JPH11278812A - Production of silicon nitride powder - Google Patents

Production of silicon nitride powder

Info

Publication number
JPH11278812A
JPH11278812A JP10102059A JP10205998A JPH11278812A JP H11278812 A JPH11278812 A JP H11278812A JP 10102059 A JP10102059 A JP 10102059A JP 10205998 A JP10205998 A JP 10205998A JP H11278812 A JPH11278812 A JP H11278812A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
granules
nitriding
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10102059A
Other languages
Japanese (ja)
Inventor
Hidenori Fujii
秀紀 藤井
Yoshiharu Konya
義治 紺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10102059A priority Critical patent/JPH11278812A/en
Publication of JPH11278812A publication Critical patent/JPH11278812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high α-conversion rate, a high nitriding rate and high suitability to comminution by previously molding metallic silicon as a starting material into a granule shape and carrying out direct nitriding by a fixed bed system with a reactive gas contg. a source of nitrogen. SOLUTION: Water and an org. binder are added to metallic silicon having 1-30 μm, preferably 2-15 μm average particle diameter and <=45 μm max. particle diameter and they are wet-mixed and molded in a granule shape by a method such as rolling or extrusion. The org. binder is, e.g. PVA or an acrylic resin. The molding is controlled so as to obtain granules having 0.3-0.7g/cc, particularly 0.4-0.6g/cc apparent density and 30-70%, particularly 35-60% porosity. The shape of the granules is not particularly limited. In the case of columnar granules obtd. by extrusion granulation, the pref. diameter is 0.3-3mm, in particular 0.5-2mm. The granules are dried and directly nitrided by a fixed bed system with a reactive gas contg. a source of nitrogen at <=1,400 deg.C, preferably 1,250-1,300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属ケイ素から直
接窒化法により、高α相含有率、高窒化率で、かつ比表
面積が高く粉砕性に富み、窒化ケイ素焼結体製造のため
の中間体として好適な窒化ケイ素粉末を生産性良く製造
することができる窒化ケイ素粉末の製造方法に関する。
TECHNICAL FIELD The present invention relates to an intermediate for producing a silicon nitride sintered body, which has a high α phase content, a high nitriding rate, a high specific surface area and a high pulverizability by direct nitriding from metallic silicon. The present invention relates to a method for producing silicon nitride powder capable of producing silicon nitride powder suitable as a body with high productivity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】金属ケ
イ素粉末を直接窒化して窒化ケイ素を得るには、一般的
に1,150〜1,400℃の温度領域において、原料
の金属ケイ素粉末を水素やアンモニアの存在下、窒素雰
囲気で窒化反応させることが行われる。
2. Description of the Related Art In order to obtain silicon nitride by directly nitriding metal silicon powder, the metal silicon powder as a raw material is generally heated in a temperature range of 1,150 to 1,400 ° C. A nitriding reaction is performed in a nitrogen atmosphere in the presence of hydrogen or ammonia.

【0003】一方、窒化ケイ素にはα相と高温安定型の
β相とがあるが、一般に高密度、高強度の窒化ケイ素焼
結体を得るために望ましい窒化ケイ素は、α相含有率
(以下、α化率と呼ぶ)が高く、なおかつ微細であるこ
とが条件であり、特に平均粒径で1μm以下のいわゆる
サブミクロン、比表面積では10m2/g以上の微粉末
であることが望まれる。このため、高品質の窒化ケイ素
焼結体を得るには、高α化率の窒化ケイ素をいかに生産
性よく製造できるかどうかが最も重要な課題である。
On the other hand, silicon nitride has an α phase and a high-temperature stable β phase. Generally, silicon nitride desirable for obtaining a silicon nitride sintered body having high density and high strength has an α phase content (hereinafter referred to as α phase content). , And α) are high and fine. In particular, it is desired that the powder be a submicron having an average particle diameter of 1 μm or less and a fine powder having a specific surface area of 10 m 2 / g or more. For this reason, in order to obtain a high quality silicon nitride sintered body, the most important issue is how to produce silicon nitride having a high α ratio with high productivity.

