JPH0475253B2 - - Google Patents

Info

Publication number
JPH0475253B2
JPH0475253B2 JP7528583A JP7528583A JPH0475253B2 JP H0475253 B2 JPH0475253 B2 JP H0475253B2 JP 7528583 A JP7528583 A JP 7528583A JP 7528583 A JP7528583 A JP 7528583A JP H0475253 B2 JPH0475253 B2 JP H0475253B2
Authority
JP
Japan
Prior art keywords
rubber
styrene
weight
butadiene copolymer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7528583A
Other languages
Japanese (ja)
Other versions
JPS59199735A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7528583A priority Critical patent/JPS59199735A/en
Publication of JPS59199735A publication Critical patent/JPS59199735A/en
Publication of JPH0475253B2 publication Critical patent/JPH0475253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は改善された反ぱ぀匟性率を有するゎム
組成物に関するものである。詳しくは分子鎖䞭に
特定のベンゟプノン類又はチオベンゟプノン
類を導入したスチレン−ブタゞ゚ン共重合ゎムを
ゎム成分ずしお含有するタむダトレツド甚ゎム組
成物に関するものである。 最近、自動車の䜎燃費指向ず安党性の䞡芳点よ
り、特にタむダの転動抵抗の䜎枛ず湿最路面での
すぐれた制動性すなわちり゚ツトスキツド抵抗の
向䞊が匷く芁望されおいる。 䞀般にこれらのタむダの特性をトレツドゎム材
料の動的粘匟性特性ず察応させお考えられ、互に
盞反する特性であるこずが知られおいる〔䟋え
ば、Transaction of I.R.I.第40巻、第239〜256
頁、1964幎を参照〕。 タむダの転動抵抗を䜎枛するにはトレツドゎム
材料の反ぱ぀匟性率が高いこずが必芁であり、車
の走行状態を考慮するず、この反ぱ぀匟性率は50
℃から70℃付近たでの枩床で評䟡する必芁があ
る。䞀方、車の安党性の点で重芁な性胜である湿
最路面での制動性胜の向䞊にはブリテむツシナ・
ポヌタブル・スキツドテスタヌで枬定されるり゚
ツトスキツド抵抗が倧きいこずが必芁であり、ト
レツドゎム材料ずしおはタむダに制動をかけお路
面をすべらせた堎合に生ずる摩擊抵抗ずしおの゚
ネルギヌ損倱が倧きいこずが必芁である。 埓来、これら぀の盞反する特性を満足させる
ために、原料ゎムずしおは、乳化重合スチレン−
ブタゞ゚ン共重合ゎム、高シス−ポリブタゞ゚ン
ゎム、䜎シスヌポリブタゞ゚ンゎム、有機リチり
ム化合合觊媒を甚いお埗られるスチレン−ブタゞ
゚ンゎム、倩然ゎム、高シス−シ゜プレンゎム等
を単独で、あるいは組合せお甚いられおきたが、
十分満足の行くものではなか぀た。すなわち、高
反ぱ぀匟性を埗ようずするず、䜎シス−ポリブタ
ゞ゚ンゎムや倩然ゎム等の゚りツトスキツド抵抗
が劣るゎムの配合割合を増加させるか、カヌボン
ブラツク等の充おん剀を枛量するか、硫黄等の加
硫剀を増加させるかしなければならなか぀た。し
かしながらこのような方法ではり゚ツトスキツド
抵抗が䜎䞋したり、機械的性質が䜎䞋したりする
ずいう欠点があ぀た。逆に、高り゚ツトスキツド
抵抗を埗ようずするず、結合スチレン量が比范的
倚い䟋えば結合スチレン含有量30重量以䞊
のスチレン−ブタゞ゚ン共重合ゎムや−
結合含有量が比范的高い䟋えば−結合含
有量60以䞊のポリブタゞ゚ンゎム等のり゚ツ
トスキツド抵抗に優れたゎムの配合割合を増加さ
せるか、カヌボンブラツク等の充おん剀やプロセ
スオむルを増量させるかしなければならなか぀
た。このような方法では反ぱ぀匟性が䜎䞋するず
いう欠点があ぀た。 したが぀お、機械的性質が実甚䞊差し支えない
範囲でか぀、り゚ツトスキツド抵抗ず反ぱ぀匟性
ずが実甚䞊蚱容される範囲で最も良く調和するよ
う原料ゎムの組成が決められおいるのが実情であ
぀た。このため、埓来のゎムを組合せおり゚ツト
スキツド抵抗ず反ぱ぀匟性ずの調和を図るこずは
限界に達したず考えられおいた。 本発明者等は前蚘欠点を解決すべく鋭意研究の
結果、驚くべきこずにゎム分子鎖に特定のベンゟ
プノン類又はチオベンゟプノン類が導入され
たスチレン−ブタゞ゚ン共重合ゎムをゎム成分ず
しお含むゎム組成物は該化合が導入されおいない
同䞀のスチレン−ブタゞ゚ン共重合ゎムを含むゎ
ム組成物ず比范しおり゚ツトスキツド抵抗を䜎䞋
させるこずなく反ぱ぀匟性を著しく向䞊させ、な
おか぀高反ぱ぀匟性の特城を生かし、必芁ならば
カヌボンブラツク等の充おん剀の増量によ぀お耐
摩耗性等の機械的性質を改善し぀぀、反ぱ぀匟性
ずり゚ツトスキツド抵抗ずの調和を図れるこずを
芋出し、本発明に到぀たものである。 すなわち本発明は、スチレン−ブタゞ゚ン共重
合ゎム分子鎖に、少なくずも個のアミノ基、ア
