JP3492026B2 - High-strength high-toughness damping alloy and method for producing the same - Google Patents

High-strength high-toughness damping alloy and method for producing the same

Info

Publication number
JP3492026B2
JP3492026B2 JP14692995A JP14692995A JP3492026B2 JP 3492026 B2 JP3492026 B2 JP 3492026B2 JP 14692995 A JP14692995 A JP 14692995A JP 14692995 A JP14692995 A JP 14692995A JP 3492026 B2 JP3492026 B2 JP 3492026B2
Authority
JP
Japan
Prior art keywords
strength
toughness
less
damping alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14692995A
Other languages
Japanese (ja)
Other versions
JPH08319537A (en
Inventor
幸男 冨田
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14692995A priority Critical patent/JP3492026B2/en
Publication of JPH08319537A publication Critical patent/JPH08319537A/en
Application granted granted Critical
Publication of JP3492026B2 publication Critical patent/JP3492026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶、橋梁、産業機
械、建築用構造材料としての強度と靱性を満足し、同時
に高い制振性を有する制振合金及びその製造方法に関
し、特に、引張強さが400MPa以上ないし430M
Pa以上の高強度と、0℃でのシャルピー吸収エネルギ
ーが50J以上ないし70J以上の高靱性を有し、同時
に、損失係数0.03以上の高い制振性を有する、高強
度高靱性制振合金及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION This invention is related ships, bridges, industrial machinery, and satisfy the strength and toughness of the building structure material, the damping alloy, and a manufacturing method thereof simultaneously high vibration damping property
In particular, the tensile strength is 400 MPa or more to 430 M.
High strength above Pa and Charpy absorbed energy at 0 ℃
Has high toughness of 50 J or more to 70 J or more, and at the same time
In addition, it has a high damping property with a loss coefficient of 0.03 or more.
High toughness damping alloy and its manufacturing method
It

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物の
材料には、構造材料の基本特性である強度に加え高い制
振性と靱性が同時に要求される傾向にある。たとえば、
橋梁上の高速鉄道走行時や大規模土木、建築作業時の騒
音、振動を構造材料そのものの制振効果で抑え、かつ、
構造部材として十分な強度と靱性を有する材料である。
2. Description of the Related Art Recently, materials for ships, bridges, industrial machines and buildings tend to be required to have high vibration damping properties and toughness at the same time in addition to strength which is a basic characteristic of structural materials. For example,
Noise and vibration during high-speed railway running on bridges, large-scale civil engineering, and construction work are suppressed by the damping effect of the structural material itself, and
It is a material having sufficient strength and toughness as a structural member.

【0003】樹脂サンドイッチ型制振鋼板に替わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振特性を得るため、フェ
ライトフォーマーを添加して組織をフェライト単相化す
ることをねらい、Al及びSiを添加した材料と、Cr
を積極的に添加した材料との2種類に分けられる。前者
の例としては、特開平4−99148号公報に記載され
るようにAlを最高7.05%及びSiを最高4.5%
まで添加した強磁性型制振合金があり、後者の例として
は、特開昭52−73118号公報に記載されるように
Crを8〜30%添加した強磁性制振合金などがある。
さらに、特開平6−220583号公報及び特開平5−
302148号公報には、Mnが0.1又は0.2%以
下で、Crを1〜5%添加した強磁性制振合金が記載さ
れている。また、特願平6−258982号明細書(特
開平8−158012号公報)には、Mnを0.2〜
2.5%、Crを1〜5%添加した強磁性制振合金が記
載されている。
The conventional iron-based material used for a member for the purpose of damping property instead of the resin sandwich type damping steel plate is high due to the hysteresis due to the irreversible movement of the domain wall movement under the action of alternating stress due to vibration. In order to obtain damping characteristics, a material with Al and Si added with the aim of making the structure into a ferrite single phase by adding a ferrite former, and Cr
Can be divided into two types: materials with active addition. As an example of the former, as described in JP-A-4-99148, Al is 7.05% at maximum and Si is 4.5% at maximum.
There is a ferromagnetic damping alloy added to the above, and an example of the latter is a ferromagnetic damping alloy containing 8 to 30% of Cr as described in JP-A-52-73118.
Furthermore, JP-A-6-220583 and JP-A-5-205583
No. 302148 describes a ferromagnetic damping alloy having Mn of 0.1 or 0.2% or less and Cr of 1 to 5% added. In addition, Japanese Patent Application No. 6-258982 ( specification
(Kaihei 8-158012) , Mn is 0.2 to.
A ferromagnetic damping alloy containing 2.5% and 1 to 5% Cr is described.