【0004】ここで、窒化ケイ素粉末製造において生産
効率を上げるには、反応器の容積あたりの仕込み率を高
くすると一見生産性は向上するように見える。しかし、
この窒化反応は、下記の反応式 3Si+2N2→Si34 ΔH R=−176kcal/mol で示されるように1molあたり176kcal/mo
lという多量の発熱量を伴う反応であり、仕込み量を多
くすると反応熱による温度上昇が大きくなる。このよう
な状況では、高温で不安定なα相は生産し難く、生成す
る窒化ケイ素の結晶相の大部分がβ型に転移してしまう
という問題があった。特に固定層の場合、原料粉末の動
きがなく、除熱面積も小さく、ガス顕熱による除熱が僅
少となるため、温度制御が非常に難しくなるので、結果
的に仕込み量を増加するには限界があった。
[0004] Here, in the production of silicon nitride powder,
To increase efficiency, increase the feed rate per reactor volume.
At first glance, productivity seems to improve. But,
This nitriding reaction is represented by the following reaction formula: 3Si + 2NTwo→ SiThreeNFour ΔH R= 176 kcal / mo per mol as shown by -176 kcal / mol
This is a reaction that generates a large amount of heat of 1
If the temperature increases, the temperature rise due to the heat of reaction increases. like this
In unstable conditions, it is difficult to produce α phase
Most of the crystalline phase of silicon nitride changes to β-type
There was a problem. Particularly in the case of a fixed bed,
No heat removal, small heat removal area, little heat removal by gas sensible heat
Temperature control becomes very difficult because of the
There was a limit to the increase in the charged amount.

【0005】また、反応性を上げるには、原料の金属ケ
イ素として微粉を用いることも一手段である。しかしな
がら、金属ケイ素微粉を用いて反応性を高くすると、反
応速度が速くなり、結果的に温度上昇も大きくなるた
め、上記した仕込み量を増加した場合と同様に温度制御
が難しくなる。
[0005] In order to increase the reactivity, it is one means to use fine powder as metal silicon as a raw material. However, when the reactivity is increased by using the metal silicon fine powder, the reaction rate is increased, and as a result, the temperature rise is also increased, so that the temperature control becomes difficult as in the case where the charged amount is increased.

【0006】更にこの場合、仮に仕込み量をある程度制
御することで、発熱量を抑えて高α化率を維持できたと
しても、微粉の金属ケイ素を用いた反応では、反応中に
一部反応焼結のような現象が起こって生成する窒化ケイ
素が固く、緻密なものとなってしまう。これでは、後工
程の粉砕工程への負荷が大きくなり、窒化工程の能力が
上がっても後工程の能力が下がり、結果的に生産性が向
上しないということになってしまうものであった。
Further, in this case, even if the amount of heat generation can be suppressed and the high α-conversion rate can be maintained by controlling the charging amount to some extent, in the reaction using fine metal silicon, a part of the reaction calcination is performed during the reaction. The silicon nitride produced by such a phenomenon as sintering becomes hard and dense. In this case, the load on the subsequent pulverizing step is increased, and even if the capacity of the nitriding step is increased, the capacity of the subsequent step is reduced, and as a result, the productivity is not improved.

【0007】従って、従来の製造方法では、窒化ケイ素
焼結体製造用の中間体として好適な高品質の窒化ケイ素
粉末を生産性良く製造することは困難であった。
[0007] Therefore, it has been difficult with the conventional production method to produce high-quality silicon nitride powder suitable as an intermediate for producing a silicon nitride sintered body with high productivity.

【0008】本発明は、上記事情に鑑みなされたもの
で、金属ケイ素から直接窒化法により、高α化率、高窒
化率で、かつ窒化後の比表面積が高く粉砕性に富んだ窒
化ケイ素粉末を生産性良く製造することができる窒化ケ
イ素粉末の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is directed to a silicon nitride powder having a high α conversion ratio, a high nitridation ratio, a high specific surface area after nitriding, and a high pulverizability by directly nitriding metal silicon. It is an object of the present invention to provide a method for producing a silicon nitride powder capable of producing a silicon nitride powder with high productivity.

