Cu, Cr, and Ni which becomes 0.005 or more.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mnを10〜27重量%含むFe合金
で、実使用段階でのミクロ組織がオーステナイトとイプ
シロンマルテンサイトの混合もしくはこれに一部α′マ
ルテンサイトを含む混合組織であり、合金の振動損失係
数ηが0.005以上であることを特徴とする、加工性
と制振性に優れた高強度合金。
1. An Fe alloy containing 10 to 27% by weight of Mn, wherein the microstructure in a practical use stage is a mixture of austenite and epsilon martensite or a mixed structure containing a part of α ′ martensite, A high-strength alloy excellent in workability and vibration damping, characterized by having a vibration loss coefficient η of 0.005 or more.
【請求項2】 Cu≦4.0重量%、Cr≦7.0重量
%、Si≦4.0重量%、Ni≦8.0重量%の範囲内
でこれらの合金の1種もしくは2種以上を含有すること
を特徴とする請求項1記載の加工性と制振性に優れた高
強度合金。
2. One or more of these alloys within the range of Cu ≦ 4.0% by weight, Cr ≦ 7.0% by weight, Si ≦ 4.0% by weight, Ni ≦ 8.0% by weight. The high-strength alloy excellent in workability and vibration damping according to claim 1, characterized by containing.
【請求項3】 更にCを0.0005〜0.2重量%含
有することを特徴とする請求項1または2記載の加工性
と制振性に優れた高強度合金。
3. The high-strength alloy excellent in workability and vibration damping property according to claim 1 or 2, further containing 0.0005 to 0.2% by weight of C.
JP34121291A 1991-12-24 1991-12-24 High strength alloy excellent in workability and damping capacity Withdrawn JPH05255813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34121291A JPH05255813A (en) 1991-12-24 1991-12-24 High strength alloy excellent in workability and damping capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34121291A JPH05255813A (en) 1991-12-24 1991-12-24 High strength alloy excellent in workability and damping capacity

Publications (1)

Publication Number Publication Date
JPH05255813A true JPH05255813A (en) 1993-10-05

Family

ID=18344249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34121291A Withdrawn JPH05255813A (en) 1991-12-24 1991-12-24 High strength alloy excellent in workability and damping capacity

Country Status (1)