【0004】また、田中良平、「制振材料<その機能と
応用>」広済堂1992年3月発行、192〜197頁
には、強磁性型合金として、外部応力が磁区壁の移動を
引き起こし、それによるヒステリシス損で振動エネルギ
ーが吸収されることが記述されている。
Also, Ryohei Tanaka, “Vibration Control Material <Functions and Applications>” published by Kosaido March 1992, pages 192 to 197, shows that as a ferromagnetic alloy, external stress causes movement of magnetic domain walls. It is described that the vibration energy is absorbed by the hysteresis loss due to.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の合金のうち特開平4−99148号公報記載の合金は
Al及びSi添加量の上限規制が不適当であるため、粗
大なAl系及びSi系介在物の生成をまねき、これが破
壊の発生点として作用するため靱性が低下する。また、
特開昭52−73118号公報記載の合金はCr添加が
過剰なため、上記同様Cr系介在物の靱性低下をまね
く。さらに、特開平6−220583号公報及び特開平
5−302148号公報記載の合金は、強度上昇元素が
添加されていないため強度が低い。また、特願平6−2
58982号明細書(特開平8−158012号公報)
記載の合金は製造方法が適切でないため、制振性が低
い。さらに、「制振材料<その機能と応用>」は制振合
金の機構を書いたもので、その向上策や具体的な成分系
・製造方法、あるいは制振性に加えて強度と靱性を同時
に満足させる方法に関する記述はない。
However, among these alloys, the alloy described in Japanese Patent Application Laid-Open No. 4-99148 has an inappropriate upper limit regulation of Al and Si addition amounts. This leads to the formation of a product, which acts as the point of origin of fracture, resulting in a decrease in toughness. Also,
Since the alloy described in JP-A-52-73118 has an excessive Cr content, the toughness of Cr-based inclusions is reduced as in the above case. Further, the alloys described in JP-A-6-220583 and JP-A-5-302148 have low strength because no strength increasing element is added. Also, Japanese Patent Application No. 6-2
58982 specification (Unexamined-Japanese-Patent No. 8-15812)
The alloys described have poor vibration damping properties due to improper manufacturing methods. In addition, "Damping material <the function and application>" is a description of the mechanism of damping alloy, and its improvement measures, concrete component system and manufacturing method, or damping property as well as strength and toughness at the same time. There is no description of how to satisfy.

【0006】そこで本発明は、優れた制振性に加えて
強度と靱性を同時に満足する、高強度高靱性制振合金及
びその製造方法を提供することを目的とする。
Therefore , an object of the present invention is to provide a high-strength and high-toughness vibration-damping alloy that satisfies both strength and toughness at the same time in addition to excellent vibration-damping properties, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の高強度高靱性制
振合金は以下の1)3)の通りである。
The high-strength and high-toughness damping alloy of the present invention is as described below in 1) to 3) .

【0008】1) 量%で、C:0.02%以下、S
i:0.5〜3%、Mn:0.2〜2.5%、P:0.
010%以下、S:0.005%以下、Cr:1〜5
%、Al:0.005〜5%、N:0.006%以下を
含有し、残部Fe及び不可避的不純物からなり、(20
0)回折強度比が2.0〜15.0、損失係数≧0.0
3、0℃でのシャルピー吸収エネルギー≧50J、引張
強さ≧400MPaの高強度高靱性制振合金。
[0008] 1) in mass%, C: 0.02% or less, S
i: 0.5 to 3%, Mn: 0.2 to 2.5%, P: 0.
010% or less, S: 0.005% or less, Cr: 1 to 5
%, Al: 0.005 to 5%, N: 0.006% or less, and the balance Fe and unavoidable impurities.
0) Diffraction intensity ratio is 2.0 to 15.0, loss coefficient ≧ 0.0
3, high-strength, high-toughness damping alloy with Charpy absorbed energy ≧ 50 J at 0 ° C. and tensile strength ≧ 400 MPa.

【0009】2) 前記1)の合金と同一組成を有する鋼
に、さらに、量%で、Cu:0.05〜2.5%、N
i:0.05〜2.5%、Mo:0.05〜4.5%、
Nb:0.005〜0.2%、V:0.005〜0.2
%、Ti:0.005〜0.1%、B:0.0003〜
0.005%の1種又は2種以上を含むことを特徴とす
る、高強度高靱性制振合金。
[0009] Steel having the same composition as the alloy of 2) the 1), further, in mass%, Cu: 0.05~2.5%, N
i: 0.05 to 2.5%, Mo: 0.05 to 4.5%,
Nb: 0.005-0.2%, V: 0.005-0.2
%, Ti: 0.005-0.1%, B: 0.0003-
Be characterized contains Mukoto one or more 0.005%
That, high strength and high toughness damping alloy.

【0010】3) 前記1)又は2)の合金と同一組成を有す
る鋼に、さらに、量%で、Ca:0.001〜0.0
5%、REM:0.001〜0.1%の1種又は2種を
むことを特徴とする、高強度高靱性制振合金。
[0010] 3) to the 1) or 2) an alloy and steel having the same composition, further, in mass%, Ca: from 0.001 to 0.0
5%, REM: 0.001~0.1% of one or, characterized in the two <br/> containing Mukoto, high strength and high toughness damping alloy.

【0011】また、本発明の高強度高靱性制振合金の製
造方法は以下の4)7)の通りである。
The method for producing the high strength and high toughness damping alloy of the present invention is as follows 4) to 7) .

