JP2005213380A - Rubber composition for tire, and pneumatic tire - Google Patents

Rubber composition for tire, and pneumatic tire Download PDF

Info

Publication number
JP2005213380A
JP2005213380A JP2004022144A JP2004022144A JP2005213380A JP 2005213380 A JP2005213380 A JP 2005213380A JP 2004022144 A JP2004022144 A JP 2004022144A JP 2004022144 A JP2004022144 A JP 2004022144A JP 2005213380 A JP2005213380 A JP 2005213380A
Authority
JP
Japan
Prior art keywords
rubber
carbon black
rubber composition
polymer
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004022144A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamibayashi
宏 上林
Norio Minouchi
則夫 箕内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2004022144A priority Critical patent/JP2005213380A/en
Publication of JP2005213380A publication Critical patent/JP2005213380A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

<P>PROBLEM TO BE SOLVED: To easily obtain a rubber composition for tires improved in abrasion resistance with low rolling resistance and wetting performance made compatible with each other in good balance, and to provide a pneumatic tire using the composition. <P>SOLUTION: The rubber composition for tires is obtained by compounding 100 pts. wt. of the main rubber component, i.e. two kinds of diene rubbers differing in glass transition temperature from each other with 40-120 pts. wt. of carbon black and 1-20 pts. wt. of a low-molecular weight polymer having a functional group interacting with the carbon black on the molecular chain end and having a polymer structure similar to the diene rubber of lower glass transition temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、タイヤ用ゴム組成物に関し、さらに詳しくは、低転がり抵抗性と湿潤路面での制動性や操縦性能をバランスよく両立し、かつ耐摩耗性を向上させたタイヤ用ゴム組成物に関する。また、本発明は、そのタイヤ用ゴム組成物をトレッドに適用した空気入りタイヤに関する。   The present invention relates to a rubber composition for tires, and more particularly, to a rubber composition for tires that balances low rolling resistance, braking performance on wet road surfaces and steering performance in a well-balanced manner, and has improved wear resistance. Moreover, this invention relates to the pneumatic tire which applied the rubber composition for tires to the tread.

タイヤ用、中でもトレッドに用いられるゴム組成物は、低燃費性の観点から低転がり抵抗性が求められ、また安全性の面からの湿潤路面での制動性能や操縦安定性(以下、ウエット性能という)の向上が求められ、さらに耐久性、経済性の点で耐摩耗性の向上が強く要求されている。   Rubber compositions used for tires, especially for treads, require low rolling resistance from the viewpoint of fuel efficiency, and also provide braking performance and driving stability (hereinafter referred to as wet performance) on wet roads from the viewpoint of safety. In addition, there is a strong demand for improved wear resistance in terms of durability and economy.

このような背反傾向を示す低転がり抵抗性とウェット性能とを両立させる要求に基づき、例えば、特定の油展Aゴム成分と、Bゴム成分を含むカーボンブラックマスターバッチと、シリカをブレンドしてなるタイヤトレッド用ゴム組成物が提案されてる(特許文献1)。
特開平11−60816号公報
Based on the requirement to achieve both low rolling resistance and wet performance exhibiting such a contradiction tendency, for example, a specific oil-extended A rubber component, a carbon black masterbatch containing a B rubber component, and silica are blended. A rubber composition for tire treads has been proposed (Patent Document 1).
Japanese Patent Laid-Open No. 11-60816

上記特許文献に記載のゴム組成物は、各ゴム成分がゴム組成物中にそれぞれ適度な相溶性を有し不均一状態にて偏在するとともに、カーボンブラックはBゴム成分中に、シリカはAゴム成分中にそれぞれ分散しているため、各ゴム成分特有の作用効果を有効に発現でき、耐摩耗性、低燃費性および湿潤路面における制動性を高いレベルで両立できる優れた効果を有するものである。   In the rubber composition described in the above patent document, each rubber component is moderately compatible and unevenly distributed in the rubber composition, carbon black is in the B rubber component, and silica is in the A rubber. Since each component is dispersed in each component, it is possible to effectively express the action and effect peculiar to each rubber component, and it has an excellent effect that can achieve both a high level of wear resistance, low fuel consumption and braking performance on wet road surfaces. .

しかしながら、上記技術のように、特定の油展ゴムとカーボンブラックマスターバッチを用いるものは、油展ゴムのムーニー粘度調整やゴム成分のマスターバッチ化の工程を要して材料コスト上昇の要因となり、また粘度の異なる油展ゴムとマスターバッチとの混練性の低下により混練作業性を悪化させ、均一なゴム組成物を得るための品質管理上の問題が生じるなど製造工程が複雑化し、ゴム組成物のコスト上昇や製造工程管理の上で必ずしも満足できるものではない。   However, as in the above technology, those using a specific oil-extended rubber and carbon black masterbatch require a process for adjusting the Mooney viscosity of the oil-extended rubber and making a masterbatch of the rubber component, which increases the material cost. In addition, the production process becomes complicated, such as deterioration of the kneadability of the oil-extended rubber and masterbatch with different viscosities, resulting in quality control problems for obtaining a uniform rubber composition. However, it is not always satisfactory in terms of cost increase and manufacturing process management.

本発明は、2種類のジエン系ゴムをゴム主成分とするタイヤ用ゴム組成物おいて、どちらかのゴム成分中にカーボンブラックを偏在させることで各々のゴム特性を有効に発現させるもので、特に低ガラス転移温度側のゴム相にカーボンブラックを多く偏在ざせることで低転がり抵抗性とウェット性能をバランスよく両立し、かつ耐摩耗性を向上させた製造の容易なタイヤ用ゴム組成物、及びそのタイヤ用ゴム組成物を適用した空気入りタイヤを提供することを目的とする。   The present invention is a tire rubber composition comprising two types of diene rubbers as a main component of rubber, and each rubber characteristic is effectively expressed by unevenly distributing carbon black in either rubber component. In particular, a rubber composition for a tire that is easy to manufacture and has a good balance between low rolling resistance and wet performance by unevenly distributing carbon black in the rubber phase on the low glass transition temperature side, and improving wear resistance, And it aims at providing the pneumatic tire which applied the rubber composition for tires.

本発明者らは、カーボンブラックを偏在させたいゴム成分と類似のポリマーを用いることで、このポリマーを介してカーボンブラックとゴム成分との親和性が向上することに着目し鋭意検討した結果、カーボンブラックと相互作用のある官能基を導入した比較的低分子量のポリマーを用いることにより、カーボンブラックをそのポリマーに類似するゴム成分に多く分配させ、分配量の制御が可能となることを見出して本発明の完成に到った。   As a result of diligent research, the present inventors paid attention to the fact that the affinity between the carbon black and the rubber component is improved through the polymer by using a polymer similar to the rubber component for which carbon black is to be unevenly distributed. By using a relatively low molecular weight polymer introduced with a functional group that interacts with black, carbon black is distributed in a large amount of rubber components similar to that polymer, and the amount of distribution can be controlled. The invention has been completed.