Country Link
JP (1) JPH05255813A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649914A2 (en) * 1993-10-22 1995-04-26 Woojin Osk Corporation An Fe-Mn vibration damping alloy steel and a method for making the same
KR100430967B1 (en) * 2001-12-19 2004-05-12 주식회사 우진 Fe-Mn Damping alloy having a good corrosion resistant and weather proof property
WO2006109919A1 (en) * 2005-04-11 2006-10-19 Korea Institute Of Science And Technology High-strength damping alloys and low-noise diamond saw using the same
DE102005062221B3 (en) * 2005-12-20 2007-05-03 Salzgitter Flachstahl Gmbh Deformable light alloy steel with TRIP) and TWIP properties useful in production of products having decreased crack liability twinning induced plasticity (TWIP) good ductility and tensile strength without increase in hydrogen embrittlement
JP2011190525A (en) * 2009-08-26 2011-09-29 Tk Techno Consulting:Kk Steel having excellent vibration-damping property, method for producing the same and vibration-damping body comprising the steel
JP2011220988A (en) * 2010-04-09 2011-11-04 Tk Techno Consulting:Kk Combination weighing device
JP2013001998A (en) * 2011-06-14 2013-01-07 Tk Techno Consulting:Kk Vibration-damping cutting tool and method for manufacturing the same
JP2016540117A (en) * 2013-10-23 2016-12-22 ポスコPosco High strength high manganese steel sheet with excellent vibration isolation and method for producing the same
JP2017504719A (en) * 2013-12-24 2017-02-09 ポスコPosco Steel material with excellent weldability and impact toughness of welds
WO2018186321A1 (en) * 2017-04-04 2018-10-11 国立研究開発法人物質・材料研究機構 Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
JP2020528495A (en) * 2017-08-08 2020-09-24 ポスコPosco Hot-rolled steel sheet with excellent strength and elongation and manufacturing method
US11285529B2 (en) * 2018-04-24 2022-03-29 Nucor Corporation Aluminum-free steel alloys and methods for making the same
CN115323280A (en) * 2022-08-30 2022-11-11 鞍钢集团北京研究院有限公司 High-strength high-toughness high-damping alloy resistant to industrial atmospheric corrosion and preparation method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649914A2 (en) * 1993-10-22 1995-04-26 Woojin Osk Corporation An Fe-Mn vibration damping alloy steel and a method for making the same
JPH07150300A (en) * 1993-10-22 1995-06-13 Woojin Co Ltd Fe-mn-based damping alloy steel and its production
EP0649914A3 (en) * 1993-10-22 1995-10-25 Woojin Osk Corp An Fe-Mn vibration damping alloy steel and a method for making the same.
KR100430967B1 (en) * 2001-12-19 2004-05-12 주식회사 우진 Fe-Mn Damping alloy having a good corrosion resistant and weather proof property
WO2006109919A1 (en) * 2005-04-11 2006-10-19 Korea Institute Of Science And Technology High-strength damping alloys and low-noise diamond saw using the same
DE102005062221B3 (en) * 2005-12-20 2007-05-03 Salzgitter Flachstahl Gmbh Deformable light alloy steel with TRIP) and TWIP properties useful in production of products having decreased crack liability twinning induced plasticity (TWIP) good ductility and tensile strength without increase in hydrogen embrittlement
JP2011190525A (en) * 2009-08-26 2011-09-29 Tk Techno Consulting:Kk Steel having excellent vibration-damping property, method for producing the same and vibration-damping body comprising the steel
JP2011220988A (en) * 2010-04-09 2011-11-04 Tk Techno Consulting:Kk Combination weighing device
JP2013001998A (en) * 2011-06-14 2013-01-07 Tk Techno Consulting:Kk Vibration-damping cutting tool and method for manufacturing the same
JP2016540117A (en) * 2013-10-23 2016-12-22 ポスコPosco High strength high manganese steel sheet with excellent vibration isolation and method for producing the same
US10563280B2 (en) 2013-10-23 2020-02-18 Posco High manganese steel sheet having high strength and excellent vibration-proof properties and method for manufacturing same
JP2017504719A (en) * 2013-12-24 2017-02-09 ポスコPosco Steel material with excellent weldability and impact toughness of welds
US10301707B2 (en) 2013-12-24 2019-05-28 Posco Steel having excellent weldability and impact toughness of welding zone
WO2018186321A1 (en) * 2017-04-04 2018-10-11 国立研究開発法人物質・材料研究機構 Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
JP2018178150A (en) * 2017-04-04 2018-11-15 国立研究開発法人物質・材料研究機構 Fe-Mn-Si-BASED ALLOY CASTING MATERIAL EXCELLENT IN LOW CYCLE FATIGUE PROPERTY
JP2020528495A (en) * 2017-08-08 2020-09-24 ポスコPosco Hot-rolled steel sheet with excellent strength and elongation and manufacturing method
US11186892B2 (en) 2017-08-08 2021-11-30 Posco Hot rolled steel sheet having excellent strength and elongation
US11285529B2 (en) * 2018-04-24 2022-03-29 Nucor Corporation Aluminum-free steel alloys and methods for making the same
CN115323280A (en) * 2022-08-30 2022-11-11 鞍钢集团北京研究院有限公司 High-strength high-toughness high-damping alloy resistant to industrial atmospheric corrosion and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5393459B2 (en) High manganese type high strength steel plate with excellent impact characteristics
JP4071948B2 (en) High strength steel sheet having high bake hardenability at high pre-strain and its manufacturing method
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
JPH06505535A (en) Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JP3572894B2 (en) Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JP2004043856A (en) Low yield ratio type steel pipe
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP2022537932A (en) Cold rolled martensitic steel and its method of martensitic steel
US5634990A (en) Fe-Mn vibration damping alloy steel and a method for making the same
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
JP5320621B2 (en) Heat-treated reinforced steel sheet with excellent hot press workability and method for producing the same
JPS5817805B2 (en) Method of manufacturing vibration damping alloy
JP3582182B2 (en) Cold rolled steel sheet excellent in impact resistance and method for producing the same
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3220322B2 (en) Maraging steel with excellent heat check resistance
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JP3144228B2 (en) Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material
JPS5945748B2 (en) Damping steel plate for processing and its manufacturing method
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic
JP2024500144A (en) Bolt wire rods and parts with improved delayed fracture resistance and their manufacturing method
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JPH11100639A (en) Good workability and high strength hot rolled steel sheet having high dynamic deformation resistance and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311