【0009】[0009]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、金属ケイ素を窒素源を含む反応ガスで固定層方式に
て直接窒化して窒化ケイ素を製造する際に、原料の金属
ケイ素を予め顆粒状に成形し、この顆粒状金属ケイ素を
直接窒化することにより、α相含有率が高く、窒化反応
率も高い上、比表面積が高く粉砕性が良好であり、高品
質の窒化ケイ素焼結体を得るために有用な中間体となり
得る窒化ケイ素粉末を簡単な操作で効率よく製造できる
ことを見出した。
Means for Solving the Problems and Embodiments of the Invention As a result of intensive studies to achieve the above object, the present inventor has found that metal silicon is directly nitrided with a reaction gas containing a nitrogen source in a fixed layer system. When silicon nitride is produced by pre-forming the raw metallic silicon into granules in advance and directly nitriding the granular metallic silicon, the α phase content is high, the nitriding reaction rate is high, and the specific surface area is high. And high pulverizability, and found that a silicon nitride powder that can be a useful intermediate for obtaining a high-quality silicon nitride sintered body can be efficiently produced by a simple operation.

【0010】即ち、従来の直接窒化法による窒化ケイ素
の製造方法では、窒化反応時の温度上昇を穏やかに抑制
するには低温で反応させる、昇温速度を緩やかにする、
ガス量増加により除熱を大きくする、仕込み量を少なく
する(仕込み厚みを薄くする)などの手段を採用してこ
れら手段の適正化を図り、製造条件を決定しなければな
らず、非常に面倒であった。これに対して、本発明の製
造方法では、金属ケイ素を顆粒状に成形した後に窒化す
ることにより、金属ケイ素の嵩密度が小さくなり、かつ
気孔率が上昇し、同じ仕込み量、同じガス量でも除熱量
が増加するという効果を得ることができる。このため、
本発明方法では、窒化反応時の温度の上昇が穏やかで温
度制御を簡単に調整可能となり、金属ケイ素の実温が
1,400℃を超えない温度領域で窒化反応させて上記
したようなα化率が高く、高品質の窒化ケイ素を生産性
良く製造できることを知見し、本発明をなすに至ったも
のである。
That is, in the conventional method for producing silicon nitride by the direct nitridation method, in order to moderately raise the temperature during the nitridation reaction, the reaction is carried out at a low temperature, and the rate of temperature rise is reduced.
It is necessary to adopt measures such as increasing the heat removal by increasing the amount of gas and reducing the amount of charge (reducing the thickness of charge) to optimize these means and determine the production conditions, which is very troublesome. Met. On the other hand, in the production method of the present invention, the bulk density of the metal silicon is reduced by forming the metal silicon into granules and then nitriding, and the porosity is increased. The effect that the heat removal amount increases can be obtained. For this reason,
According to the method of the present invention, the temperature rise during the nitridation reaction is moderate and the temperature control can be easily adjusted. The nitriding reaction is performed in a temperature range where the actual temperature of the metal silicon does not exceed 1,400 ° C. The present inventors have found that silicon nitride of high quality can be produced with high productivity with high productivity, and the present invention has been accomplished.

【0011】従って、本発明は、金属ケイ素を窒素源を
含む反応ガスで固定層方式にて直接窒化して窒化ケイ素
を製造する方法において、原料の金属ケイ素を予め顆粒
状に成形した後、直接窒化することを特徴とする窒化ケ
イ素粉末の製造方法を提供する。
Accordingly, the present invention provides a method for producing silicon nitride by directly nitriding metal silicon with a reaction gas containing a nitrogen source in a fixed-bed system. A method for producing a silicon nitride powder characterized by nitriding is provided.

【0012】以下、本発明につき更に詳細に説明する
と、本発明の窒化ケイ素粉末の製造方法は、金属ケイ素
を窒素源を含む反応ガスで固定層方式にて直接窒化して
窒化ケイ素を製造する方法において、原料の金属ケイ素
を予め顆粒状に成形した後、直接窒化する。
Hereinafter, the present invention will be described in more detail. A method for producing silicon nitride powder according to the present invention is a method for producing silicon nitride by directly nitriding metallic silicon with a reaction gas containing a nitrogen source in a fixed layer system. In the method, the metal silicon as a raw material is previously formed into granules and then directly nitrided.