すなわち、請求項1に記載の発明は、ガラス転移温度の異なる2種類のジエン系ゴムをゴム主成分とし、前記ゴム成分100重量部に対してカーボンブラックを40〜120重量部配合したタイヤ用ゴム組成物において、分子鎖末端に前記カーボンブラックと相互作用のある官能基を有し、かつ前記低ガラス転移温度のジエン系ゴム成分に類似するポリマー構造を有する低分子量の官能基含有ポリマーを、前記ゴム成分100重量部に対して1〜20重量部配合してなることを特徴とするタイヤ用ゴム組成物である。   That is, the invention according to claim 1 is a tire rubber in which two types of diene rubbers having different glass transition temperatures are used as a main rubber component, and 40 to 120 parts by weight of carbon black is blended with 100 parts by weight of the rubber component. In the composition, a low molecular weight functional group-containing polymer having a functional group interacting with the carbon black at a molecular chain end and having a polymer structure similar to the diene rubber component having the low glass transition temperature, A tire rubber composition comprising 1 to 20 parts by weight per 100 parts by weight of a rubber component.

本発明のタイヤ用ゴム組成物によれば、分子鎖末端の官能基がカーボンブラックとの相互作用によりポリマーとカーボンブラックとの親和性を向上し、ポリマー構造の類似するガラス転移温度の低いジエン系ゴム成分との相溶性を良好にすることで、低ガラス転移温度側のゴム成分中にカーボンブラックを優先して分配することができる。ポリマー構造と配合量の選択によってカーボンブラックの分配量を定量的に制御することが可能となり、これにより、ガラス転移温度の異なる2種類のゴム成分の特長を有効に発現させ、すなわち低ガラス転移温度のゴム成分とカーボンブラックとの相乗効果により、0℃付近でのtanδを大きくし、60℃付近でのtanδを小さくできるため、耐摩耗性を高度に維持し、低転がり抵抗性とウェット性能との効果を同時に満たすことができるタイヤ用ゴム組成物が得られる。さらに、カーボンブラックの分散性を良好にすることで、ゴム組成物の耐摩耗性をより改善することができる。   According to the tire rubber composition of the present invention, the functional group at the molecular chain terminal improves the affinity between the polymer and carbon black by the interaction with the carbon black, and the diene system having a low glass transition temperature having a similar polymer structure. By making the compatibility with the rubber component good, carbon black can be preferentially distributed in the rubber component on the low glass transition temperature side. It is possible to quantitatively control the distribution amount of carbon black by selecting the polymer structure and blending amount, thereby effectively expressing the characteristics of two rubber components having different glass transition temperatures, that is, a low glass transition temperature. Due to the synergistic effect of the rubber component and carbon black, tan δ near 0 ° C can be increased and tan δ near 60 ° C can be reduced, so that the wear resistance is maintained at a high level, and low rolling resistance and wet performance are achieved. A rubber composition for tires that can simultaneously satisfy the above effects is obtained. Furthermore, the wear resistance of the rubber composition can be further improved by improving the dispersibility of the carbon black.

そして、官能基含有ポリマーをゴム成分とカーボンブラックと共に混合することで、マスターバッチのような材料準備工程や混練工程の複雑な管理を要さずにカーボンブラックを低ガラス転移温度側に偏在させたタイヤ用ゴム組成物を製造することができる。   Then, by mixing the functional group-containing polymer together with the rubber component and carbon black, the carbon black was unevenly distributed on the low glass transition temperature side without requiring complicated management of the material preparation process and kneading process such as a masterbatch. A rubber composition for tires can be produced.

なお、ポリマー構造とは、ポリマーを構成する構造単位、スチレン含量やビニル含量、ブタジエンのシス/トランス構成比などのミクロ構造、等の化学構造を言う。   The polymer structure refers to a chemical structure such as a structural unit constituting a polymer, a styrene content or a vinyl content, or a microstructure such as a cis / trans constitutional ratio of butadiene.

請求項2に記載の発明は、前記官能基含有ポリマーが、カルボキシル基、水酸基及びアミノ基から選ばれる少なくとも1種の官能基を有することを特徴とする請求項1に記載のタイヤ用ゴム組成物である。   The invention according to claim 2 is the tire rubber composition according to claim 1, wherein the functional group-containing polymer has at least one functional group selected from a carboxyl group, a hydroxyl group and an amino group. It is.

これらの官能基が、カーボンブラック表面上のカルボキシル基、フェノール基、キノン基などの官能基との相互作用を良好にし、官能基含有ポリマーとカーボンブラックの親和性を向上して特定ゴム成分へのカーボンブラック分配性を容易なものとする。   These functional groups improve the interaction between the functional group such as carboxyl group, phenol group, and quinone group on the surface of carbon black, and improve the affinity between the functional group-containing polymer and carbon black. Easy to distribute carbon black.

請求項3に記載の発明は、請求項1又は2に記載のタイヤ用ゴム組成物を適用したことを特徴とする空気入りタイヤである。   Invention of Claim 3 is a pneumatic tire characterized by applying the rubber composition for tires of Claim 1 or 2.

本発明の空気入りタイヤによれば、上記タイヤ用ゴム組成物をトレッドに適用することにより、低転がり抵抗性とウェット性能をバランスよく両立し、かつ耐摩耗性を向上させる空気入りタイヤを煩雑な工程管理や製造工程を伴わず安価に得ることができる。   According to the pneumatic tire of the present invention, by applying the tire rubber composition to a tread, a pneumatic tire that balances low rolling resistance and wet performance in a balanced manner and improves wear resistance is complicated. It can be obtained at low cost without any process control or manufacturing process.

本発明のタイヤ用ゴム組成物は、ガラス転移温度の異なる2種類のジエン系ゴムからなるブレンドゴムにおいて、カーボンブラックを低ガラス転移温度側のゴム相に多く偏在させたゴム組成物であるので、低ガラス転移温度のゴム成分とカーボンブラックとの相乗作用と高ガラス転移温度のゴム成分の特長を有効に発現させ、またカーボンブラックの分散性を良好にすることで耐摩耗性を向上しつつ、背反関係にある低転がり抵抗性とウェット性能をバランスよく向上することができる。そして、そのタイヤ用ゴム組成物を適用することで、バランスのよいタイヤ性能を備えた空気入りタイヤを容易に製造することができる優れた効果を有している。   The rubber composition for tires of the present invention is a rubber composition in which carbon black is unevenly distributed in the rubber phase on the low glass transition temperature side in a blend rubber composed of two types of diene rubbers having different glass transition temperatures. While effectively developing the synergistic effect of the rubber component of low glass transition temperature and carbon black and the characteristics of the rubber component of high glass transition temperature, and improving the wear resistance by improving the dispersibility of carbon black, The low rolling resistance and the wet performance in a contradictory relationship can be improved in a balanced manner. And it has the outstanding effect which can manufacture the pneumatic tire provided with the well-balanced tire performance easily by applying the rubber composition for tires.