ルキルアミノ基あるいはゞアルキルアミノ基を有
するベンゟプノン類又はチオベンゟプノン類
を該ゎム分子鎖モル圓り少なくずも0.1モル導
した結合スチレン含有量が10〜40重量、ブタゞ
゚ン郚分の−結合含有量10〜50で、ムヌ
ニヌ粘床ML1+4100℃が20〜150のスチレン
−ブタゞ゚ン共重合ゎムが〜20重量結
合含有量20〜95重量ず結合スチレン含有量40〜
80のスチレン−ブタゞ゚ン共重合ゎム60
〜重量ず、−結合含有量が20以䞋
で、ムヌニヌ粘床ML1+4100℃が20〜100の
ポリブタゞ゚ンゎム40〜重量をゎム成
分ずしお含んで成るり゚ツトスキツド抵抗を損う
こずなく、転動抵抗を䜎枛したタむダトレツド甚
ゎム組成物を提䟛するものである。 本発明のタむダトレツド甚ゎム組成物を䜿甚す
るこずにより、前述したタむダ性胜ずしお重芁な
転動抵抗ず湿最路面での制動性、すなわちり゚ツ
トスキツド抵抗ずを高い氎準で調和させたタむダ
が埗られるが、り゚ツトスキツド抵抗倀は特に芁
求されず、反ぱ぀匟性率のみが高いこずが必芁な
タむダを補造するこずができる。 本発明で䜿甚するゎム分子鎖に該ベンゟプノ
ン類又はチオベンゟプノン類を導入したスチレ
ン−ブタゞ゚ン共重合ゎムは溶液重合で通垞䜿甚
されるアルカリ金属基材觊媒を甚いお埗られる分
子鎖の末端にアルカリ金属が結合しおいるスチレ
ン−ブタゞ゚ン共重合ゎムあるいは、該觊媒を甚
いお埗た該ゎムに埌反応でアルカリ金属を付加さ
せたものず該ベンゟプノン類又はチオベンゟフ
゚ノン類ずを反応させお埗られるスチレン−ブタ
ゞ゚ン共重合ゎム分子鎖の末端あるいは末端及び
これ以倖の分子鎖䞭に該化合物が炭玠−炭玠結合
で䞀般匏
The present invention relates to rubber compositions having improved rebound modulus. More specifically, the present invention relates to a rubber composition for tire treads containing as a rubber component a styrene-butadiene copolymer rubber in which specific benzophenones or thiobenzophenones have been introduced into the molecular chain. Recently, from the viewpoints of both fuel efficiency and safety of automobiles, there has been a strong demand for a reduction in the rolling resistance of tires and an improvement in braking performance on wet road surfaces, that is, improvement in wet skid resistance. Generally, these tire properties are considered to correspond to the dynamic viscoelastic properties of the tread rubber material, and it is known that these properties are contradictory to each other [for example, Transaction of IRI, Vol. 40, Nos. 239-256]
1964]. In order to reduce the rolling resistance of a tire, the tread rubber material must have a high rebound elastic modulus, and considering the driving conditions of the car, this rebound elastic modulus is 50
It is necessary to evaluate at temperatures from ℃ to around 70℃. On the other hand, British technology is used to improve braking performance on wet roads, which is an important performance in terms of vehicle safety.
It is necessary that the wet skid resistance measured by a portable skid tester is high, and the tread rubber material must have a high energy loss as frictional resistance that occurs when the tire is braked and slides on the road surface. . Conventionally, in order to satisfy these two contradictory properties, emulsion polymerized styrene has been used as raw rubber.