【0013】本発明において、原料の金属ケイ素として
は、平均粒径が1〜30μm、特に2〜15μm、最大
粒径が100μm以下、特に45μm以下のものを使用
することが好ましい。
In the present invention, it is preferable to use metal silicon as a raw material having an average particle diameter of 1 to 30 μm, particularly 2 to 15 μm, and a maximum particle diameter of 100 μm or less, particularly 45 μm or less.

【0014】本発明において、原料の金属ケイ素を顆粒
状に成形するには、原料の金属ケイ素に水及び有機バイ
ンダーを添加して湿式混合した後、顆粒状に成形する方
法が好適に採用される。
In the present invention, in order to form the raw metal silicon into granules, a method of adding water and an organic binder to the raw metal silicon, wet-mixing, and then forming into granules is preferably employed. .

【0015】上記方法では、まずはじめに原料の金属ケ
イ素をVブレンダー等の容器固定型、リボン型、スクリ
ュー型、高速剪断型等の容器固定型のいずれかの混合機
を用い、水及び有機バインダーと混合することが好まし
い。
In the above method, first, the raw metal silicon is mixed with water and an organic binder by using any one of a container fixed type mixer such as a V blender, a ribbon type, a screw type and a high-speed shearing type. Mixing is preferred.

【0016】有機バインダーとしては、例えばポリビニ
ルアルコール(PVA)等のアルコール系やアクリル系
のものなどが挙げられる。なお、水及び有機バインダー
の添加量は、通常量とすることができる。
As the organic binder, for example, an alcohol-based one such as polyvinyl alcohol (PVA) or an acrylic-based one may be used. In addition, the addition amount of water and the organic binder can be a usual amount.

【0017】また、混合に際し、必要に応じて触媒や通
常知られている他の添加剤を添加することができ、例え
ば窒化ケイ素の種粒子、カルシウム化合物、鉄、銅等の
金属やその化合物などを同時に混合することができ、こ
れにより反応性の向上を期待できる。
At the time of mixing, a catalyst and other commonly known additives can be added, if necessary, such as seed particles of silicon nitride, metals such as calcium compounds, iron and copper, and compounds thereof. Can be mixed at the same time, thereby improving the reactivity.

【0018】更に、原料は、通常の方法で湿式混合する
ことができる。このように金属ケイ素を湿式混合して顆
粒状に成形することにより、同じ添加剤を混合するので
も乾式で混合する方法に比べ、均一な混合度が維持で
き、触媒の添加量を乾式混合よりも減少させることもで
きる。
Further, the raw materials can be wet-mixed by an ordinary method. In this way, by mixing the metal silicon by wet mixing and forming into granules, even if the same additives are mixed, a uniform degree of mixing can be maintained as compared with the method of mixing by dry method, and the amount of catalyst added can be reduced by dry mixing. Can also be reduced.

【0019】次いで、上記湿式混合で得られた混合物の
顆粒成形は、例えば転動式、押し出し式、噴霧式、流動
層式等の既知の方式で行うことができるが、好ましくは
押し出し方式である。
Next, granulation of the mixture obtained by the above wet mixing can be performed by a known method such as a rolling method, an extrusion method, a spray method, a fluidized bed method, etc., but an extrusion method is preferred. .

【0020】本発明では、このように顆粒状に成形する
際、通常の条件で行うことができるが、顆粒の見掛け密
度が0.3〜0.7g/cc、特に0.4〜0.6g/
ccの範囲となり、かつ気孔率が30〜70%、特に3
5〜60%となるように条件を制御することが好まし
い。見掛け密度が0.3g/cc末満であったり、気孔
率が70%より大きいと、生産量を向上させるのに現実
的でない数値となる場合があり、見掛け密度が0.7g
/ccより大きかったり、気孔率が30%未満では、反
応性及び粉砕性の向上という目的を達成できない場合が
ある。
In the present invention, such granulation can be carried out under ordinary conditions, but the granule has an apparent density of 0.3 to 0.7 g / cc, particularly 0.4 to 0.6 g. /
cc and a porosity of 30 to 70%, especially 3
It is preferable to control the conditions so as to be 5 to 60%. If the apparent density is less than 0.3 g / cc or if the porosity is greater than 70%, the value may not be realistic for improving the production amount, and the apparent density may be 0.7 g.
When the porosity is larger than / cc or the porosity is less than 30%, the purpose of improving reactivity and pulverizability may not be achieved.