【0012】4) 量%で、C:0.02%以下、S
i:0.5〜3%、Mn:0.2〜2.5%、P:0.
010%以下、S:0.005%以下、Cr:1〜5
%、Al:0.005〜5%、N:0.006%以下を
含有し、残部Fe及び不可避的不純物からなる鋼を
熱温度950〜1100℃、950℃以下の圧下率30
〜70%、圧延仕上温度700〜850℃で熱間圧延
し、650〜950℃で焼戻し又は焼きなまし熱処理す
ることを特徴とする、(200)回折強度比が2.0〜
15.0、損失係数≧0.03、0℃でのシャルピー吸
収エネルギー≧50J、引張強さ≧400MPaの高強
度高靱性制振合金の製造方法。
[0012] 4) in mass%, C: 0.02% or less, S
i: 0.5 to 3%, Mn: 0.2 to 2.5%, P: 0.
010% or less, S: 0.005% or less, Cr: 1 to 5
%, Al: 0.005 to 5%, N: 0.006% or less, and a balance Fe and unavoidable impurities, and a heating rate of 950 to 1100 ° C. and a temperature of 950 ° C. or less.
˜70%, hot rolling at a rolling finishing temperature of 700 to 850 ° C., and tempering or annealing heat treatment at 650 to 950 ° C. , (200) diffraction intensity ratio of 2.0 to
A manufacturing method of a high-strength and high-toughness vibration-damping alloy having 15.0, a loss coefficient ≧ 0.03, a Charpy absorbed energy at 0 ° C. ≧ 50 J, and a tensile strength ≧ 400 MPa.

【0013】5) 前記4)の合金と同一組成を有する鋼
に、さらに、量%で、Cu:0.05〜2.5%、N
i:0.05〜2.5%、Mo:0.05〜4.5%、
Nb:0.005〜0.2%、V:0.005〜0.2
%、Ti:0.005〜0.1%、B:0.0003〜
0.005%の1種又は2種以上を含むことを特徴とす
る、高強度高靱性制振合金の製造方法。
[0013] 5) a steel having the same composition as the alloy of the 4), further, in mass%, Cu: 0.05~2.5%, N
i: 0.05 to 2.5%, Mo: 0.05 to 4.5%,
Nb: 0.005-0.2%, V: 0.005-0.2
%, Ti: 0.005-0.1%, B: 0.0003-
Be characterized contains Mukoto one or more 0.005%
A method for producing a high-strength, high-toughness damping alloy.

【0014】6) 前記4)又は5)の合金と同一組成を有す
る鋼に、さらに、量%で、Ca:0.001〜0.0
5%、の1種又は2種を含むことを特徴とする、高強度
高靱性制振合金の製造方法。
[0014] 6) in the 4) or 5) of the alloy and steel having the same composition, further, in mass%, Ca: .001 to 0.0
5%, one or two of the said containing Mukoto, method of producing a high strength and high toughness damping alloy.

【0015】7) 前記圧延仕上温度を、Ar1 −20℃
〜Ar1 +50℃とすることを特徴とする、上記 4) ない
6) のいずれか1項に記載の高強度高靱性制振合金の製
造方法
[0015] 7) the finish rolling temperature, Ar 1 -20 ° C.
Characterized by a ~Ar 1 + 50 ℃, the 4) no
A method for producing the high-strength, high-toughness damping alloy according to any one of 6) .

【0016】[0016]

【0017】[0017]

【0018】[0018]

【作用】本発明は、強磁性型の鉄系フェライト合金に、
耐食性向上に不可欠で、かつフェライトフォーマーであ
り固溶体強化に有効なCrを適切な範囲で添加し、さら
に、強度上昇に不可欠な固溶体強化元素のMnとフェラ
イトフォーマーでありかつ固溶体強化に有効なSi、A
lとを同時添加することにより、優れた制振性に加えて
強度と靱性を一度に有する合金を得ることに成功した。
すなわち、本発明は、振動による交番応力作用下での磁
壁移動の非可逆運動によるヒステリシスに起因した高い
制振特性を得るために適度のフェライトフォーマーを有
するフェライト相を基本とし、フェライトフォーマー及
び固溶体強化元素であり耐食性に有効なCr、フェライ
トフォーマー及び固溶体強化元素であるSiとAl、大
幅な強度上昇をもたらす固溶体強化元素であるMnの添
加によって、制振性と強度を同時に満足させる。このよ
うに、本発明合金にはマトリックスの磁性向上と強度向
上のためフェライトフォーマーを添加するが、過剰の添
加は介在物や析出物の生成を招き、磁壁移動を妨げ、制
振性を大きく損なうため上限がある。
The present invention provides a ferromagnetic iron-based ferrite alloy,
Cr, which is indispensable for improving corrosion resistance and which is a ferrite former and effective for solid solution strengthening, is added in an appropriate range. Further, Mn, which is a solid solution strengthening element essential for increasing strength, and ferrite former, which is effective for solid solution strengthening. Si, A
By simultaneously adding 1 and 1, we succeeded in obtaining an alloy having excellent vibration damping properties, strength and toughness at the same time.
That is, the present invention is based on a ferrite phase having a proper ferrite former in order to obtain a high damping characteristic due to the hysteresis due to the irreversible motion of the domain wall movement under the action of alternating stress due to vibration, and the ferrite former and Vibration-damping property and strength are simultaneously satisfied by adding Cr, which is a solid solution strengthening element and effective for corrosion resistance, ferrite former, Si and Al which are solid solution strengthening elements, and Mn which is a solid solution strengthening element which brings about a significant strength increase. As described above, a ferrite former is added to the alloy of the present invention in order to improve the magnetism and strength of the matrix, but excessive addition causes the formation of inclusions and precipitates, hinders the domain wall movement, and increases the vibration damping property. There is an upper limit to damage.