本発明のタイヤ用ゴム組成物は、ガラス転移温度(以下、Tgという)の異なる2種類のジエン系ゴムをゴム成分とするもので、天然ゴム(NR)及び、溶液重合又は乳化重合による各種スチレンブタジエンゴム(SBR)、各種ブタジエンゴム(BR)、イソプレンゴム(IR)等のジエン系合成ゴムから選ばれた2種類が、10:90〜90:10、好ましくは20:80〜80:20の範囲の配合比で任意に用いられる。   The rubber composition for tires of the present invention comprises two kinds of diene rubbers having different glass transition temperatures (hereinafter referred to as Tg) as rubber components. Natural rubber (NR) and various styrenes by solution polymerization or emulsion polymerization. Two types selected from diene synthetic rubbers such as butadiene rubber (SBR), various butadiene rubbers (BR) and isoprene rubber (IR) are 10:90 to 90:10, preferably 20:80 to 80:20. It is arbitrarily used within a range of blending ratio.

トレッドゴムに用いる場合は、耐摩耗性、低転がり抵抗性、耐疲労性や加工性の点からNR、SBRを用いるのが好ましく、SBRについては低転がり抵抗性とウェット性能のバランスの点から溶液重合SBRのが好ましく、また氷上性能を重視するスタッドレスタイヤ用には低温特性が良好なTgの低いNR、BRを用いるのが好ましい。   When used for tread rubber, it is preferable to use NR and SBR from the viewpoint of wear resistance, low rolling resistance, fatigue resistance and workability, and SBR is a solution from the viewpoint of the balance between low rolling resistance and wet performance. Polymerized SBR is preferable, and it is preferable to use NR and BR having low Tg and good low-temperature characteristics for studless tires that place importance on on-ice performance.

この2種類のジエン系ゴムのTgは、−110〜−20℃、好ましくは−100〜−30℃であり、この温度よりTgの低いゴム成分はウェット性能を著しく低下させ、逆にTgの高すぎるゴム成分は耐摩耗性、低転がり抵抗性を低下させ、低温特性も得られなくなる。   The Tg of these two types of diene rubbers is −110 to −20 ° C., preferably −100 to −30 ° C. A rubber component having a Tg lower than this temperature significantly reduces wet performance, and conversely, a high Tg. Too much rubber component lowers wear resistance and low rolling resistance, and low temperature characteristics cannot be obtained.

この2種類のゴム成分のTg差は10℃以上であり、好ましくは15℃以上、さらには20℃以上であることが望ましい。Tg差が10℃未満であると、上記の低Tgゴムと高Tgゴムの特有の効果を十分に発現させることが困難となる。   The difference in Tg between the two rubber components is 10 ° C. or more, preferably 15 ° C. or more, and more preferably 20 ° C. or more. If the Tg difference is less than 10 ° C., it is difficult to sufficiently develop the specific effects of the low Tg rubber and the high Tg rubber.

本発明に用いられるカーボンブラックとしては、特に制限されるものではなく、SAF、ISAF、HAF、FEF、GPFなどのタイヤ用ゴム組成物に通常に使用されるカーボンブラックが挙げられ、トレッド用に用いる場合は耐摩耗性、低転がり抵抗性、破断時伸びなどの観点から窒素吸着比表面積(BET)が65〜160m/g、DBP吸油量が70〜140ml/100gにあるSAF,ISAF,HAF級のカーボンブラックを用いるのが好ましい。 The carbon black used in the present invention is not particularly limited, and examples thereof include carbon black usually used in tire rubber compositions such as SAF, ISAF, HAF, FEF, and GPF, and are used for treads. In the case, SAF, ISAF, HAF grades having a nitrogen adsorption specific surface area (BET) of 65 to 160 m 2 / g and a DBP oil absorption of 70 to 140 ml / 100 g from the viewpoint of wear resistance, low rolling resistance, elongation at break, etc. It is preferable to use carbon black.

上記カーボンブラックの配合量は、ゴム成分100重量部に対して40〜120重量部程度である。このカーボンブラックの配合量が40重量部未満であるとゴム組成物の補強性が不十分となり耐久性や耐摩耗性が十分に得られず、120重量部を越えると粘度が上昇し未加硫時の加工性低下や分散性の低下が大きくなり均一なゴム組成が得られず、さらに官能基含有ポリマーとの相互作用が低下し低Tgゴム成分へのカーボンブラックの分配制御が困難となる。   The compounding amount of the carbon black is about 40 to 120 parts by weight with respect to 100 parts by weight of the rubber component. If the blending amount of this carbon black is less than 40 parts by weight, the rubber composition will have insufficient reinforcement and durability and wear resistance will not be sufficiently obtained. If it exceeds 120 parts by weight, the viscosity will increase and unvulcanized. At the same time, the processability and dispersibility decrease greatly, a uniform rubber composition cannot be obtained, and the interaction with the functional group-containing polymer decreases, making it difficult to control the distribution of carbon black to the low Tg rubber component.

本発明のタイヤ用ゴム組成物においては、上記カーボンブラックと併用してシリカを用いてもよい。シリカを配合することで、高Tgゴム成分との相乗効果によりウェット性能を向上し、また低転がり抵抗性をより改善することができる。   In the rubber composition for tires of the present invention, silica may be used in combination with the carbon black. By blending silica, the wet performance can be improved by the synergistic effect with the high Tg rubber component, and the low rolling resistance can be further improved.

シリカとしては、通常のゴム補強層用に用いられる湿式シリカ、乾式シリカなどの窒素吸着比表面積(BET)が100〜300m/gにあるものがよく、その配合量はカーボンブラックとの合計量でゴム成分100重量部に対して40〜140重量部程度である。なお、シリカを併用する場合は、ビス−(3−(トリエトキシシリル)プロピル)テトラスルフィド、3−メルカプトプロピルトリメトキシシランなどのシランカップリング剤を同時に用いるのが好ましい。 As silica, those having a nitrogen adsorption specific surface area (BET) of 100 to 300 m 2 / g such as wet silica and dry silica used for ordinary rubber reinforcing layers are good, and the blending amount thereof is the total amount of carbon black And about 40 to 140 parts by weight per 100 parts by weight of the rubber component. When silica is used in combination, a silane coupling agent such as bis- (3- (triethoxysilyl) propyl) tetrasulfide or 3-mercaptopropyltrimethoxysilane is preferably used at the same time.

本発明のタイヤ用ゴム組成物に含有される官能基含有ポリマーは、分子鎖末端にカルボキシル基、水酸基及びアミノ基から選ばれる少なくとも1種の官能基を有する比較的低分子量のポリマーである。   The functional group-containing polymer contained in the tire rubber composition of the present invention is a relatively low molecular weight polymer having at least one functional group selected from a carboxyl group, a hydroxyl group and an amino group at the molecular chain terminal.