【0021】また、金属ケイ素顆粒の形状に特に制限は
ないが、押し出し造粒で得られる金属ケイ素顆粒は、通
常円柱状をなし、この円柱状金属ケイ素顆粒の直径は
0.3〜2mm、特に0.5〜1mm、円柱の長さが1
〜8mm、特に2〜6mmであることが好ましい。ま
た、金属ケイ素顆粒が球状となる場合は、直径が0.3
〜3mm、特に0.5〜2mmであることが好ましい。
The shape of the metal silicon granules is not particularly limited, but the metal silicon granules obtained by extrusion granulation usually have a columnar shape, and the diameter of the columnar metal silicon granules is 0.3 to 2 mm, particularly 0.5-1mm, cylinder length is 1
It is preferably from 8 to 8 mm, particularly preferably from 2 to 6 mm. When the metal silicon granules are spherical, the diameter is 0.3
It is preferably from 3 to 3 mm, particularly preferably from 0.5 to 2 mm.

【0022】このようにして得られた顆粒状の金属ケイ
素は、乾燥乃至脱脂を行い、水分、有機バインダーの除
去処理を行うことが好ましい。
It is preferable that the granular metallic silicon thus obtained is dried or degreased to remove water and an organic binder.

【0023】本発明方法においては、上記のように顆粒
状に成形した金属ケイ素を窒素源を含む反応ガスで固定
層方式にて直接窒化して窒化ケイ素を製造する。
In the method of the present invention, silicon nitride is produced by directly nitriding the metal silicon formed into a granular form as described above with a reaction gas containing a nitrogen source in a fixed bed system.

【0024】この場合、窒化反応は、窒素源を含む反応
ガス、例えば水素を含むアンモニアガスなどの存在下、
窒素雰囲気で行うことができる。なお、上記反応におい
ては、必要に応じアルゴンやヘリウム等の不活性ガスに
より反応ガスを希釈してもかまわない。
In this case, the nitriding reaction is carried out in the presence of a reaction gas containing a nitrogen source, for example, ammonia gas containing hydrogen.
It can be performed in a nitrogen atmosphere. In the above reaction, if necessary, the reaction gas may be diluted with an inert gas such as argon or helium.

【0025】また、反応容器の材質としては、窒化ケイ
素、アルミナ、炭化ケイ素等の金属ケイ素と反応しない
材質であれば、特に限定はされない。
The material of the reaction vessel is not particularly limited as long as it does not react with metallic silicon such as silicon nitride, alumina and silicon carbide.

【0026】更に、上記窒化反応は、金属ケイ素の実温
が1,400℃を超えない温度領域、特に1,250〜
1,380℃の温度領域で行うことが好ましい。なお、
この窒化反応の温度領域は、窒化反応時の反応物の実温
で管理する必要がある。
Further, the nitriding reaction is carried out in a temperature range in which the actual temperature of metallic silicon does not exceed 1,400 ° C.
It is preferable to carry out in a temperature range of 1,380 ° C. In addition,
It is necessary to control the temperature range of the nitriding reaction at the actual temperature of the reactant during the nitriding reaction.

【0027】この場合、通常の窒化反応の温度範囲は、
1,150〜1,400℃の領域とされているが、この
範囲は非常に一般的な温度で反応開始の最低温度から金
属ケイ素の融点以下で記述されている。前述したよう
に、この反応は大量の熱を発生し、実際の反応物の温度
は設定の温度を超える場合がある。反応初期の時点で
1,400℃を超えてしまうと、金属ケイ素が融解し、
反応性が著しく低下する現象が現れる場合がある。ま
た、1,400℃を超えると、反応中に一部反応焼結の
ような現象で、生成した窒化ケイ素は固く、緻密なもの
となってしまい、粉砕性の非常に悪いものとなってしま
う場合がある。そのため、反応条件の設定により、1,
400℃を超えない温度領域に調整して窒化反応させる
ことが好ましい。
In this case, the temperature range of the ordinary nitriding reaction is as follows:
The range is from 1,150 to 1,400 ° C., which is a very common temperature and is described from the lowest temperature at the start of the reaction to the melting point of metal silicon or lower. As mentioned above, this reaction generates a large amount of heat, and the actual temperature of the reactants may exceed the set temperature. If it exceeds 1,400 ° C. at the beginning of the reaction, metallic silicon melts,
A phenomenon in which the reactivity is significantly reduced may appear. On the other hand, when the temperature exceeds 1,400 ° C., the generated silicon nitride becomes hard and dense due to a phenomenon such as reaction sintering during the reaction, and becomes extremely poor in pulverizability. There are cases. Therefore, by setting the reaction conditions,
It is preferable to perform a nitriding reaction by adjusting the temperature to a temperature range not exceeding 400 ° C.