Butadiene copolymer rubber, high cis-polybutadiene rubber, low cis-polybutadiene rubber, styrene-butadiene rubber obtained using an organolithium compound catalyst, natural rubber, high cis-cisoprene rubber, etc. have been used singly or in combination. but,
It wasn't completely satisfying. In other words, in order to obtain high rebound elasticity, one must increase the blending ratio of rubbers with poor efflux resistance such as low cis-polybutadiene rubber and natural rubber, reduce the amount of fillers such as carbon black, or add additives such as sulfur. I had to increase the sulfurizing agent. However, this method has disadvantages in that wet skid resistance and mechanical properties are reduced. Conversely, when trying to obtain high wet skid resistance, styrene-butadiene copolymer rubber with a relatively large amount of bound styrene (for example, 30% by weight or more of bound styrene) or 1,2-
Increase the blending ratio of rubber with excellent wet skid resistance such as polybutadiene rubber with a relatively high bond content (for example, 1,2-bond content of 60% or more), or increase the amount of filler such as carbon black or process oil. I had to let it happen. This method has the disadvantage that the rebound elasticity is reduced. Therefore, the actual situation is that the composition of the raw rubber is determined so that the mechanical properties are within a practically acceptable range and the wet skid resistance and rebound elasticity are in the best balance within a practically acceptable range. Ta. For this reason, it was thought that the ability to achieve a balance between wet skid resistance and rebound elasticity by combining conventional rubbers had been reached. As a result of intensive research to solve the above-mentioned drawbacks, the inventors of the present invention surprisingly found that a rubber containing as a rubber component a styrene-butadiene copolymer rubber in which specific benzophenones or thiobenzophenones have been introduced into the rubber molecular chain. Compared to a rubber composition containing the same styrene-butadiene copolymer rubber in which the compound is not introduced, the composition significantly improves rebound resilience without reducing wet skid resistance, and has the characteristics of high rebound resilience. We have discovered that it is possible to achieve a balance between rebound elasticity and wet skid resistance while improving mechanical properties such as abrasion resistance by increasing the amount of filler such as carbon black if necessary, and have arrived at the present invention. It is. That is, the present invention provides at least 0.1 mole of benzophenones or thiobenzophenones having at least one amino group, alkylamino group, or dialkylamino group in the styrene-butadiene copolymer rubber molecular chain per mole of the rubber molecular chain. Styrene-butadiene copolymerization with a bound styrene content of 10 to 40% by weight, a 1,2-bond content of the butadiene moiety of 10 to 50%, and a Mooney viscosity (ML 1+4 , 100°C) of 20 to 150. Rubber (I) has a bound content of 3-20% by weight, a bound content of 20-95% and a bound styrene content of 40-95% by weight.
80% styrene-butadiene copolymer rubber ()60
5% by weight, and 40% to 0% by weight of polybutadiene rubber () with a 1,2-bond content of 20% or less and a Mooney viscosity (ML 1+4 , 100°C) of 20 to 100. The object of the present invention is to provide a rubber composition for tire tread that reduces rolling resistance without impairing wet skid resistance. By using the rubber composition for tire tread of the present invention, it is possible to obtain a tire that has a high level of balance between rolling resistance, which is important for tire performance, and braking performance on wet road surfaces, that is, wet skid resistance. It is