【0019】本発明の高強度高靱性制振合金の製造方法
は、細粒でも制振性向上が図れる方法である。従来は結
晶粒界が磁壁移動を阻害するため、もっぱら粗粒化する
ことで制振性を向上させていたが、粗粒では靱性が低下
する。本発明では、粗粒化による制振性向上に替わる方
法として、(200)回折強度を高くすることにした。
(200)回折強度を高くすると、鋼板表面に平行な方
向の<100>方位が強化される。つまり、磁化容易方
向が鋼板表面に平行な方向に強化され、制振性が向上す
る。(200)回折強度比を2以上にすれば制振性が向
上し、15.0超にすると逆に制振性が低下する。な
お、(200)回折強度比とは、X線で板厚方向の(2
00)回折強度を測定し、ランダムサンプル材の(20
0)回折強度に対する比を求めたものである。
The method for producing the high strength and high toughness damping alloy of the present invention is a method capable of improving the damping property even with fine particles. Conventionally, the crystal grain boundaries hinder the domain wall movement, so the vibration damping properties have been improved by exclusively coarsening the grains, but the coarse grains reduce the toughness. In the present invention, the (200) diffraction intensity is increased as an alternative method to improve the vibration damping property by coarsening.
When the (200) diffraction intensity is increased, the <100> orientation parallel to the steel sheet surface is strengthened. That is, the easy magnetization direction is strengthened in the direction parallel to the steel sheet surface, and the vibration damping property is improved. If the (200) diffraction intensity ratio is 2 or more, the vibration damping property is improved . On the other hand, if it exceeds 0 , the vibration damping property deteriorates. The (200) diffraction intensity ratio is defined as (2
00) Diffraction intensity was measured and
0) This is the ratio to the diffraction intensity.

【0020】(200)回折強度比を高くするためには
低温圧延を行うことが必要で、950℃以下の圧下率を
30%以上にすればよい。圧延仕上温度をAr1 −20
℃〜Ar1 +50℃にすると(200)回折強度比がさ
らに向上し、制振特性が一層向上する。熱間圧延後、圧
延によって鋼板中に導入された歪を減少させるために焼
戻し又は焼きなまし熱処理が必要であるが、集合組織は
高温で熱処理すると弱くなるため、上限温度は950℃
である。
To increase the (200) diffraction intensity ratio, it is necessary to carry out low temperature rolling, and the rolling reduction at 950 ° C. or lower may be set to 30% or higher. The finish rolling temperature Ar 1 -20
° C. When the ~Ar 1 + 50 ℃ (200) diffraction intensity ratio is further improved damping characteristics are further improved. After hot rolling, tempering or annealing heat treatment is necessary to reduce the strain introduced into the steel sheet by rolling, but the upper limit temperature is 950 ° C because the texture becomes weak when heat treating at high temperature.
Is.

【0021】次に、本発明の限定理由を説明する。Next, the reasons for limitation of the present invention will be described.

【0022】Cは固溶状態でも炭化物として析出しても
磁壁移動の障害として作用して制振性を低下させるため
低いほど好ましく、上限を0.02%とする。
C acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a carbide, and lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.02%.

【0023】Siは脱酸材として重要である以外に、重
要なフェライトフォーマーかつ固溶体強化元素であるた
め制振性及び強度確保上不可欠であり、0.5%以上の
添加が必要である。一方、3%を超えて添加するとSi
2 などの介在物の生成をまねき、破壊の発生点として
作用するため靱性を著しく低下させる。従ってSiの添
加範囲は0.5〜3%とする。
In addition to being important as a deoxidizer, Si is an important ferrite former and solid solution strengthening element, so Si is indispensable for ensuring vibration damping and strength, and 0.5% or more must be added. On the other hand, if added in excess of 3%, Si
It causes the formation of inclusions such as O 2 and acts as a point of occurrence of fracture, which significantly reduces toughness. Therefore, the range of addition of Si is 0.5 to 3%.

【0024】Mnは脱酸及びSを固定して粒界脆化を抑
制すると同時に固溶体強化元素であるため最低0.2%
確保する必要があるが、2.5%以上の添加では制振性
の低下が起こる。このためMn量は0.2〜2.5%と
する。
Since Mn is a deoxidizer and fixes S to suppress grain boundary embrittlement and is a solid solution strengthening element, at least 0.2%.
Although it is necessary to secure it, if 2.5% or more is added, the vibration damping property will decrease. Therefore, the amount of Mn is set to 0.2 to 2.5%.

【0025】P、Sは鋼中において非金属介在物を形成
し、かつ偏析することにより磁壁の移動を妨げる害を及
ぼし制振性を低下させるので少ないほどよい。このた
め、Pは0.010%以下、Sは0.005%以下とす
る。
P and S form a non-metallic inclusion in the steel and segregate to impede the movement of the magnetic domain wall to lower the vibration damping property. Therefore, P is 0.010% or less and S is 0.005% or less.