【0028】本発明では、顆粒状に成形した窒化ケイ素
を直接窒化することから、窒化ケイ素の嵩密度が小さく
なり、粉体の空隙率が上昇し、同じ仕込み量、同じガス
量でも除熱量が増加するという効果を得ることができ、
反応物の温度の上昇を1,400℃を超えないように反
応させることが容易である。
In the present invention, since the silicon nitride formed into granules is directly nitrided, the bulk density of the silicon nitride is reduced, the porosity of the powder is increased, and the heat removal amount can be reduced even with the same charged amount and the same gas amount. The effect of increasing
It is easy to react so that the temperature rise of the reactants does not exceed 1,400 ° C.

【0029】[0029]

【発明の効果】本発明の窒化ケイ素粉末の製造方法によ
れば、金属ケイ素を窒素源を含む反応ガスで固定層方式
にて直接窒化して窒化ケイ素を製造する際、窒化反応温
度を容易に制御し得、このため高α化率、高窒化率で、
かつ粉砕性が良好で窒化ケイ素焼結体製造用の中間体と
して好適な窒化ケイ素粉末を生産性良く製造することが
できる。
According to the method for producing silicon nitride powder of the present invention, when producing silicon nitride by directly nitriding metal silicon with a reaction gas containing a nitrogen source in a fixed layer method, the nitriding reaction temperature can be easily increased. Controllable, and thus high α rate, high nitridation rate,
In addition, a silicon nitride powder having good pulverizability and suitable as an intermediate for producing a silicon nitride sintered body can be produced with high productivity.

【0030】[0030]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に限定される
ものではない。なお、以下の例において部はいずれも重
量部である。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, all parts are parts by weight.

【0031】[実施例1〜8]表1に示すように最大粒
径10〜45μmの金属ケイ素100部に20%PVA
水溶液20部を添加し、更に必要により触媒を添加混合
した後、押し出し造粒機にて成形、次いで150℃で2
0時間乾燥後、500℃で2時間脱脂し、原料となる顆
粒状金属ケイ素を作成した。得られた顆粒状金属ケイ素
の形状、見かけ密度、気孔率は表1に示すとおりであっ
た。
Examples 1 to 8 As shown in Table 1, 100 parts of metallic silicon having a maximum particle size of 10 to 45 μm was added to 20% PVA.
After adding 20 parts of an aqueous solution and further adding and mixing a catalyst as necessary, the mixture is molded by an extrusion granulator, and then molded at 150 ° C. for 2 hours.
After drying for 0 hour, degreased at 500 ° C. for 2 hours to prepare granular metallic silicon as a raw material. The shape, apparent density, and porosity of the obtained granular metallic silicon were as shown in Table 1.

【0032】次いで、得られた顆粒状金属ケイ素を窒化
ケイ素製のトレイに仕込んで多段に積み、反応中の実温
が1,400℃を超えないような条件で、プッシャー式
トンネル炉で20%水素を含有する窒素雰囲気下、窒化
反応させた。結果を表1に示す。なお、ここで実温と
は、原料と共にトレイ中に仕込んだメジャーリングによ
り測定したものである。
Next, the obtained granular metallic silicon was charged in a tray made of silicon nitride and stacked in multiple stages, and was subjected to a pusher type tunnel furnace at 20% under the condition that the actual temperature during the reaction did not exceed 1,400 ° C. A nitriding reaction was performed in a nitrogen atmosphere containing hydrogen. Table 1 shows the results. Here, the actual temperature is measured by a measuring ring charged in a tray together with the raw materials.