possible to manufacture a tire that does not require a particular resistance value and only requires a high rebound modulus. The styrene-butadiene copolymer rubber in which benzophenones or thiobenzophenones are introduced into the rubber molecular chain used in the present invention is obtained by using an alkali metal-based catalyst commonly used in solution polymerization. The benzophenones or thiobenzophenones are reacted with a styrene-butadiene copolymer rubber to which an alkali metal is bonded, or a rubber obtained by using the catalyst and to which an alkali metal is added in a post-reaction. The compound has a general formula with a carbon-carbon bond at the end of the resulting styrene-butadiene copolymer rubber molecular chain or at the other end of the molecular chain.

【匏】匏䞭R1及び R2は氎玠又は前蚘の眮換基を、は又はを、
及びは敎数をそれぞれ衚わす。で瀺される
原子団ずしお導入されたスチレン−ブタゞ゚ン共
重合ゎムである。特に望たしいのは分子鎖の末端
に該原子団が導入されたスチレン−ブタゞ゚ン共
重合ゎムである。 特に奜たしいのはゎム分子鎖の末端に該化合物
が導入されたスチレン−ブタゞ゚ン共重合ゎムで
ある。 本発明で䜿甚される該ベンゟプノン類又はチ
オベンゟプノン類は䟋えば4′−ビスゞメ
チルアミノ−ベンゟプノン、4′−ビス
ゞ゚チルアミノ−ベンゟプノン、4′−ビ
スゞブチルアミノ−ベンゟプノン、
4′−ゞアミノベンゟプノン、−ゞメチルアミ
ノベンゟプノン等及びこれらの察応するチオベ
ンゟプノンの劂き䞀方あるいは䞡方のベンれン
環に少なくずも぀のアミノ基、アルキルアミノ
基あるいはゞアルキルアミノ基を有するベンゟフ
゚ノンである。 該ベンゟプノン類及びチオベンゟプノン類
は䞀般匏
[Formula] (wherein R 1 and R 2 are hydrogen or the above-mentioned substituents, M is O or S,
m and n each represent an integer. ) is a styrene-butadiene copolymer rubber introduced as an atomic group. Particularly desirable is a styrene-butadiene copolymer rubber in which the atomic group is introduced at the end of the molecular chain. Particularly preferred is a styrene-butadiene copolymer rubber in which the compound is introduced at the end of the rubber molecular chain. The benzophenones or thiobenzophenones used in the present invention are, for example, 4,4'-bis(dimethylamino)-benzophenone, 4,4'-bis(diethylamino)-benzophenone, 4,4'-bis(dibutyl amino)-benzophenone, 4,
Benzophenones having at least one amino group, alkylamino group or dialkylamino group in one or both benzene rings, such as 4'-diaminobenzophenone, 4-dimethylaminobenzophenone, etc., and their corresponding thiobenzophenones; It is. The benzophenones and thiobenzophenones have the general formula

【匏】匏䞭R1及び R2は氎玠、又はアミノ基、アルキルアミノ基、
ゞアルキルアミノ基から遞択される眮換基を、
は又はを及びはずの合蚈が〜10ず
なる敎数をそれぞれ衚わすで衚わされるベンゟ
プノン類である。 該ベンゟプノン類を分子鎖䞭に導入したベン
れゟプノン類又はチオベンゟプノン類を添加
する方法、スチレン−ブタゞ゚ン共重合ゎムの溶
液䞭で該觊媒を甚い該ゎムにアルカリ金属を付加
させた埌該ベンゟプノン類又はチオベンゟプ
ノン類を添加する方法等が䟋瀺できる。 重合反応および付加反応に䜿甚されるアルカリ
金属基材觊媒は通垞の溶液重合で䜿甚されるリチ
りム、ナトリりム、ルビゞりム、セシりムの各金
属元玠たたはこれらの炭化氎玠化合物あるいは極
性化合物ずの錯䜓䟋えば−ブチルリチりム、
−ナフチルリチりム、カリりム−テトラヒドロ
フラン錯䜓、カリりム−ゞ゚トキシ゚タン錯䜓
等である。 スチレン−ブタゞ゚ン共重合ゎム䞭に導入され
る該ベンゟプノン類は平均しおゎム分子類モ
ル圓り0.1モル以䞊である。0.1モル未満では反ぱ
぀匟性の向䞊は埗られない。奜たしくは0.3モル
以䞊、さらに奜たしくは0.5モル以䞊、特に奜た
しくは0.7モル以䞊であるが、モル以䞊になる
ずゎム匟性が倱われるので奜たしくない。 本発明で甚いる該ベンゟプノン類を䞻鎖䞭に
導入したスチレン−ブタゞ゚ン共重合ゎム
の結合スチレン含有量は10〜40重量であるこず
が奜たしい。結合スチレン含有量が10重量未満
ではり゚ツトスキツド抵抗が䜎䞋し、本発明の目
的を達せられないので奜たしくなく、40重量を
超えるず反ぱ぀匟性の䜎䞋が著しく奜たしくな
い。ブタゞ゚ン郚分の−結合含有量は10〜
50が奜たしい。−結合含有量が10未満
ではり゚ツトスキツド抵抗が䜎䞋するので奜たし
くなく、50を超えるず耐摩耗性が䜎䞋するので
奜たしくない。ムヌニヌ粘床ML1+4100℃
は20〜150が奜たしく、20未満では反ぱ぀匟性が
䜎䞋し、150を超えるず混緎加工性が悪く、匕匵
匷さ等の機械的性質が䜎䞋するので奜たしくな
い。より奜たしくは30〜130である。は党ゎ
ム成分䞭の20〜95重量が奜たしい。20重量未
満では反ぱ぀匟性の向䞊効果が小さく本発明の目
的を達せられず、95重量を超えるず単独
を甚いお埗た組成物ずほずんど同じ性質になり、
り゚ツトスキツド抵抗あるいは耐摩耗性が劣奜た
しくない。 ず組合せお甚いられる該ベンゟプノン
類を䞻鎖䞭に含たないスチレン−ブタゞ゚ン共重
合ゎムの結合スチレン含有量は〜20重量
が奜たしい。の結合スチレン含有量が
重量未満では機械的性質が䜎䞋するので奜たし
くなく、20重量を超えるず反ぱ぀匟性が䜎䞋す
るので奜たしくない。ブタゞ゚ン郚分の−
結合含有量は40〜80が奜たしい。−結合
含有量は40未満ではり゚ツトスキツド抵抗が䜎
䞋するので奜たしくなく、80を超えるず耐摩耗
性が䜎䞋するので奜たしくない。ムヌニヌ粘床は
20〜150が奜たしく、20未満では反ぱ぀匟性が䜎
䞋し、150を超えるず混緎加工性が悪く機械的性
質が䜎䞋するので、奜たしくない。より奜たしく
は30〜130である。はゎム成分䞭の60〜重
量が奜たしく、60重量を超えるず反ぱ぀匟性
が䜎䞋し、重量未満ではり゚ツトスキツド抵
抗あるいは耐摩耗性が劣る組成物になるので奜た
しくない。 本発明では−結合含有量が20以䞋のポ
リブタゞ゚ンゎムは実甚䞊耐摩耗性の改善
に必芁に応じ甚いられるが、−結合含有量
が20を超えるずその目的が達せられないので奜
たしくない。ムヌニヌ粘床は20〜100が奜たしく、
20未満では反ぱ぀匟性の䜎䞋が著しく本発明の目
的を達せられず、100を超えるず混緎加工性が悪
く機械的な性質が䜎䞋するので、奜たしくない。
より奜たしくは30〜80である。は党ゎム成
分䞭の40重量以䞋が奜たしく、より奜たしく30
重量以䞋である。が40重量を超えるず