【0026】Crは重要なフェライトフォーマーであ
り、制振性向上及び強化元素として不可欠である。その
ため最低1%必要であるが、5%を超えるとCr2 Nな
どの析出物が生じ、破壊の発生点として作用するため靱
性を著しく低下させる。従ってCr量は1〜5%とす
る。
Cr is an important ferrite former and is indispensable as a vibration damping property improving and strengthening element. Therefore, at least 1% is required, but if it exceeds 5%, precipitates such as Cr 2 N are generated and act as a point where fracture occurs, so the toughness is significantly reduced. Therefore, the amount of Cr is set to 1 to 5%.

【0027】AlはSiやMnと同様に脱酸材として重
要であるほか、制振性と強度を向上させる重要な元素で
ある。最低0.005%を確保する必要があるが、過剰
添加によりAl23 などの介在物のほか、Nと化合し
てAlNなどの析出物を生成し、著しい靱性の低下をま
ねくため上限を5%に制限する。さらに、制振性向上の
観点から望ましいのは0.2〜0.4%である。
Similar to Si and Mn, Al is an important element as a deoxidizing material, and is an important element for improving vibration damping property and strength. It is necessary to secure at least 0.005%, but in addition to inclusions such as Al 2 O 3 due to excessive addition, it forms a precipitate such as AlN by combining with N, which causes a remarkable decrease in toughness, so the upper limit is set. Limit to 5%. Further, 0.2 to 0.4% is preferable from the viewpoint of improving the vibration damping property.

【0028】Nは固溶状態でも窒化物として析出しても
磁壁移動の障害として作用して制振性を低下させるため
低いほど好ましく、上限を0.006%とする。
N, which acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a nitride, lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.006%.

【0029】必要に応じて添加するCu、Ni、Mo、
Nb、V、Ti、Bは強度上昇に有効な元素であり、そ
の効果が不足しない範囲として前記の量を下限とし、ま
た制振性及び靱性が劣化しない範囲として前記の量を上
限とした。
Cu, Ni, Mo, which are added if necessary,
Nb, V, Ti, and B are elements effective in increasing strength, and the above amount was set as the lower limit so that the effect is not insufficient, and the above amount was set as the upper limit as the range in which vibration damping and toughness were not deteriorated.

【0030】必要に応じて添加するCa、REMは靱性
向上に有効な元素であり、その効果が不足しない範囲と
して前記の量を下限とし、また靱性がむしろ低下し制振
性が劣化しない範囲として前記の量を上限とした。
Ca and REM, which are added as necessary, are elements effective for improving the toughness, and the above amount is set as the lower limit as a range in which the effect is not insufficient, and a range in which the toughness is not lowered and the vibration damping property is not deteriorated. The above amount was made the upper limit.

【0031】加熱温度は加熱オーステナイト粒を微細に
し、(200)回折強度比を高くするため1100℃以
下とし、さらに、加熱時の鋼板内温度偏差をなくすため
950℃以上とする。
The heating temperature is 1100 ° C. or lower in order to make the heated austenite grains fine and increase the (200) diffraction intensity ratio, and is 950 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating.

【0032】圧延条件に関しては、(200)回折強度
比を高くするため950℃以下で30%以上の圧延が必
要であるが、圧下率が70%を超えると結晶粒が細粒に
なりすぎ、制振性が低下する。
Regarding the rolling conditions, in order to raise the (200) diffraction intensity ratio, it is necessary to roll at 30% or more at 950 ° C. or lower, but if the rolling reduction exceeds 70%, the crystal grains become too fine, The damping property is reduced.

【0033】圧延仕上温度は950℃以下で30%以上
の圧延を行うため850℃以下となるが、700℃未満
ではフェライト域圧延となり靱性が低下するため、下限
は700℃とする。さらに、圧延仕上温度をAr1 −2
0℃〜Ar1 +50℃にすれば(200)回折強度比が
さらに向上し、制振特性が一層向上する。
The rolling finishing temperature is 850 ° C. or lower because the rolling finish temperature is 950 ° C. or lower and 30% or more is performed. However, if the rolling finish temperature is lower than 700 ° C., the ferrite region rolling occurs and the toughness decreases, so the lower limit is 700 ° C. Furthermore, the rolling finishing temperature is set to Ar 1-2.
When the temperature is set to 0 ° C. to Ar 1 + 50 ° C., the (200) diffraction intensity ratio is further improved, and the vibration damping property is further improved.

【0034】熱間圧延後、圧延によって鋼板中に導入さ
れた歪を減少させるために焼戻し又は焼きなまし熱処理
が必要であり、650℃以上の熱処理を行うが、集合組
織は高温で熱処理すると弱くなるため、上限温度は95
0℃とする。
After hot rolling, tempering or annealing heat treatment is necessary in order to reduce the strain introduced into the steel sheet by rolling, and heat treatment at 650 ° C. or higher is performed, but the texture becomes weak when heat treated at high temperature. , The maximum temperature is 95
Set to 0 ° C.