【0033】表1の結果より、実施例1〜8のいずれの
製造方法においても、窒化反応時の温度調整を簡単にで
き、窒化後は窒化前の形、顆粒状を保持し、窒化率、α
化率ともに90%以上と高く、更に粉砕性の指標ともな
るBET比表面積は4m2/g以上と高く、良質で粉砕
性の良好な窒化ケイ素が得られることが確認された。
From the results shown in Table 1, in any of the production methods of Examples 1 to 8, the temperature can be easily adjusted during the nitridation reaction, and after nitriding, the shape and granularity before nitriding are maintained, and the nitriding ratio, α
The conversion ratio was as high as 90% or more, and the BET specific surface area as an index of the pulverizability was as high as 4 m 2 / g or more, and it was confirmed that silicon nitride having good quality and excellent pulverizability was obtained.

【0034】[比較例1〜4]表1に示すように、原料
の金属ケイ素の顆粒成形を行わず、一次粒子のまま用い
る以外は実施例と同様にして窒化反応を行った。結果を
表1に示す。
Comparative Examples 1 to 4 As shown in Table 1, the nitriding reaction was carried out in the same manner as in the Example, except that the raw material metal silicon was not subjected to granulation and the primary particles were used as they were. Table 1 shows the results.

【0035】表1の結果より、比較例1〜4の製造方法
で得られた窒化ケイ素粉末は、いずれも窒化後は窒化前
の形、顆粒状を保持し、α化率は90%以上、BET比
表面積は4m2/g以上の値であったが、窒化率が80
%以下となった。
From the results shown in Table 1, all of the silicon nitride powders obtained by the production methods of Comparative Examples 1 to 4 retain their shapes and granules before nitriding after nitriding, and have a pregelatinization ratio of 90% or more. The BET specific surface area was 4 m 2 / g or more, but the nitriding ratio was 80%.
% Or less.

【0036】[比較例5〜10]表1に示すように原料
の金属ケイ素の顆粒成形を行わず、一次粒子のまま用
い、また、1,400℃を超えた実温で反応させる以外
は実施例と同様に窒化反応を行った。結果を表1に示
す。
[Comparative Examples 5 to 10] As shown in Table 1, the metal silicon raw material was not subjected to granule molding, the primary particles were used as they were, and the reaction was carried out at an actual temperature exceeding 1,400 ° C. A nitriding reaction was performed in the same manner as in the example. Table 1 shows the results.

【0037】表1の結果より、比較例5〜10の製造方
法で得られた窒化ケイ素粉末は、いずれも窒化後は仕込
み時の形状のままの固い板状で粗粉砕工程が必要であ
り、更に、BET比表面積は3m2/g以下の値で非常
に粉砕性の悪いものであった。
From the results shown in Table 1, all of the silicon nitride powders obtained by the production methods of Comparative Examples 5 to 10 are in the form of solid plates in the same shape after preparation after nitriding and require a coarse pulverization step. Further, the BET specific surface area was 3 m 2 / g or less, which was extremely poor in pulverizability.

【0038】[0038]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属ケイ素を窒素源を含む反応ガスで固
定層方式にて直接窒化して窒化ケイ素を製造する方法に
おいて、原料の金属ケイ素を予め顆粒状に成形した後、
直接窒化することを特徴とする窒化ケイ素粉末の製造方
法。
In a method for producing silicon nitride by directly nitriding metal silicon with a reaction gas containing a nitrogen source in a fixed bed method, the raw metal silicon is formed into granules in advance,
A method for producing silicon nitride powder, comprising directly nitriding.
【請求項2】 顆粒状に成形した金属ケイ素の見掛け密
度が0.3〜0.7g/ccである請求項1記載の窒化
ケイ素粉末の製造方法。
2. The method for producing silicon nitride powder according to claim 1, wherein the apparent density of the metallic silicon formed into granules is 0.3 to 0.7 g / cc.
【請求項3】 顆粒状に成形した金属ケイ素の気孔率が
30〜70%である請求項1又は2記載の窒化ケイ素粉
末の製造方法。
3. The method for producing a silicon nitride powder according to claim 1, wherein the porosity of the granular silicon metal is 30 to 70%.
【請求項4】 原料の金属ケイ素に水及び有機バインダ
ーを添加して湿式混合した後、顆粒状に成形する請求項
1、2又は3記載の窒化ケイ素粉末の製造方法。
4. The method for producing a silicon nitride powder according to claim 1, wherein water and an organic binder are added to the raw material metallic silicon, and the mixture is wet-mixed and then granulated.
【請求項5】 金属ケイ素の実温が1,400℃を超え
ない温度領域で直接窒化する請求項1乃至4のいずれか
1項記載の窒化ケイ素粉末の製造方法。
5. The method for producing a silicon nitride powder according to claim 1, wherein the metal silicon is directly nitrided in a temperature range where the actual temperature does not exceed 1,400 ° C.
JP10102059A 1998-03-30 1998-03-30 Production of silicon nitride powder Pending JPH11278812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10102059A JPH11278812A (en) 1998-03-30 1998-03-30 Production of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10102059A JPH11278812A (en) 1998-03-30 1998-03-30 Production of silicon nitride powder

Publications (1)

Publication Number Publication Date
JPH11278812A true JPH11278812A (en) 1999-10-12

Family

ID=14317207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10102059A Pending JPH11278812A (en) 1998-03-30 1998-03-30 Production of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH11278812A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120624A (en) * 2006-11-10 2008-05-29 Denki Kagaku Kogyo Kk Silicon nitride powder, method for manufacture and use
WO2011025117A1 (en) * 2009-08-24 2011-03-03 한국기계연구원 Reaction sintered silicon nitride for which silicon particle size distribution adjustment is employed, and a production method therefor
JP2014503459A (en) * 2010-12-22 2014-02-13 スチュラー ソーラー ゲーエムベーハー Crucible
KR20170027550A (en) * 2015-09-02 2017-03-10 한국기계연구원 Manufacturing Apparatus For Reaction Bonded Silicon Nitride And Methods Therefor
KR102408531B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride ball with toughness and strength

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120624A (en) * 2006-11-10 2008-05-29 Denki Kagaku Kogyo Kk Silicon nitride powder, method for manufacture and use
WO2011025117A1 (en) * 2009-08-24 2011-03-03 한국기계연구원 Reaction sintered silicon nitride for which silicon particle size distribution adjustment is employed, and a production method therefor
JP2014503459A (en) * 2010-12-22 2014-02-13 スチュラー ソーラー ゲーエムベーハー Crucible
KR20170027550A (en) * 2015-09-02 2017-03-10 한국기계연구원 Manufacturing Apparatus For Reaction Bonded Silicon Nitride And Methods Therefor
KR102408531B1 (en) * 2021-11-25 2022-06-14 주식회사 첨단랩 Manufacturing method of silicon nitride ball with toughness and strength

Similar Documents

Publication Publication Date Title
US4680278A (en) Process for preparing aluminum nitride powder
EP0187431B1 (en) Process for producing silicon aluminum oxynitride
US4217335A (en) Process for producing β-silicon carbide fine powder
CN101445223A (en) Method for preparing low-oxygen high-alpha phase silicon nitride powder by auto-igniting synthesis
US4224073A (en) Active silicon carbide powder containing a boron component and process for producing the same
JPH11278812A (en) Production of silicon nitride powder
KR20220166805A (en) Silicon nitride powder for sintering
JPH11322433A (en) Production of composite ceramic sintered body containing boron nitride, and the sintered body
JPS59107976A (en) Manufacture of readily sinterable silicon nitride powder
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JPH0228539B2 (en)
JPH0647447B2 (en) Method for producing aluminum nitride powder
JPH1160217A (en) Production of silicon nitride powder
US5441694A (en) Preparation of high α-type silicon nitride powder
JPS6335565B2 (en)
JPS638069B2 (en)
JPH03261611A (en) Production of silicon nitride composite powder
JPS61155210A (en) Preparation of easily sinterable aluminum nitride powder
JP3801252B2 (en) Method for producing silicon nitride
JPS6183606A (en) Production of easily sinterable aluminum nitride powder
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPH02192408A (en) Production of aluminum nitride powder
JP3496795B2 (en) Method for producing silicon nitride powder
JPH11335172A (en) Production of porous silicon carbide sintered compact
JPH05279002A (en) Production of al nitride powder