り゚ツトスキツド抵抗が著しく䜎䞋するので奜た
しくない。 本発明で䜿甚するゎム成分のすべお、あるいは
䞀郚を油展ゎムずしお䜿甚するこずができる。 本発明のタむダトレツド甚ゎム組成物は目的、
甚途に応じおゎム工業で汎甚される各皮配合剀−
䟋えば硫黄、ステアリン酞、亜鉛華、各皮加硫促
進剀チアゟヌル系、チりラム系、スルプンア
ミド系など、HAF、ISAF等の皮々のグレヌド
のカヌポンブラツク、シリカ、炭酞カルシりム等
の補匷剀、充おん剀、プロセス油等から適宜遞択
するこずができるが−ずロヌル、バンバリ−等の
混合酞を甚いお混緎混合されおゎム配合物ずさ
れ、成圢、加硫工皋を経お目的ずするタむダが補
造される。 本発明のゎム組成物は、高い氎準で反ぱ぀匟性
率ずり゚ツトスキツド抵抗ずを調和させるこずが
できるから、特に安党性、燃料消費性の改善され
た自動車タむダトレツド甚ゎム材料に適しおいる
が、自転車タむダ甚にも䜿甚するこずができる。 以䞋、実斜䟋により本発明を具䜓的に説明す
る。 補造䟋 (1) 以䞋の実斜䟋で䜿甚する該ベンゟプノン類
及びチオベンゟプノン類を䞻鎖䞭に導入した
スチレン−ブタゞ゚ン共重合ゎム以䞋SBR
ず略するこずがあるの補造方法を瀺す。 内容積のステンレス補反応噚を掗浄、也
燥し、也燥窒玠で眮換したのち、スチレン55〜
90、−ブタゞ゚ン145〜110、−ヘ
キサン600、−ブチルリチりム1.2mmを
添加し、内容物を攪拌しながら枩床45〜60℃で
〜時間重合を行぀た。重合反応終了埌
4′−ビスゞ゚チルアミノベンゟプノンを
觊媒量の1.5倍モル加え、分間攪拌した埌に、
重合反応噚䞭の重合䜓溶液を−ゞ−−
ブチル−−クレゟヌルBHT1.5重量の
メタノヌル溶液䞭に取り出し、生成重合䜓を凝
固した。60℃で24時間枛圧也燥し、ムヌニヌ粘
床を枬定した〔SBR〕。又、同様に
しお該ベンゟプノンを察応のチオベンゟプ
ノンに換えたSBRも調補した〔SBR′′
′〕。 たた重合終了埌、該ベンゟプノンあるいは
該チオベンゟプノンを添加せずに重合䜓溶液
をBHT含有メタノヌル溶液䞭に取り出し生成
重合䜓を凝固した埌、前蚘ず同様にしお也燥重
合䜓を埗た〔SBR〕。 (2) (1)で埗たSBRをベンれンに溶解し、(1)ず
同じ操䜜でSBRを凝固させた。この操䜜を
回繰返しおSBR䞭の觊媒残枣を取り陀いた。
(1)ず同じ条件で也燥を行ない、粟補、也燥
SBRを埗た。 このSBR100を也燥ベンれン1000に溶解
した溶液に−ブチルリチりム3.5mmolおよび
テトラメチル゚チレンゞアミン3.5mmolを添加
し、70℃で時間反応させた。 次いで(1)で䜿甚したベンゟプノン化合物を
2.7mmol添加し分間反応させた埌、䞊蚘ず同
様にしお凝固、也燥させた〔SBR〕。 (3) 前蚘ず同様に、内容積のスチレンス補重
合反応噚を甚いお、スチレン15〜40、
−ブタゞ゚ン185〜160、−ヘキサン600、
−ブチルリチりム1.2mmolを添加し、内容物
を攪拌しながら枩床45℃で30分〜60分間重合を
行぀た。重合終了埌、重合䜓溶液をBHT含有
メタノヌル溶液䞭に取り出し生成重合䜓を凝固
した埌、前蚘ず同様にしお也燥重合䜓を埗た
〔SBR〕。 以䞊の方法で調補したゎムのミクロ構造、ムヌ
ニヌ粘床及びEAB導入量を第衚に瀺す。 ミクロ構造の枬定は垞法の赀倖分光法により行
぀た。ベンゟプノン類及びチオベンゟプノン
類の導入量は13−NMRを甚いお求めた。
[Formula] (wherein R 1 and R 2 are hydrogen, amino group, alkylamino group,
a substituent selected from dialkylamino groups, M
is a benzophenone represented by O or S, m and n each represent an integer in which the sum of m and n is 1 to 10. A method of adding benzophenones or thiobenzophenones in which the benzophenones have been introduced into the molecular chain, and a method of adding an alkali metal to the rubber using the catalyst in a solution of styrene-butadiene copolymer rubber, and then adding the benzophenones. Alternatively, a method of adding thiobenzophenones can be exemplified. The alkali metal-based catalysts used in the polymerization reaction and addition reaction include the metal elements lithium, sodium, rubidium, and cesium used in ordinary solution polymerization, or their complexes with hydrocarbon compounds or polar compounds (for example, n- butyl lithium,
2-naphthyllithium, potassium-tetrahydrofuran complex, potassium-diethoxyethane complex, etc.). The benzophenone introduced into the styrene-butadiene copolymer rubber is on average 0.1 mole or more per mole of rubber molecules. If the amount is less than 0.1 mol, no improvement in rebound elasticity can be obtained. The amount is preferably 0.3 mol or more, more preferably 0.5 mol or more, particularly preferably 0.7 mol or more, but if it is 5 mol or more, rubber elasticity is lost, which is not preferable. Styrene-butadiene copolymer rubber () in which the benzophenones used in the present invention are introduced into the main chain
The bound styrene content of is preferably 10 to 40% by weight. If the bound styrene content is less than 10% by weight, the wet skid resistance will decrease, making it impossible to achieve the object of the present invention, which is undesirable, and if it exceeds 40% by weight, the rebound elasticity will be significantly decreased, which is undesirable. The 1,2-bond content of the butadiene moiety is 10~
50% is preferred. If the 1,2-bond content is less than 10%, the wet skid resistance will decrease, which is undesirable, and if it exceeds 50%, the wear resistance will decrease, which is undesirable. Mooney viscosity (ML 1+4 , 100℃)