この官能基含有ポリマーは、例えば、炭化水素系溶媒中にてジエン系モノマーの単独、或いはジエン系モノマーと芳香族ビニルモノマーとの混合物をアルカリ金属系重合開始剤を用いて重合させ、アルカリ金属活性末端を有するジエン系ポリマーを得て、次いで、該ポリマーのアルカリ金属活性末端に、カルボキシル基、水酸基及びアミノ基の内の少なくとも1種の官能基を有する化合物、例えばカルボキシル基の場合は炭酸ガス、水酸基はエチレンオキシドやプロピレンオキシド、アミノ基はヒドラジン等を反応させ、活性末端を官能基でカップリングして製造することができる。   This functional group-containing polymer is obtained by, for example, polymerizing a diene monomer alone or a mixture of a diene monomer and an aromatic vinyl monomer in a hydrocarbon solvent using an alkali metal polymerization initiator. A diene polymer having a terminal is obtained, and then a compound having at least one functional group of a carboxyl group, a hydroxyl group and an amino group at the alkali metal active terminal of the polymer, such as carbon dioxide in the case of a carboxyl group, The hydroxyl group can be produced by reacting ethylene oxide or propylene oxide, the amino group can be reacted with hydrazine or the like, and the active terminal is coupled with a functional group.

このポリマー末端の官能基は、ポリマーをカーボンブラックとともに配合させた時に、カーボンブラック表面に存在するカルボキシル基、フェノール基、キノン基などの表面官能基との相互作用(化学的結合)により、ポリマーとカーボンブラックとの親和性を向上するものである。   This functional group at the end of the polymer is combined with the polymer by the interaction (chemical bond) with surface functional groups such as carboxyl group, phenol group and quinone group present on the surface of carbon black when the polymer is blended with carbon black. It improves the affinity with carbon black.

また、このような親和性の向上により、本発明のゴム組成物はカーボンブラックの良好な分散性と補強性とを得て、未加硫時におけるゴム粘度の上昇を抑えて加工性にも優れ、ゴム組成物の強度や耐摩耗性等の各特性を向上することができる。   In addition, the rubber composition of the present invention has good dispersibility and reinforcing property of carbon black due to such an improvement in affinity, and suppresses an increase in rubber viscosity when not vulcanized and has excellent processability. Each characteristic such as strength and wear resistance of the rubber composition can be improved.

上記ジエン系モノマーとしては、共役状態にあるジエンモノマーであればよく、ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ヘキサジエンなどが挙げられ、タイヤ用の場合はブタジエン、イソプレンを用いるのが好ましい。   The diene monomer may be a diene monomer in a conjugated state, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene, In the case of tires, it is preferable to use butadiene and isoprene.

また、前記ジエン系モノマーと共重合される場合の芳香族ビニルモノマーとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、ジビニルナフタレンなどが挙げられる。   Examples of the aromatic vinyl monomer when copolymerized with the diene monomer include styrene, α-methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, and divinyl naphthalene.

本発明におけるアルカリ金属系重合開始剤は、ジエン系モノマーの単独重合、又はジエン系モノマーと芳香族ビニルモノマーとの共重合を開始させ、得られる重合物にアルカリ金属活性末端を提供するものであればよいが、重合中に化学的に安定であり、かつ開始剤として一般的で安価であるという点からアルキルリチウム、アルケニルリチウムおよびアルキレンジリチウムなどの有機リチウム化合物が挙げられ、具体的にはエチルリチウム、i−プロピルリチウム、n−ブチルリチウム、t−オクチルリチウム、フェニルリチウムなどが用いられる。ポリマーの重合又は共重合は従来の方法で行えばよい。   The alkali metal polymerization initiator in the present invention is one that initiates homopolymerization of a diene monomer or copolymerization of a diene monomer and an aromatic vinyl monomer, and provides an alkali metal active terminal to the resulting polymer. However, organic lithium compounds such as alkyllithium, alkenyllithium and alkylenedilithium can be mentioned because they are chemically stable during polymerization, and are general and inexpensive as initiators. Lithium, i-propyl lithium, n-butyl lithium, t-octyl lithium, phenyl lithium and the like are used. Polymer polymerization or copolymerization may be performed by a conventional method.

また、本発明における炭化水素系溶媒は、通常モノマーを重合させる場合に用いるものであり、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ヘキサン、ヘプタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素などが挙げられる。   Further, the hydrocarbon solvent in the present invention is usually used when polymerizing monomers, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbons such as hexane and heptane, cyclopentane, Examples include alicyclic hydrocarbons such as cyclohexane and methylcyclohexane.

本発明に用いられる官能基含有ポリマーは、重合条件(重合温度、時間、開始剤や添加剤の種類など)により分子量が調整され、またポリマーの活性末端への官能基の結合数は反応させる化合物の種類、量及び反応条件により調整することができ、さらに共重合ポリマーの場合はそれぞれのモノマーの仕込み量によってスチレン含量、ビニル含量などのポリマー構造が調整される。   The functional group-containing polymer used in the present invention is a compound whose molecular weight is adjusted according to the polymerization conditions (polymerization temperature, time, type of initiator and additive, etc.), and the number of functional groups bonded to the active terminal of the polymer is the compound to be reacted In the case of a copolymer, the polymer structure such as styrene content and vinyl content is adjusted according to the amount of each monomer charged.

この官能基含有ポリマーは、分子鎖末端に官能基を1分子当たり平均0.4個以上、より好ましくは0.6個以上有する必要がある。この官能基の含有量が平均0.4個未満であると、ポリマーとカーボンブラックとの相互作用が不足し両者の親和性が十分に得られず、所望のゴム成分中へのカーボンブラック分配が困難となり、またゴム組成物全体へのカーボンブラック分散性が不十分となり補強性が低下し好ましくない。   This functional group-containing polymer needs to have an average of 0.4 or more, more preferably 0.6 or more functional groups per molecule at the molecular chain end. If the content of this functional group is less than 0.4 on average, the interaction between the polymer and carbon black is insufficient, and sufficient affinity between the two cannot be obtained, and carbon black distribution into the desired rubber component can be prevented. It becomes difficult, and the dispersibility of carbon black in the rubber composition as a whole becomes insufficient, so that the reinforcing property is lowered.