【0035】[0035]

【実施例】まず表1に示す成分範囲の供試合金を作製
し、これより元厚×40mm幅×200mm長さの板状
試験片を加工し、機械インピーダンス法による制振性測
定を行った。
EXAMPLE First, a matchmaking alloy having the composition range shown in Table 1 was prepared, and a plate-like test piece having an original thickness of 40 mm width and a length of 200 mm was machined from this, and the vibration damping property was measured by the mechanical impedance method. .

【0036】表1に示す合金のうち鋼A〜Eは本発明の
成分範囲の合金であり、鋼F〜Mは本発明の成分範囲外
の合金である。これらの鋼について、表2に示す製造条
件で製造したものの各種特性を合わせて表2に示す。例
1〜5は本発明例であり、例6〜20は比較例である。
例1、2、6〜13は板厚20mm、例3は板厚2m
m、例4、5は板厚70mm、例14〜20は板厚40
mmである。
Among the alloys shown in Table 1, steels A to E are alloys within the composition range of the present invention, and steels F to M are alloys outside the composition range of the present invention. Table 2 also shows various characteristics of these steels manufactured under the manufacturing conditions shown in Table 2. Examples 1 to 5 are examples of the present invention, and Examples 6 to 20 are comparative examples.
Examples 1, 2, 6 to 13 have a plate thickness of 20 mm, and Example 3 has a plate thickness of 2 m.
m, Examples 4 and 5 have a plate thickness of 70 mm, and Examples 14 to 20 have a plate thickness of 40.
mm.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】本発明例1は(200)回折強度比が2以
上で、良好な制振性能(η≧0.03)、高強度(≧4
00MPa)、高靱性(≧50J)を有する。本発明例
2、3は、強度上昇に有効な選択元素を含有するため、
さらに高強度(≧430MPa)で、かつ、本発明例2
はAlが望ましい範囲にあるため制振性能がさらに高
い。本発明例4、5は靱性上昇に有効な選択元素を含有
するため、さらに高靱性(≧70J)である。
Inventive Example 1 has a (200) diffraction intensity ratio of 2 or more, good vibration damping performance (η ≧ 0.03), and high strength (≧ 4).
00 MPa) and high toughness (≧ 50 J). Inventive Examples 2 and 3 contain selective elements effective for increasing strength,
Further high strength (≧ 430 MPa) and Example 2 of the present invention
Al has a desirable range of Al, so that the vibration damping performance is even higher. Inventive Examples 4 and 5 have higher toughness (≧ 70 J) because they contain a selective element effective for increasing toughness.

【0040】比較例6はCが高く、制振性能が低い。比
較例7はSiが低く、制振性能、強度が低い。比較例8
はSiが高く、靱性が低い。比較例9はMnが高く、制
振性能が低い。比較例10はPが高く、比較例11はS
が高く、制振性能が低い。比較例12はCrが低く、制
振性能が低い。比較例13はCrが高く、靱性が低い。
比較例14はAlが高く、靱性が低い。比較例15はN
が高く、制振性能が低い。比較例16は加熱温度が高
く、比較例17は950℃以下の圧下率が低く、(20
0)回折強度比が低く、制振性能が低い。比較例18は
圧延仕上温度が低く、靱性が低い。比較例19は熱処理
温度が低く、制振性能が低い。比較例20は熱処理温度
が高く、(200)回折強度比が低く、制振性能が低
い。
In Comparative Example 6, C is high and the vibration damping performance is low. Comparative Example 7 has low Si, and has low vibration damping performance and strength. Comparative Example 8
Has high Si and low toughness. Comparative Example 9 has high Mn and low vibration damping performance. Comparative Example 10 has a high P, and Comparative Example 11 has S
Is high and the vibration damping performance is low. Comparative Example 12 has low Cr and low vibration damping performance. Comparative Example 13 has high Cr and low toughness.
Comparative Example 14 has high Al and low toughness. Comparative Example 15 is N
Is high and the vibration damping performance is low. Comparative Example 16 has a high heating temperature, Comparative Example 17 has a low rolling reduction of 950 ° C. or lower, and (20
0) Diffraction intensity ratio is low and vibration damping performance is low. Comparative Example 18 has a low rolling finish temperature and low toughness. Comparative Example 19 has a low heat treatment temperature and low vibration damping performance. Comparative Example 20 has a high heat treatment temperature, a low (200) diffraction intensity ratio, and low vibration damping performance.