is preferably from 20 to 150; if it is less than 20, the rebound elasticity decreases, and if it exceeds 150, kneading processability is poor and mechanical properties such as tensile strength are decreased, which is not preferred. More preferably it is 30-130. () is preferably 20 to 95% by weight of the total rubber component. If it is less than 20% by weight, the effect of improving rebound elasticity is small and the object of the present invention cannot be achieved, and if it exceeds 95% by weight, the properties will be almost the same as those obtained by using () alone.
Wet skid resistance or abrasion resistance is poor and undesirable. The bound styrene content of the styrene-butadiene copolymer rubber () which does not contain benzophenones in the main chain and is used in combination with () is preferably 3 to 20% by weight. The bound styrene content in () is 3
If it is less than 20% by weight, the mechanical properties will deteriorate, which is undesirable, and if it exceeds 20% by weight, the rebound elasticity will decrease, which is not preferable. 1,2- of the butadiene moiety
The binding content is preferably 40-80%. If the 1,2-bond content is less than 40%, wet skid resistance decreases, which is undesirable, and if it exceeds 80%, wear resistance decreases, which is undesirable. Mooney viscosity is
The number is preferably from 20 to 150, and if it is less than 20, the rebound elasticity decreases, and if it exceeds 150, the kneading processability is poor and the mechanical properties are deteriorated, which is not preferred. More preferably it is 30-130. The content of () in the rubber component is preferably from 60 to 5% by weight; if it exceeds 60% by weight, the rebound elasticity will decrease, and if it is less than 5% by weight, the composition will have poor wet skid resistance or abrasion resistance, which is not preferable. In the present invention, polybutadiene rubber () with a 1,2-bond content of 20% or less is used as necessary to improve wear resistance in practice, but if the 1,2-bond content exceeds 20%, the This is not desirable because it cannot be achieved. Mooney viscosity is preferably 20 to 100,
If it is less than 20, the recoil elasticity will drop significantly and the object of the present invention cannot be achieved, and if it exceeds 100, kneading processability will be poor and mechanical properties will deteriorate, which is not preferable.
More preferably it is 30-80. () is preferably 40% by weight or less in the total rubber component, more preferably 30% by weight or less.
% by weight or less. If () exceeds 40% by weight, the wet skid resistance will drop significantly, which is not preferable. All or part of the rubber components used in the present invention can be used as oil-extended rubber. The rubber composition for tire tread of the present invention has the following objectives:
Various compounding agents commonly used in the rubber industry depending on the application.
For example, sulfur, stearic acid, zinc white, various vulcanization accelerators (thiazole type, thiuram type, sulfenamide type, etc.), various grades of carbon black such as HAF and ISAF, reinforcing agents such as silica and calcium carbonate, fillers, A rubber compound, which can be appropriately selected from process oils, rolls, Banbury, etc., is kneaded and mixed to form a rubber compound, which is then subjected to molding and vulcanization steps to produce the desired tire. The rubber composition of the present invention is capable of harmonizing recoil modulus and wet skid resistance at a high level, and is therefore particularly suitable as a rubber material for automobile tire treads with improved safety and fuel consumption. It can also be used for tires. Hereinafter, the present invention will be specifically explained with reference to Examples. Production Example (1) Styrene-butadiene copolymer rubber (hereinafter referred to as SBR) in which the benzophenones and thiobenzophenones used in the following examples are introduced into the main chain.