また、この官能基含有ポリマーは低分子量であることが好ましく、数平均分子量が100,000以下にあることが望ましい。分子量が100,000を越えるとジエン系ゴムとの相溶性が悪化し、強度や剛性の低下、加工性の低下などの悪影響が現れる。分子量の下限値は特に限定されないが、1,000よりも小さいとゴム組成物の強度や弾性率などゴムの機械特性が十分得られなくなる。   The functional group-containing polymer preferably has a low molecular weight and desirably has a number average molecular weight of 100,000 or less. When the molecular weight exceeds 100,000, compatibility with the diene rubber deteriorates, and adverse effects such as a decrease in strength and rigidity and a decrease in workability appear. The lower limit of the molecular weight is not particularly limited, but if it is less than 1,000, sufficient rubber mechanical properties such as strength and elastic modulus of the rubber composition cannot be obtained.

本発明のゴム組成物において、官能基含有ポリマーはジエン系ゴム成分100重量部に対して1〜20重量部の範囲で用いられる。官能基含有ポリマーの配合量が1重量部未満であると、カーボンブラックとの親和性が十分に得られず所望のゴム成分へのカーボンブラック分配が得られず、ゴム組成物中のカーボンブラックの分散性向上の効果も現れない。また、配合量が20重量部を越えるとカーボンブラックとの相互作用が飽和状態となりそれ以上の効果が得られず、またポリマーが第3ゴム成分となってブレンドゴム組成に影響し、得られるゴム組成物の強度、剛性、弾性率などの機械的特性の変化が大きくなり好ましくない。   In the rubber composition of the present invention, the functional group-containing polymer is used in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the diene rubber component. When the amount of the functional group-containing polymer is less than 1 part by weight, sufficient affinity with carbon black cannot be obtained, and carbon black distribution to a desired rubber component cannot be obtained, and the carbon black in the rubber composition cannot be obtained. The effect of improving dispersibility does not appear. Further, when the blending amount exceeds 20 parts by weight, the interaction with carbon black becomes saturated and no further effect is obtained, and the polymer becomes a third rubber component which affects the blend rubber composition, and the resulting rubber Changes in mechanical properties such as strength, rigidity and elastic modulus of the composition are undesirably large.

カーボンブラックの低Tgゴム相への偏在は、官能基含有ポリマーのポリマー構造やゴム組成物への配合量を、2種類のジエン系ゴム成分の種類や配合組成に応じて調整することにより定量的にコントロールすることができる。   The uneven distribution of carbon black in the low-Tg rubber phase is quantitative by adjusting the polymer structure of the functional group-containing polymer and the blending amount of the functional group-containing polymer in the rubber composition according to the types and blending compositions of the two diene rubber components. Can be controlled.

本発明のタイヤ用ゴム組成物には、上記成分の他に、ゴム業界において通常に用いられる硫黄などの加硫剤、加硫促進剤、プロセスオイル、老化防止剤、亜鉛華、ステアリン酸、加硫助剤などの各種配合剤を、本発明の効果を損なわない範囲で必要に応じ適宜配合し用いることができる。   In addition to the above components, the rubber composition for tires of the present invention includes vulcanizing agents such as sulfur, vulcanization accelerators, process oils, anti-aging agents, zinc white, stearic acid, Various compounding agents such as a sulfur assistant can be appropriately blended and used as necessary within a range not impairing the effects of the present invention.

本発明のタイヤ用ゴム組成物は、ジエン系ゴムを原料ゴムとして、官能基含有ポリマー、カーボンブラック及び各種配合剤を配合しバンバリーミキサー、ロール、ニーダーなどの各種混練機を使用して常法に従い作製することができ、タイヤのトレッドを始めとしてサイドウォール部、ビード部などのタイヤ各部位に使用することができるが、特にトレッド用ゴムとして好適に使用される。   The rubber composition for tires of the present invention uses a diene rubber as a raw rubber, blends a functional group-containing polymer, carbon black, and various compounding agents, and uses various kneaders such as a Banbury mixer, roll, kneader, and the like according to a conventional method. It can be used and can be used for tire portions such as a tire tread, a sidewall portion, a bead portion, etc., but is particularly preferably used as a rubber for a tread.

以下に実施例を用いて本発明を説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

下記の方法により5種類の官能基含有ポリマーA〜Eを得た。ポリマーA〜Eの1分子当たりの平均末端官能基数、数平均分子量及びスチレン含量を表1に示す。   Five types of functional group-containing polymers A to E were obtained by the following method. Table 1 shows the average number of terminal functional groups, the number average molecular weight, and the styrene content per molecule of the polymers A to E.

なお、ポリマー1分子当たりの末端官能基数(個)はアセチル化法により求めた水酸基価と平均分子量から求め、数平均分子量(Mn)はGPC(ゲルパーメーションクロマトグラフィー)測定により、スチレン含量(%)はNMR(核磁気共鳴)スペクトルの測定により求めた。   The number of terminal functional groups per polymer molecule (number) was determined from the hydroxyl value and average molecular weight determined by the acetylation method, and the number average molecular weight (Mn) was determined by GPC (gel permeation chromatography) measurement to determine the styrene content (% ) Was determined by measurement of NMR (nuclear magnetic resonance) spectrum.

・官能基含有ポリマーA(ポリマーA)
イソプレンモノマーをn−ブチルリチウムを開始剤としてn−ヘキサン中で重合し、重合活性末端に対して10倍モルの炭酸ガスを添加することにより、分子鎖片末端にCOOLiを有するポリイソプレンを得た。次に、塩酸処理することでCOOLiをCOOHに変換したカルボキシル基末端を有するポリマーAを得た。
-Functional group-containing polymer A (polymer A)
Isoprene monomer was polymerized in n-hexane using n-butyllithium as an initiator, and 10 times mole of carbon dioxide gas was added to the polymerization active terminal to obtain polyisoprene having COOLi at one molecular chain end. . Next, a polymer A having a carboxyl group terminal obtained by converting COOLi into COOH by treating with hydrochloric acid was obtained.

・官能基含有ポリマーB(ポリマーB)
スチレンモノマーとブタジエンモノマーの混合物をn−ブチルリチウムを開始剤としてシクロヘキサン中で重合し、ランダムスチレンブタジエンポリマーを得た後、重合活性末端に対して10倍モルのエチレンオキシドを添加することにより、分子鎖片末端に水酸基を有するポリマーBを得た。スチレン/ブタジエンモノマーの仕込み比(モル)は、25/75とした。
・ Functional group-containing polymer B (Polymer B)
A mixture of a styrene monomer and a butadiene monomer was polymerized in cyclohexane using n-butyllithium as an initiator to obtain a random styrene butadiene polymer, and then a molecular chain was added by adding 10 times mole of ethylene oxide to the polymerization active terminal. Polymer B having a hydroxyl group at one end was obtained. The charge ratio (mole) of styrene / butadiene monomer was 25/75.

・官能基含有ポリマーC(ポリマーC)
スチレンモノマーとブタジエンモノマーの混合物をポリマーBと同様に重合し、重合活性末端に対して10倍モルのエチレンオキシドを添加して末端に水酸基を有するポリマーCを得た。スチレン/ブタジエンモノマーの仕込み比(モル)を、35/65とした。
・ Functional group-containing polymer C (Polymer C)
A mixture of a styrene monomer and a butadiene monomer was polymerized in the same manner as the polymer B, and 10 times mole of ethylene oxide was added to the polymerization active terminal to obtain a polymer C having a hydroxyl group at the terminal. The charge ratio (mole) of styrene / butadiene monomer was 35/65.

・官能基含有ポリマーD(ポリマーD)
スチレンモノマーとブタジエンモノマーの混合物をポリマーBと同様に重合し、重合活性末端に対して6倍モルのエチレンオキシドを添加して末端に水酸基を有するポリマーDを得た。スチレン/ブタジエンモノマーの仕込み比(モル)を、35/65とした。
・ Functional group-containing polymer D (Polymer D)
A mixture of a styrene monomer and a butadiene monomer was polymerized in the same manner as the polymer B, and 6 times mole of ethylene oxide was added to the polymerization active terminal to obtain a polymer D having a hydroxyl group at the terminal. The charge ratio (mole) of styrene / butadiene monomer was 35/65.

・官能基含有ポリマーE(ポリマーE)
イソプレンモノマーをポリマーAと同様の方法で、重合度を調整して数平均分子量が300,000のポリイソプレンを重合し、末端処理したカルボキシル基末端を有するポリマーEを得た。
・ Functional group-containing polymer E (polymer E)
The isoprene monomer was polymerized in the same manner as the polymer A to adjust the degree of polymerization to polymerize polyisoprene having a number average molecular weight of 300,000, thereby obtaining a polymer E having a carboxyl group terminal that was subjected to terminal treatment.

Figure 2005213380
Figure 2005213380

下記に示すジエン系ゴム(SBR−1,SBR−2、NR)の内の2種類のブレンドをゴム成分とし、HAFカーボンブラック、及び表1記載の官能基含有ポリマーを表2、表3に記載の配合量(重量部)で調整し、容量20リットルの密閉式バンバリーミキサーを用いて常法に従い混合し、各実施例、比較例のタイヤ用ゴム組成物を作製した。なお、表2に示す配合量はゴム分のみの重量部でり、共通の配合剤とその配合量(重量部)は下記の通りである。   Two kinds of blends among the diene rubbers (SBR-1, SBR-2, NR) shown below are used as rubber components, and HAF carbon black and functional group-containing polymers shown in Table 1 are shown in Tables 2 and 3. Were mixed according to a conventional method using a sealed banbury mixer having a capacity of 20 liters, and tire rubber compositions for tires of Examples and Comparative Examples were prepared. In addition, the compounding quantity shown in Table 2 is a weight part only for a rubber part, and a common compounding agent and its compounding quantity (part by weight) are as follows.

[ジエン系ゴム及びカーボンブラック]
・SBR−1:スチレン含量=18%、Tg=−72℃(旭化成工業(株)製、TUFDENE1000)
・SBR−2:スチレン含量=35%、Tg=−36℃(JSR(株)製、SBR0120(油分37.5%))
・天然ゴム(NR):RSS#3、Tg=−75℃
・カーボンブラック(CB):N339(三菱化学(株)製、ダイヤブラックN339)
[Diene rubber and carbon black]
SBR-1: Styrene content = 18%, Tg = −72 ° C. (manufactured by Asahi Kasei Corporation, TUFDEN1000)
SBR-2: Styrene content = 35%, Tg = −36 ° C. (manufactured by JSR Corporation, SBR0120 (oil content 37.5%))
・ Natural rubber (NR): RSS # 3, Tg = −75 ° C.
Carbon black (CB): N339 (Mitsubishi Chemical Corporation, Diamond Black N339)

[共通配合剤]
・アロマオイル:30重量部(ジャパンエナジー(株)製、X−140)
・亜鉛華:3重量部(三井金属鉱業(株)製、亜鉛華3号)
・ワックス:1重量部(大内新興化学工業(株)製、サンノック)
・老化防止剤6C:2重量部(大内新興化学工業(株)製、ノクラック6C)
・硫黄:1.8重量部(細井化学工業(株)製、ゴム用粉末硫黄150メッシュ)
・加硫促進剤CZ:1重量部(大内新興化学工業(株)製、ノクセラーCZ)
[Common ingredients]
Aroma oil: 30 parts by weight (manufactured by Japan Energy Co., Ltd., X-140)
・ Zinc flower: 3 parts by weight (Mitsui Metal Mining Co., Ltd., Zinc flower No. 3)
・ Wax: 1 part by weight (Ouchi Shinsei Chemical Co., Ltd., Sunnock)
-Anti-aging agent 6C: 2 parts by weight (Ouchi Shinsei Chemical Co., Ltd., Nocrack 6C)
-Sulfur: 1.8 parts by weight (manufactured by Hosoi Chemical Co., Ltd., powdered sulfur for rubber 150 mesh)
・ Vulcanization accelerator CZ: 1 part by weight (Ouchi Shinsei Chemical Co., Ltd., Noxeller CZ)

各タイヤ用ゴム組成物の加硫後のカーボンブラックの偏在状態、及び各タイヤ用ゴム組成物をトレッドゴムに適用したサイズ185/70R14の試験用ラジアルタイヤを製造し、ウェット性能、転がり抵抗、耐摩耗性を下記の方法に従い評価し、その結果を比較例1又は比較例7を100とする指数で表に示す。   Radial carbon black after vulcanization of each tire rubber composition, and a test radial tire of size 185 / 70R14 in which each tire rubber composition was applied to a tread rubber were manufactured, and wet performance, rolling resistance, resistance Abrasion was evaluated according to the following method, and the results are shown in the table as an index with Comparative Example 1 or Comparative Example 7 taken as 100.

[カーボンブラックの分配比]
各タイヤ用ゴム組成物を試験用ロールを用いてシートにし、15×15×1cmの試験用モールドを用いて、150℃×30分間のプレス加硫を行い試験サンプルを作成し、これをミクロトームを用いてサンプル表面を平滑化し走査型プローブ顕微鏡を用いて各ゴム相のカーボンブラック数を測定し、その比率より各ゴム相のカーボンブラック分配量を百分率で求めた。
[Distribution ratio of carbon black]
The rubber composition for each tire is made into a sheet using a test roll, and a test sample is prepared by performing press vulcanization at 150 ° C. for 30 minutes using a 15 × 15 × 1 cm test mold. The sample surface was smoothed and the number of carbon blacks in each rubber phase was measured using a scanning probe microscope, and the carbon black distribution amount of each rubber phase was determined as a percentage from the ratio.