【0041】次に、表3に示す本発明の成分範囲の合金
の鋼P、Q、Rについて、表4に示す製造条件で製造し
たものの各種特性を合わせて表4に示す。例21、2
2、23は、請求項7に記載の本発明の実施例であり、
例24〜27は、その比較例である。板厚は全て20m
mである。鋼P、Q、RのAr1 はそれぞれ730℃、
740℃、790℃である。なお、ここでの例21〜2
7は、請求項1ないし請求項6のいずれかに記載の本発
明では、全て実施例に相当するものである。
Next, Table 4 shows various characteristics of the steels P, Q, and R of the alloys in the composition range of the present invention shown in Table 3, which were produced under the production conditions shown in Table 4. Examples 21, 2
2, 23 are embodiments of the present invention according to claim 7 ,
Examples 24 to 27 are the comparative examples. Board thickness is 20m
m. Ar 1 of steels P, Q, and R is 730 ° C.,
740 ° C and 790 ° C. Examples 21 to 2 here
7 is the present invention according to any one of claims 1 to 6.
Clearly, all correspond to the embodiments.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】本発明例21、22、23は圧延仕上温度
がAr1 +50℃〜Ar1 −20℃で、(200)回折
強度比が3以上で、さらに良好な制振性能(η≧0.0
4)、高強度(≧400MPa)、高靱性(≧50J)
を有する。
In Invention Examples 21, 22, and 23, the rolling finishing temperature was Ar 1 + 50 ° C. to Ar 1 -20 ° C., the (200) diffraction intensity ratio was 3 or more, and more favorable vibration damping performance (η ≧ 0. 0
4), high strength (≧ 400 MPa), high toughness (≧ 50 J)
Have.

【0045】請求項7に記載の本発明に対する比較例2
4、26は圧延仕上温度がAr1 +50℃を超え、
じく比較例25、27は圧延仕上温度がAr1 −20℃
未満であるため、請求項7に記載の本発明例に比べ(2
00)回折強度比が低く、制振性能が低い。
Comparative Example 2 of the present invention according to claim 7
4,26 is rolling finishing temperature exceeds Ar 1 + 50 ° C., the
In Comparative Examples 25 and 27, the rolling finishing temperature was Ar 1 -20 ° C.
It is less than (2) compared to the example of the present invention described in claim 7.
00) Diffraction intensity ratio is low and vibration damping performance is low.

【0046】[0046]

【発明の効果】本発明により、強度、靱性、制振性能が
同時に要求される船舶、橋梁、産業機械、建設用構造材
料の供給が可能となる。
According to the present invention, it becomes possible to supply ships, bridges, industrial machines and structural materials for construction, which are required to have strength, toughness and damping performance at the same time.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 量%で、 C :0.02%以下、 Si:0.5〜3%、 Mn:0.2〜2.5%、 P :0.010%以下、 S :0.005%以下、 Cr:1〜5%、 Al:0.005〜5%、 N :0.006%以下 を含有し、残部Fe及び不可避的不純物からなり、(2
00)回折強度比が2.0〜15.0、損失係数≧0.
03、0℃でのシャルピー吸収エネルギー≧50J、引
張強さ≧400MPaの高強度高靱性制振合金。
In 1. A mass%, C: 0.02% or less, Si: 0.5~3%, Mn: 0.2~2.5%, P: 0.010% or less, S: 0. 005% or less, Cr: 1 to 5%, Al: 0.005 to 5%, N: 0.006% or less, and the balance Fe and inevitable impurities, (2
00) Diffraction intensity ratio is 2.0 to 15.0, and loss coefficient is ≧ 0.
03, high strength and high toughness damping alloy with Charpy absorbed energy ≧ 50 J at 0 ° C. and tensile strength ≧ 400 MPa.
【請求項2】 らに、量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ti:0.005〜0.1%、 B :0.0003〜0.005% の1種又は2種以上を含むことを特徴とする、請求項1
に記載の高強度高靱性制振合金。
To 2. A is al, in mass%, Cu: 0.05~2.5%, Ni : 0.05~2.5%, Mo: 0.05~4.5%, Nb: 0 .005~0.2%, V: 0.005~0.2%, Ti: 0.005~0.1%, B: 0.0003~0.005% of one or more including Claim 1 characterized by the above.
The high-strength, high-toughness damping alloy described in.
【請求項3】 らに、量%で、 Ca :0.001〜0.05%、 REM:0.001〜0.1% の1種又は2種を含むことを特徴とする、請求項1また
は請求項2に記載の高強度高靱性制振合金。
To 3. A is al, in mass%, Ca: 0.001~0.05%, REM : one or two of from 0.001 to 0.1% and wherein the free Mukoto, Claim 1
Is a high-strength and high-toughness damping alloy according to claim 2 .
【請求項4】 量%で、 C :0.02%以下、 Si:0.5〜3%、 Mn:0.2〜2.5%、 P :0.010%以下、 S :0.005%以下、 Cr:1〜5%、 Al:0.005〜5%、 N :0.006%以下 を含有し、残部Fe及び不可避的不純物からなる鋼を
加熱温度950〜1100℃、950℃以下の圧下率3
0〜70%、圧延仕上温度700〜850℃で熱間圧延
し、650〜950℃で焼戻し又は焼きなまし熱処理す
ることを特徴とする、(200)回折強度比が2.0〜
15.0、損失係数≧0.03、0℃でのシャルピー吸
収エネルギー≧50J、引張強さ≧400MPaの高強
度高靱性制振合金の製造方法。
In 4. mass%, C: 0.02% or less, Si: 0.5~3%, Mn: 0.2~2.5%, P: 0.010% or less, S: 0. Steel containing 005% or less, Cr: 1 to 5%, Al: 0.005 to 5%, N: 0.006% or less, and the balance Fe and unavoidable impurities ,
Heating temperature 950 to 1100 ° C, reduction rate of 950 ° C or less 3
0 to 70%, hot rolling at a rolling finishing temperature of 700 to 850 ° C., and tempering or annealing heat treatment at 650 to 950 ° C. , (200) diffraction intensity ratio of 2.0 to
A manufacturing method of a high-strength and high-toughness vibration-damping alloy having 15.0, a loss coefficient ≧ 0.03, a Charpy absorbed energy at 0 ° C. ≧ 50 J, and a tensile strength ≧ 400 MPa.
【請求項5】 前記鋼に、さらに、量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ti:0.005〜0.1%、 B :0.0003〜0.005% の1種又は2種以上を含むことを特徴とする、請求項4
に記載の高強度高靱性制振合金の製造方法。
To wherein said steel further in mass%, Cu: 0.05~2.5%, Ni : 0.05~2.5%, Mo: 0.05~4.5%, Nb : 0.005-0.2%, V: 0.005-0.2%, Ti: 0.005-0.1%, B: 0.0003-0.005% characterized in including Mukoto claim 4
The method for producing the high-strength, high-toughness damping alloy according to 1.
【請求項6】 前記鋼に、さらに、量%で、 Ca :0.001〜0.05%、 REM:0.001〜0.1% の1種又は2種を含むことを特徴とする、請求項4また
は請求項5に記載の高強度高靱性制振合金の製造方法。
To wherein said steel further in mass%, Ca: 0.001~0.05%, REM : 0.001~0.1% 1 kind or two kinds of the feature-containing Mukoto Yes, claim 4
Is a method for producing the high-strength, high-toughness damping alloy according to claim 5 .
【請求項7】 前記圧延仕上温度を、Ar1 −20℃〜
Ar1 +50℃とすることを特徴とする、請求項4ない
し請求項6のいずれか1項に記載の高強度高靱性制振合
金の製造方法
7. The rolling finishing temperature is Ar 1 −20 ° C.
Ar 1 + 50 ° C. , No claim 4.
A method for producing the high-strength and high-toughness damping alloy according to claim 6 .
JP14692995A 1995-03-20 1995-05-23 High-strength high-toughness damping alloy and method for producing the same Expired - Fee Related JP3492026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14692995A JP3492026B2 (en) 1995-03-20 1995-05-23 High-strength high-toughness damping alloy and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8599195 1995-03-20
JP7-85991 1995-03-20
JP14692995A JP3492026B2 (en) 1995-03-20 1995-05-23 High-strength high-toughness damping alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08319537A JPH08319537A (en) 1996-12-03
JP3492026B2 true JP3492026B2 (en) 2004-02-03