(sometimes abbreviated as ) is shown below. A stainless steel reactor with an internal volume of 2 was washed, dried, and replaced with dry nitrogen, then styrene 55~
90 g of 1,3-butadiene, 145-110 g of n-hexane, and 1.2 mm of n-butyllithium were added thereto, and the contents were polymerized at a temperature of 45-60°C for 1-2 hours while stirring. After the completion of the polymerization reaction 4,
After adding 1.5 times the catalytic amount of 4'-bis(diethylamino)benzophenone in moles and stirring for 5 minutes,
The polymer solution in the polymerization reactor was converted into 2,6-di-t-
The resulting polymer was taken out into a methanol solution containing 1.5% by weight of butyl-p-cresol (BHT), and the resulting polymer was coagulated. It was dried under reduced pressure at 60°C for 24 hours and its Mooney viscosity was measured [SBR2, 4, 6]. In addition, SBR in which the benzophenone was replaced with the corresponding thiobenzophenone was also prepared in the same manner [SBR2', 4',
6′]. After completion of the polymerization, the polymer solution was taken out into a BHT-containing methanol solution without adding the benzophenone or the thiobenzophenone, and the resulting polymer was coagulated, and then a dried polymer was obtained in the same manner as above [SBR1 , 3, 5]. (2) SBR3 obtained in (1) was dissolved in benzene, and SBR was coagulated using the same procedure as in (1). Perform this operation 3
The catalyst residue in the SBR was removed several times.
Dry under the same conditions as (1), purify and dry
Got SBR. 3.5 mmol of n-butyllithium and 3.5 mmol of tetramethylethylenediamine were added to a solution of 100 g of this SBR dissolved in 1000 g of dry benzene, and the mixture was reacted at 70° C. for 1 hour. Next, the benzophenone compound used in (1) was
After adding 2.7 mmol and reacting for 5 minutes, it was coagulated and dried in the same manner as above [SBR9]. (3) In the same manner as above, using a styrene polymerization reactor with an internal volume of 2, 15 to 40 g of styrene, 1,3
-butadiene 185-160g, n-hexane 600g,
1.2 mmol of n-butyllithium was added, and polymerization was carried out at a temperature of 45° C. for 30 to 60 minutes while stirring the contents. After the polymerization was completed, the polymer solution was taken out into a BHT-containing methanol solution to coagulate the resulting polymer, and then dried polymers were obtained in the same manner as above [SBR7, 8]. Table 1 shows the microstructure, Mooney viscosity, and amount of EAB introduced for the rubber prepared by the above method. The microstructure was measured by conventional infrared spectroscopy. The amounts of benzophenones and thiobenzophenones introduced were determined using 13 C-NMR.

【衚】 実斜䟋 タむダトレツド甚基瀎配合ずしお第衚に瀺す
配合凊方の各皮配合剀ず原料ゎムずを容量250ml
のブラベンダ−タむプミキサヌ䞭で混緎混合し
お、各ゎム配合組成物を埗た。硫黄および加硫促
進剀は、各ゎム配合組成物を加硫しお最適状態ず
なる量を䜿甚した。これらのゎム配合組成物を
160℃で15〜30分プレス加硫しお、詊隓片を䜜成
した。 第衚 原料ゎム第衚参照 100重量郹 HAFカヌボンブラツク 50〃 芳銙族系プロセス油 〃 ZnONo. 〃 ステアリン酞 〃 硫黄 加硫促進剀−シクロ ヘキシル−−ベンゟチア ゞルスルプンアミド 倉量 第衚参照 それぞれのゎム配合組成物の加硫物に぀いお、
匷床特性をJISK−6301に埓぀お、たた反ぱ぀匟
性はダンロツプトリブ゜メヌタヌを甚いお枩床55
℃にお枬定した。り゚ツトスキツド抵抗はポヌタ
ブルスキツドテスタヌ英囜スタンレヌ瀟補を
甚い23℃でASTME−303−74の路面3M瀟補屋
倖甚タむプ、黒のセヌフテむヌりオヌクで枬
定し、 各配合加硫物のり゚ツトスキツド抵抗倀
−SBR−1502の配合加硫物のり゚ツトスキツド抵抗倀×1
00 で蚈算し、指数で衚瀺した。 ピコ摩耗量は、ASTMD−2228に埓い、グツ
ドリツチ匏ピコ摩耗詊隓機で枬定し、 SBR−1502配合加硫物の摩耗量各配合加硫物の摩耗
量×100 で蚈算し、指数衚瀺した。以䞊に結果を第衚に
瀺す。 第衚に瀺す結果から、比范䟋〜に察応し
た本発明䟋〜17の反ぱ぀匟性率はいずれも、り
゚ツトスキツド抵抗やピコ摩耗性を損うこずな
く、〜ポむント高いこずがわかる。
[Table] Example: As a basic composition for tire tread, various compounding agents and raw rubber of the compounding prescription shown in Table 2 were mixed in a volume of 250 ml.
Each rubber compound composition was obtained by kneading and mixing in a Brabender type mixer. Sulfur and vulcanization accelerator were used in amounts that would achieve the optimum state when vulcanizing each rubber compound composition. These rubber compound compositions
A test piece was prepared by press vulcanization at 160°C for 15 to 30 minutes. Table 2 Raw rubber (see Table 3) 100 parts by weight HAF carbon black 50 Aromatic process oil 5 ZnONo.3 3 Stearic acid 2 Sulfur vulcanization accelerator (N-cyclohexyl-2-benzothiazyl Sulfenamide) Variable (see Table 3) Regarding the vulcanizate of each rubber compound composition,
The strength properties were determined according to JISK-6301, and the rebound elasticity was determined using a Dunlop tribometer at a temperature of 55%.
Measured at ℃. Wet skid resistance was measured using a portable skid tester (manufactured by Stanley, UK) at 23°C on an ASTME-303-74 road surface (outdoor type B, black safety walk manufactured by 3M). Wet skid resistance value/E
- Wet skid resistance value of compound vulcanizate of SBR-1502 x 1
00 and expressed as an index. The amount of pico wear was measured using a Gutdrich Pico abrasion tester in accordance with ASTMD-2228, and was calculated as: wear amount of SBR-1502 blended vulcanizate/wear amount of each blended vulcanizate x 100, and expressed as an index. The results are shown in Table 3. From the results shown in Table 3, the rebound elastic modulus of Inventive Examples 8 to 17, which correspond to Comparative Examples 2 to 7, is 3 to 5 points higher without impairing wet skid resistance or pico abrasion resistance. Recognize.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  スチレン−ブタゞ゚ン共重合ゎム分子鎖に、
少なくずも個のアミノ基、アルキルアミノ基あ
るいはゞアルキルアミノ基を有するベンゟプノ
ン類又はチオベンゟプノン類を、該ゎム分子鎖
モル圓り少なくずも0.1モルを導入した結合ス
チレン含有量が10〜40重量、ブタゞ゚ン郚分の
−結合含有量が10〜50、ムヌニヌ粘床
ML1+4100℃が20〜150のスチレン−ブタゞ
゚ン共重合ゎム20〜95重量ず、結合スチ
レン含有量が〜20重量、ブタゞ゚ン郚分の
−結合含有量が40〜80のスチレン−ブタ
ゞ゚ン共重合ゎム60〜重量ず、
−結合含有量が20以䞋で、ムヌニヌ粘床
ML1+4100℃が20〜100のポリブタゞ゚ンゎ
ム40〜重量をゎム成分ずしお含んで成
るこずを特城ずするタむダトレツド甚ゎム組成
物。
1 In the styrene-butadiene copolymer rubber molecular chain,
A bound styrene content of 10 to 40% by weight, in which at least 0.1 mole of benzophenones or thiobenzophenones having at least one amino group, alkylamino group or dialkylamino group is introduced per mole of the rubber molecular chain; Styrene-butadiene copolymer rubber (20-95% by weight) with a 1,2-bond content of the butadiene moiety of 10-50% and a Mooney viscosity (ML 1+4 , 100℃) of 20-150, and a bonded styrene content. styrene-butadiene copolymer rubber () having a content of 3 to 20% by weight and a 1,2-bond content of the butadiene moiety of 40 to 80%;
- A rubber for tire treads, characterized in that it comprises as a rubber component 40 to 0% by weight of polybutadiene rubber () having a bond content of 20% or less and a Mooney viscosity (ML 1+4 , 100°C) of 20 to 100. Composition.
JP7528583A 1983-04-28 1983-04-28 Rubber composition for tire tread Granted JPS59199735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7528583A JPS59199735A (en) 1983-04-28 1983-04-28 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7528583A JPS59199735A (en) 1983-04-28 1983-04-28 Rubber composition for tire tread

Publications (2)

Publication Number Publication Date
JPS59199735A JPS59199735A (en) 1984-11-12
JPH0475253B2 true JPH0475253B2 (en) 1992-11-30

Family

ID=13571795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7528583A Granted JPS59199735A (en) 1983-04-28 1983-04-28 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JPS59199735A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2109202A1 (en) * 1991-05-10 1992-11-11 Sung Whee Hong Tire tread compositions
JP5504549B2 (en) * 2006-05-23 2014-05-28 宇郚興産株匏䌚瀟 Rubber composition for tire tread

Also Published As

Publication number Publication date
JPS59199735A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
JPH0121178B2 (en)
JPH0693134A (en) Rubber composition excellent in grip and rolling resistance and its production
JPS5937014B2 (en) Rubber composition for tires and treads
US4555548A (en) Rubber composition for tire treads
JP5014536B2 (en) End-modified diene copolymer and rubber composition for tire tread containing the same
JPS6335668B2 (en)
JP2013032497A (en) Tire rubber composition and pneumatic tire
US4555547A (en) Rubber composition for tire treads
JPH0372537A (en) Rubber composition
JP6575236B2 (en) Rubber composition and pneumatic tire
JP6575237B2 (en) Rubber composition and pneumatic tire
EP0053763B1 (en) Composition for tread rubber of tires
JPH04102B2 (en)
JPH0475253B2 (en)
JP2005213380A (en) Rubber composition for tire, and pneumatic tire
JPH04104B2 (en)
JPH04105B2 (en)
JPS59196338A (en) Tire tread rubber composition
JPH04103B2 (en)
JP2587275B2 (en) Rubber composition for tire
JP3918692B2 (en) Modified diene polymer rubber, method for producing the same, and rubber composition
JP6026269B2 (en) Rubber composition and pneumatic tire
JPH08183883A (en) Tire tread rubber composition and its production
JPS59197442A (en) Tire tread rubber composition
JPS59196336A (en) Tire tread rubber composition