[ウェット性能(WET)]
排気量2000ccの国産乗用車に同種の試験タイヤを4本取り付け、水深2〜3mmに水没したアスファルト路面を時速60Km/hで通過中に急ブレーキをかけてから停止するまでの距離を測定し、次式により各試験タイヤのウエット制動性指数を計算し、ウエット性を評価した。値が大きいほど良好である。 ウエット性(指数)=(比較例1(又は7)の試験タイヤの停止距離)×100/(各試験タイヤの停止距離)
[Wet performance (WET)]
Installed four test tires of the same type on a 2000cc domestic passenger car, measured the distance from sudden braking to stopping while passing on an asphalt surface submerged to a depth of 2-3mm at a speed of 60km / h. The wet braking performance index of each test tire was calculated according to the formula, and the wet performance was evaluated. The higher the value, the better. Wet property (index) = (stop distance of test tire of Comparative Example 1 (or 7)) × 100 / (stop distance of each test tire)

[転がり抵抗(RR)]
1軸ドラム試験機を用い、内圧2Kg/cm、荷重400Kg、速度80Km/hでドラム上を走行する時の転がり抵抗を測定し、次式により各試験タイヤの転がり抵抗指数を計算した。値が小さいほど良好である。 転がり抵抗(指数)=(各試験タイヤの転がり抵抗)×100/(比較例1(又は7)のタイヤの転がり抵抗)
[Rolling resistance (RR)]
Using a uniaxial drum tester, the rolling resistance when running on a drum at an internal pressure of 2 kg / cm 2 , a load of 400 kg, and a speed of 80 kg / h was measured, and the rolling resistance index of each test tire was calculated by the following equation. The smaller the value, the better. Rolling resistance (index) = (Rolling resistance of each test tire) × 100 / (Rolling resistance of tire of Comparative Example 1 (or 7))

[耐摩耗性]
排気量2000ccの国産乗用車に2種類の試験タイヤを、規定リムを用いて内圧2Kg/cmに調整して取り付け、走行5,000Km毎にローティションを行い、20,000Km走行後、各タイヤのトレッドの残溝深さを測定し摩耗量を求め、次式により各試験タイヤの耐摩耗性指数を計算し、耐摩耗性を評価した。値が大きいほど良好である。 耐摩耗性(指数)=(比較例1(又は7)の試験タイヤの摩耗量)×100/(各試験タイヤの摩耗量)
[Abrasion resistance]
Two types of test tires are mounted on a domestic passenger car with a displacement of 2000 cc, adjusted to an internal pressure of 2 kg / cm 2 using a specified rim, rotated every 5,000 km, and after running 20,000 km, The residual groove depth of the tread was measured to determine the amount of wear, and the wear resistance index of each test tire was calculated by the following formula to evaluate the wear resistance. The higher the value, the better. Abrasion resistance (index) = (Abrasion amount of test tire of Comparative Example 1 (or 7)) × 100 / (Abrasion amount of each test tire)

なお、表中のWET/RRは、ウェット性能(WET)と転がり抵抗(RR)との指数の比であり両性能のバランスを示し、値が大きいほど両者のバランスがとれ良好である。   The WET / RR in the table is a ratio of the index of the wet performance (WET) and the rolling resistance (RR), and shows a balance between the two performances. The larger the value, the better the balance between the two.

(実施例1)
NRとSBR−1又はSBR−2とをブレンド成分とし、ポリマーA、C、Eを配合した表2に示す各タイヤ用ゴム組成物を得て、上記のカーボンブラックの偏在状態及び各タイヤ性能の評価を実施した。結果を表2に示す。
(Example 1)
NR and SBR-1 or SBR-2 were used as blend components, and the rubber compositions for tires shown in Table 2 blended with polymers A, C and E were obtained. Evaluation was performed. The results are shown in Table 2.

Figure 2005213380
Figure 2005213380

表2に示す通り、官能基含有ポリマーがNR系のポリマーAである実施例1,2は、官能基含有ポリマーを含まない比較例1のカーボンブラック分配比に対してNRゴム相にカーボンブラックが多く偏在し、耐摩耗性を高レベルに維持し、ウェット性能と低転がり抵抗性をバランスよく向上する。ポリマーAの含有量の少ない比較例2はカーボンブラックとの親和性不足によりNR相への偏在が少なくWET/RR向上の効果が少なく、多すぎる比較例3は耐摩耗性が低下する。   As shown in Table 2, Examples 1 and 2 in which the functional group-containing polymer is an NR-based polymer A have carbon black in the NR rubber phase with respect to the carbon black distribution ratio of Comparative Example 1 that does not include the functional group-containing polymer. Many are unevenly distributed, maintaining wear resistance at a high level, and improving wet performance and low rolling resistance in a well-balanced manner. Comparative Example 2 with a low content of polymer A is less unevenly distributed in the NR phase due to insufficient affinity with carbon black, and the effect of improving WET / RR is small, while too much Comparative Example 3 has poor wear resistance.

SBR系ポリマーCを含む比較例4は、高TgのSBR−2ゴム相にカーボンブラックが偏在し、WET/RRのバランスが得られず、分子量が大のポリマーEを含む比較例5はNR相にカーボンブラックが偏在しWET/RRはバランスされるが耐摩耗性の低下が大きくなり、またSBR−1とNRをブレンド成分とする比較例6では、両ゴム成分のTgが近いためカーボンブラック偏在の作用効果が得られず、いずれも本発明の目的を達成できない。   In Comparative Example 4 containing SBR-based polymer C, carbon black is unevenly distributed in the high-Tg SBR-2 rubber phase, WET / RR balance cannot be obtained, and Comparative Example 5 containing polymer E having a large molecular weight is NR phase. Carbon black is unevenly distributed and WET / RR is balanced, but the wear resistance is greatly reduced. In Comparative Example 6 in which SBR-1 and NR are blended components, the Tg of both rubber components is close, so that carbon black is unevenly distributed. These effects cannot be obtained, and none of them can achieve the object of the present invention.

(実施例2)
スチレン含量の異なるSBR−1とSBR−2とのブレンド成分に、ポリマーA〜Dを添加した表3に示す各タイヤ用ゴム組成物を得て、上記のカーボンブラックの偏在状態及び各タイヤ性能の評価を実施した。結果を表3に示す。
(Example 2)
The rubber compositions for tires shown in Table 3 in which the polymers A to D were added to the blend components of SBR-1 and SBR-2 having different styrene contents were obtained. Evaluation was performed. The results are shown in Table 3.

Figure 2005213380
Figure 2005213380

表3に示す通り、官能基含有ポリマーのスチレン含量を変更することにより、2種類のSBRのうちでスチレン含量の類似するSBRゴム相にカーボンブラックを多く偏在(実施例3,4、比較例8)させ分配比を制御することができるが、高TgのSBR−2相にカーボンブラックが多く偏在する比較例8では、WET/RRのバランスよい向上が得られない。   As shown in Table 3, by changing the styrene content of the functional group-containing polymer, a large amount of carbon black is unevenly distributed in the SBR rubber phase having a similar styrene content among the two types of SBR (Examples 3 and 4, Comparative Example 8). The distribution ratio can be controlled, but in Comparative Example 8 in which a large amount of carbon black is unevenly distributed in the high-Tg SBR-2 phase, a well-balanced improvement in WET / RR cannot be obtained.

また、ポリマーBの含有量の少ない比較例9はカーボンブラックとの親和性不足により改善効果が少なく、多すぎる比較例10は耐摩耗性が低下する。官能基数が少ないポリマーDではカーボンブラックとの親和性が十分でなく(比較例11)、SBR系ゴム成分とポリマーの構造単位の異なるIR系ポリマーAを用いた比較例12はカーボンブラック偏在に影響を受けることなくタイヤの向上も得られない。   Further, Comparative Example 9 having a low content of polymer B has a small improvement effect due to insufficient affinity with carbon black, and Comparative Example 10 having too much content has a low wear resistance. Polymer D with a small number of functional groups does not have sufficient affinity with carbon black (Comparative Example 11), and Comparative Example 12 using an IR-based polymer A having a different structural unit of the SBR rubber component and the polymer affects the uneven distribution of carbon black. The tires cannot be improved without receiving any damage.

本発明のタイヤ用ゴム組成物は、官能基含有ポリマーにより2種類のジエン系ゴムの低Tg側ゴム相にカーボンブラックを多く偏在させることで、マスターバッチの利用や複雑な混練工程を要さずに、背反関係にある低Tgゴムと高Tgゴムの作用するゴム特性を同時に満たすことができるタイヤ用ゴム組成物として用いられ、中でも、耐摩耗性、低燃費性及びウエット性能を高レベルで両立させる空気入りタイヤのトレッドゴムに好適である。
The rubber composition for tires of the present invention does not require the use of a masterbatch or a complicated kneading step by causing a large amount of carbon black to be unevenly distributed in the low Tg rubber phase of two types of diene rubbers by means of a functional group-containing polymer. In addition, it is used as a rubber composition for tires that can simultaneously satisfy the characteristics of anti-low Tg rubber and high Tg rubber, and among them, it has a high level of wear resistance, low fuel consumption and wet performance. It is suitable for the tread rubber of a pneumatic tire.

Claims (3)

ガラス転移温度の異なる2種類のジエン系ゴムをゴム主成分とし、前記ゴム成分100重量部に対してカーボンブラックを40〜120重量部配合したタイヤ用ゴム組成物において、
分子鎖末端に前記カーボンブラックと相互作用のある官能基を有し、かつ前記低ガラス転移温度のジエン系ゴム成分に類似するポリマー構造を有する低分子量の官能基含有ポリマーを、前記ゴム成分100重量部に対して1〜20重量部配合してなる
ことを特徴とするタイヤ用ゴム組成物。
In a rubber composition for tires comprising two kinds of diene rubbers having different glass transition temperatures as a main rubber component, and 40 to 120 parts by weight of carbon black with respect to 100 parts by weight of the rubber component,
A low molecular weight functional group-containing polymer having a functional group interacting with the carbon black at the molecular chain end and having a polymer structure similar to the diene rubber component having a low glass transition temperature is used as the rubber component 100 weight. 1 to 20 parts by weight with respect to parts. A rubber composition for tires.
前記官能基含有ポリマーが、カルボキシル基、水酸基及びアミノ基から選ばれる少なくとも1種の官能基を有する
ことを特徴とする請求項1に記載のタイヤ用ゴム組成物。
The tire rubber composition according to claim 1, wherein the functional group-containing polymer has at least one functional group selected from a carboxyl group, a hydroxyl group, and an amino group.
請求項1又は2に記載のタイヤ用ゴム組成物を適用した
ことを特徴とする空気入りタイヤ。
A pneumatic tire comprising the tire rubber composition according to claim 1 or 2.
JP2004022144A 2004-01-29 2004-01-29 Rubber composition for tire, and pneumatic tire Withdrawn JP2005213380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022144A JP2005213380A (en) 2004-01-29 2004-01-29 Rubber composition for tire, and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022144A JP2005213380A (en) 2004-01-29 2004-01-29 Rubber composition for tire, and pneumatic tire

Publications (1)

Publication Number Publication Date
JP2005213380A true JP2005213380A (en) 2005-08-11

Family

ID=34905567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022144A Withdrawn JP2005213380A (en) 2004-01-29 2004-01-29 Rubber composition for tire, and pneumatic tire

Country Status (1)

Country Link
JP (1) JP2005213380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277310A (en) * 2006-04-03 2007-10-25 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2009126987A (en) * 2007-11-27 2009-06-11 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
KR101433165B1 (en) * 2012-09-03 2014-08-22 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
JP2020152914A (en) * 2015-06-01 2020-09-24 株式会社ブリヂストン Rubber composition and tire
EP2643401B1 (en) 2010-11-26 2020-10-14 Compagnie Générale des Etablissements Michelin Tire tread having enhanced wet grip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277310A (en) * 2006-04-03 2007-10-25 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2009126987A (en) * 2007-11-27 2009-06-11 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
EP2643401B1 (en) 2010-11-26 2020-10-14 Compagnie Générale des Etablissements Michelin Tire tread having enhanced wet grip
KR101433165B1 (en) * 2012-09-03 2014-08-22 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
JP2020152914A (en) * 2015-06-01 2020-09-24 株式会社ブリヂストン Rubber composition and tire

Similar Documents

Publication Publication Date Title
JP6173078B2 (en) Rubber composition for tire and pneumatic tire
JP5240410B2 (en) Rubber composition for tire tread
JP4000874B2 (en) Oil-extended rubber and rubber composition
CN105764974B (en) Winter tire
JP6055118B2 (en) Pneumatic tire
JP5997249B2 (en) Rubber composition for tire and pneumatic tire
JP3438317B2 (en) Rubber composition for tire tread
JP5240409B2 (en) Rubber composition for tire tread
JPH0121178B2 (en)
JP2011094012A (en) Rubber composition for tread and pneumatic tire
JPS592694B2 (en) Method for producing rubber composition for tire tread
JP2011094013A (en) Rubber composition for tread, and studless tire
JP2005213483A (en) Rubber composition, tire by using the same and method for producing the rubber composition
JP2005213380A (en) Rubber composition for tire, and pneumatic tire
JP2016074881A (en) Rubber composition and pneumatic tire
JP2010265379A (en) Rubber composition and pneumatic tire using the same
JPS6250349A (en) Improved conjugated diene rubber composition for tire
JP2005213381A (en) Rubber composition
JP2017088864A (en) Vulcanized rubber composition and tire using the same
US6114451A (en) Rubber composition
JPS62156146A (en) Rubber composition for use in tire
JP2006291105A (en) Rubber composition for tread, and pneumatic tire
JP2021075601A (en) Rubber composition for tires, and tire
JP7188519B1 (en) Rubber composition for tires
JPS63234045A (en) Rubber composition for tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403