Family

ID=26427016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14692995A Expired - Fee Related JP3492026B2 (en) 1995-03-20 1995-05-23 High-strength high-toughness damping alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3492026B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635074B1 (en) * 1999-12-28 2006-10-16 주식회사 포스코 A method for production of the high strength and toughness steel by coarse precipitate
EP2336377B1 (en) * 2008-10-10 2015-12-16 Kabushiki Kaisha Toyota Jidoshokki Iron alloy, iron alloy member and manufacturing method therefor
JP2011219842A (en) * 2010-04-14 2011-11-04 Toyota Industries Corp Iron alloy excellent in workability and damping member using the same
RU2623947C1 (en) * 2016-05-04 2017-06-29 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Damping steel and item made from it
CN113637920A (en) * 2021-08-19 2021-11-12 西南交通大学 Multi-element Fe-Al-based damping alloy and preparation method thereof
CN113737104B (en) * 2021-09-07 2022-05-10 燕山大学 High-aluminum weathering steel and preparation method thereof

Also Published As

Publication number Publication date
JPH08319537A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
CN103205627B (en) A kind of Low-alloy high-performance wear-resistant steel plate and manufacture method thereof
CN103146997B (en) A kind of low-alloy high-flexibility wear-resistant steel plate and manufacture method thereof
JP3273404B2 (en) Manufacturing method of thick high hardness and high toughness wear resistant steel
WO2014154106A1 (en) Low-alloy high-hardness wear-resistant steel plate and manufacturing method therefor
JP2020504240A (en) High hardness wear-resistant steel and method for producing the same
CN111748728A (en) Easily-welded high-strength high-toughness wear-resistant steel plate and manufacturing method thereof
KR20080081980A (en) Damping alloy sheet and process for producing the same
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
KR20080085068A (en) Damping alloy sheet and process for producing the same
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
JP2697543B2 (en) Manufacturing method of high strength low yield ratio steel for rebar
JPH09157794A (en) High damping alloy and its production
JPH09227997A (en) High damping alloy and its production
JP2718550B2 (en) Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness
JPH09143624A (en) Damping alloy and its production
JPH08319539A (en) High damping alloy with high strength and high toughness and its production
JPH09104950A (en) High damping alloy and its production
JP2987735B2 (en) High fatigue strength thick steel plate
JPH09143623A (en) Damping alloy and its production
JPH09143622A (en) Damping alloy and its production
JPH09157792A (en) High damping alloy and its production
JP2801635B2 (en) High toughness welded structural steel with high vibration damping capacity
JPH09157793A (en) High damping alloy and its production
JPH09176780A (en) High strength steel excellent in damping characteristic and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees