JPH0474598A - Method and apparatus for simultaneous removal of nitrogen and phosphorus - Google Patents

Method and apparatus for simultaneous removal of nitrogen and phosphorus

Info

Publication number
JPH0474598A
JPH0474598A JP18651090A JP18651090A JPH0474598A JP H0474598 A JPH0474598 A JP H0474598A JP 18651090 A JP18651090 A JP 18651090A JP 18651090 A JP18651090 A JP 18651090A JP H0474598 A JPH0474598 A JP H0474598A
Authority
JP
Japan
Prior art keywords
water
tank
denitrification
anaerobic
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18651090A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
松永 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP18651090A priority Critical patent/JPH0474598A/en
Publication of JPH0474598A publication Critical patent/JPH0474598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To efficiently perform the simultaneous removal of nitrogen and phosphorus with stable removal capacity, in the treatment using an anaerobic-aerobic activated sludge method, by dipping sulfide ore in an anaerobic tank and introducing a carbon source into the anaerobic tank along with inflow water. CONSTITUTION:After a carbon source such as NaHCO3 or CaCO3 is introduced into an anaerobic tank 11 along with inflow water, the introduced water is reacted with the sulfide ore such as FeS2 or FeS received in the anaerobic tank 11 and water containing the sulfur and iron components eluted from the sulfide ore is introduced into a denitrification tank 12 to bring about sulfur denitrification reaction. Thereafter, the water flowing out of the denitrification tank 12 is allowed to flow in an aerobic tank 13 to be nitrified by nitrifying bacterial and a part thereof is returned to the denitrification tank 12 while the outflow water from the aerobic tank 13 is introduced into a sedimentation tank 14 and supernatant water is discharged as treated water. As mentioned above, by filling the anaerobic tank with the sulfide ore, denitrification speed can be increased and the sulfur component eluted from the sulfide ore is oxidized and the rising of a DO value is prevented to keep an anaerobic atmosphere being a necessary condition generating the discharge of phosphorus.

Description

【発明の詳細な説明】 ■ A、産業上の利用分野 この発明は排水中の窒素およびリンの同時除去方法およ
びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a method and apparatus for simultaneously removing nitrogen and phosphorus from wastewater.

B0発明の概要 この発明は排水中の窒素およびリンを同時に除去する方
法である嫌気−好気活性汚泥法の処理を高める方法およ
びその装置において、 嫌気槽内に黄鉄鉱(FeS2)あるいは硫化鉄(F e
 S)などの硫化鉄鉱を浸漬させ、かつ流入水とともに
NaHCO3またはCaCO5の炭素源を嫌気槽に導入
させたことにより、 窒素、リンを同時に除去することができるようにしたも
のである。
B0 Summary of the Invention This invention provides a method and apparatus for enhancing the treatment of the anaerobic-aerobic activated sludge process, which is a method for simultaneously removing nitrogen and phosphorus from wastewater. e
Nitrogen and phosphorus can be removed simultaneously by soaking iron sulfide such as S) and introducing a carbon source such as NaHCO3 or CaCO5 into the anaerobic tank along with the inflow water.

C0従来の技術 近年、排水中の窒素を除去する方法が種々提案されてい
る。その中で循環式硝化・脱窒法などの生物処理方法が
実用化されているが、物理化学的方法はコストが嵩む関
係から普及していない。例えば、物理化学的方法として
実用化されているリン除去方法に凝集沈澱晶析手段があ
るが、この手段はコストや維持管理面で難点がある。
C0 Prior Art In recent years, various methods for removing nitrogen from wastewater have been proposed. Among these, biological treatment methods such as cyclic nitrification and denitrification methods have been put into practical use, but physicochemical methods have not become widespread due to their high costs. For example, a coagulation-precipitation crystallization method is a phosphorus removal method that has been put into practical use as a physicochemical method, but this method has drawbacks in terms of cost and maintenance.

最近、窒素・リンの同時除去方法として嫌気好気活性汚
泥法が知られている。この方法は従来の標準活性汚泥性
設備を大幅に変更しなくても利用でき、かつコストが安
くなる利点があるので注目されている。しかしながら、
上記方法は窒素とリンを同時に効率良く除去できる条件
に制御することが困難であり、窒素よりも特にリンの除
去の方が困難であると言われている。その1つに硫黄補
填好気−嫌気活性汚泥法の脱窒・脱リン機能(水質汚濁
研究、第12巻、第7号441−448.1989)が
提案されている。この方法は脱窒菌に対する水素供与体
としてメタノールの代わりに硫黄を供給することにより
脱窒速度を高め、槽の容積を減少させることにある。ま
た、鉄接触材を用いたリン除去技術(用水と廃水、Vo
l。
Recently, the anaerobic and aerobic activated sludge method has become known as a method for simultaneously removing nitrogen and phosphorus. This method is attracting attention because it can be used without major changes to conventional standard activated sludge equipment and has the advantage of being low cost. however,
In the above method, it is difficult to control conditions such that nitrogen and phosphorus can be efficiently removed at the same time, and it is said that it is particularly difficult to remove phosphorus than nitrogen. One of the proposed methods is the denitrification/dephosphorization function of the sulfur-supplemented aerobic-anaerobic activated sludge method (Water Pollution Research, Vol. 12, No. 7, 441-448, 1989). This method aims to increase the rate of denitrification and reduce the volume of the tank by supplying sulfur instead of methanol as a hydrogen donor to denitrifying bacteria. In addition, phosphorus removal technology using iron contact material (water and wastewater, Vo
l.

32、NO,3,1990)による方法は鉄を腐食させ
て溶解させ、鉄イオンがリン酸イオンと反応して不溶性
の沈澱を生成することを利用したもので、維持管理が容
易でランニングコストが安いという利点がある。
32, NO, 3, 1990) uses the process of corroding and dissolving iron, and the reaction of iron ions with phosphate ions to form an insoluble precipitate, which is easy to maintain and has low running costs. It has the advantage of being cheap.

しかし、上記方法は現在のところ生物処理のみで、窒素
とリンを効率良く同時除去することは困難であるけれど
も、物理化学的処理方法と組み合わせることにより実用
化が可能と考えられている。
However, the above method currently uses only biological treatment, and although it is difficult to efficiently remove nitrogen and phosphorus simultaneously, it is thought that it can be put into practical use by combining it with physicochemical treatment methods.

D8発明が解決しようとする課題 下廃水の生物学的窒素除去方法として、これまで第2図
A−Dに示すような各種の方法が開発されてきた。これ
らの方法の中で、現在、最も有望視されている汚泥循環
式硝化脱窒法(第2図BのBarnard法や第2図り
の嫌気−好気式高濃度活性汚泥法)では脱窒反応の水素
供与体として流入下廃水や汚泥中の有機物を利用できる
ので、外部からメタノール等の有機炭素源を補填する、
第2図Aに示すBringmann法に比べ、低薬品コ
ストで窒素除去を行える利点がある。しかし、上記汚泥
循環式硝化脱窒法では硝化槽1から脱窒槽2へ活性汚泥
の混合液を流入廃水量の2〜4倍の高流量で返送循環し
なければならないから運転コストが高くなる欠点をもっ
ている。なお、第2図A−Dにおいて、3は沈澱槽、4
は返送汚泥路である。
D8 Problems to be Solved by the Invention Various methods as shown in FIGS. 2A to 2D have been developed as methods for biologically removing nitrogen from wastewater. Among these methods, the sludge circulation nitrification-denitrification method (the Barnard method in Figure 2B and the anaerobic-aerobic high-concentration activated sludge method in Figure 2), which is currently considered the most promising, is a Organic matter in influent wastewater and sludge can be used as hydrogen donors, so organic carbon sources such as methanol can be supplemented from outside.
Compared to the Bringmann method shown in FIG. 2A, this method has the advantage of being able to remove nitrogen at lower chemical costs. However, in the sludge circulation type nitrification and denitrification method, the activated sludge mixture must be returned and circulated from the nitrification tank 1 to the denitrification tank 2 at a flow rate 2 to 4 times the amount of inflowing wastewater, which has the disadvantage of high operating costs. There is. In addition, in Figure 2 A-D, 3 is a settling tank, 4
is the return sludge route.

第2図Cは外部から有機炭素源を補填することなく、し
かも活性汚泥の大量返送循環を要しない窒素除去方法(
Wuhrmann法、好気−嫌気式活性汚泥法)である
。この第2図Cの方法は活性汚泥の内生脱窒能を利用す
る処理方法であることから巨大な脱窒槽2aを必要とし
、かつ高い窒素除去率を得ることができないことが判明
した。このため、現在広く普及するに至っていない。
Figure 2C shows a nitrogen removal method that does not require external supplementation of organic carbon sources and does not require large-scale return circulation of activated sludge.
Wuhrmann method, aerobic-anaerobic activated sludge method). Since the method shown in FIG. 2C is a treatment method that utilizes the endogenous denitrification ability of activated sludge, it was found that it required a huge denitrification tank 2a and that it was not possible to obtain a high nitrogen removal rate. For this reason, it has not yet become widespread.

この第2図Cの欠点を補足すべく第2図Cの嫌気脱窒槽
2aに安価な粒状硫黄とN a CHO3を補填して自
栄養性の通性硫黄脱窒細菌(Thiobacillus
 denitriticans)の働く環境を整えるこ
とにより、脱窒速度を高めることができるようになった
。さらに、このプロセスに脱リン機能を付加すれば低コ
ストの窒素リンの同時除去が可能になるものと第3図に
示すように脱リン濃縮槽5を設けた構成を案出した。こ
の第3図の方法を用いると、20時間の滞留時間でT−
Nを80%、T−Pをノ ア0%の除去率で除去することができた。しかしながら
、この第3図の方法では脱リン濃縮槽5における高濃度
のリンを含有する上澄液からのリンの除去に関して問題
があり、リンの除去率がやや低い欠点がある。
In order to compensate for this drawback of Fig. 2C, the anaerobic denitrification tank 2a of Fig. 2C is supplemented with inexpensive granular sulfur and Na CHO3, and autotrophic facultative sulfur denitrifying bacteria (Thiobacillus
denitriticans), it has become possible to increase the denitrification rate. Furthermore, if a dephosphorization function was added to this process, it would be possible to simultaneously remove nitrogen and phosphorus at low cost, and as shown in FIG. 3, a configuration was devised in which a dephosphorization concentration tank 5 was provided. Using the method shown in Figure 3, T-
It was possible to remove N with a removal rate of 80% and TP with a removal rate of 0%. However, the method shown in FIG. 3 has a problem with the removal of phosphorus from the supernatant liquid containing a high concentration of phosphorus in the dephosphorization concentration tank 5, and has the disadvantage that the phosphorus removal rate is rather low.

また、生物学的脱リン法として知られている第4図A、
BはAO法およびA20法と称されるものであるが、こ
れらは環境条件の変化によって起こる活性汚泥のリン蓄
積、放出能を利用している。
In addition, Fig. 4A, which is known as a biological dephosphorization method,
B is called the AO method and the A20 method, which utilize the ability of activated sludge to accumulate and release phosphorus due to changes in environmental conditions.

このため、雨水等が大量に流入してDo(溶存酸素)が
上昇したりすると、嫌気条件を維持することが困難とな
り、リンの除去能が安定しないという欠点がある。
For this reason, if a large amount of rainwater or the like flows in and Do (dissolved oxygen) increases, it becomes difficult to maintain anaerobic conditions and the phosphorus removal ability becomes unstable.

さらに、第4図Cに示す鉄−接触材を用いたリン除去法
は鉄の溶解を妨害するような付着物が表面に沈着するた
めに、脱リン効果が持続しないという欠点があり、いま
だ実用化されていないのが実状である。
Furthermore, the phosphorus removal method using the iron-contact material shown in Figure 4C has the disadvantage that the dephosphorization effect does not last long because deposits that interfere with the dissolution of iron are deposited on the surface, and it is still not in practical use. The reality is that it has not been clarified.

この発明は上記の事情に鑑みてなされたもので、硫黄補
填脱窒法と鉄接触材を用いた脱リン法や生物学的脱リン
法などを組み合わせて生物・物理化学的窒素・リンを同
時に除去するようにした窒素およびリンの同時除去方法
およびその装置を提供することを目的とする。
This invention was made in view of the above circumstances, and it simultaneously removes biological and physicochemical nitrogen and phosphorus by combining a sulfur-supplemented denitrification method, a dephosphorization method using an iron contact material, a biological dephosphorization method, etc. It is an object of the present invention to provide a method for simultaneously removing nitrogen and phosphorus, and an apparatus therefor.

80課題を解決するための手段 第1発明は流入水とともに炭素源を嫌気槽に導入した後
、その導入水を嫌気槽内に補填された硫化鉄鉱と反応さ
せ、この硫化鉄鉱から溶出される硫黄分および鉄分を含
んだ水を、脱窒紫檀に導入し、この槽で硫黄脱窒反応を
生起させた後、脱窒槽から流出した水を好気槽に流入さ
せて硝化細菌により硝化させるとともに一部を脱窒槽に
返送させ、好気槽からの流出水は沈澱層を介して上澄水
を処理水として排出するようにしたことを特徴とするも
のである。
80 Means for Solving the Problems The first invention introduces a carbon source into an anaerobic tank along with inflow water, and then reacts the introduced water with pyrite sulfide supplemented in the anaerobic tank, thereby reducing the sulfur leached from the pyrite sulfide. Water containing iron and iron is introduced into the denitrifying rosewood tank, where a sulfur denitrification reaction occurs, and then the water flowing out from the denitrifying tank is flowed into an aerobic tank where it is nitrified by nitrifying bacteria and then The water is returned to the denitrification tank, and the outflow water from the aerobic tank is discharged as supernatant water through a sedimentation layer as treated water.

また、第2発明は硫化鉄鉱が浸漬され、炭素源が流入水
とともに導入される嫌気槽と、この嫌気槽に導入された
流入水が硫化鉄鉱と反応し、流出した水が導入され、導
入水により脱窒反応が生起される脱窒槽と、この脱窒槽
から流出する水が導入され、硝化細菌の作用により導入
水が硝化されるとともに一部の導入水が脱窒槽に返送さ
れるようにした好気槽と、この好気槽から流出した水が
導入され、導入水から固液分離を行って上澄水を処理水
として排出させるとともに沈澱汚泥を嫌気槽に返送する
沈澱層とを備えたものである。
The second invention also includes an anaerobic tank in which iron sulfide is immersed and a carbon source is introduced together with the inflow water, and the inflow water introduced into the anaerobic tank reacts with the iron sulfide, the outflow water is introduced, and the introduced water A denitrification tank in which a denitrification reaction occurs, and the water flowing out from this denitrification tank are introduced, and the introduced water is nitrified by the action of nitrifying bacteria, and some of the introduced water is returned to the denitrification tank. Equipped with an aerobic tank and a settling layer into which water flowing out from the aerobic tank is introduced, solid-liquid separation is performed from the introduced water, supernatant water is discharged as treated water, and settled sludge is returned to the anaerobic tank. It is.

さらに、第3発明は主としてリンの放出を行わせる嫌気
槽を備えた廃水処理装置において、前記嫌気槽に硫化鉄
鉱を補填するようにしたことを特徴とするものである。
Furthermore, a third aspect of the present invention is a wastewater treatment apparatus mainly equipped with an anaerobic tank for releasing phosphorus, characterized in that the anaerobic tank is supplemented with iron sulfide ore.

F0作用 硫化鉄鉱が浸漬された嫌気槽に下廃水が導入されると、
硫化鉄鉱は少量づつ溶解して硫黄分および鉄分を含んだ
液が嫌気槽内に溶出してくる。硫黄分の溶出により、槽
の嫌気度が増加し、ORPが低下してリンの放出が起こ
る。
When sewage water is introduced into the anaerobic tank in which the F0 effect iron sulfide ore is immersed,
Iron sulfide dissolves little by little, and a liquid containing sulfur and iron flows out into the anaerobic tank. Due to the elution of sulfur content, the anaerobic degree of the tank increases, the ORP decreases, and phosphorus is released.

溶出した鉄分はオリトリン(リン酸イオン)と反応し、
不溶性のリン酸鉄(FePO4)として沈澱する。嫌気
槽から流出した水は脱窒槽に流入して、この槽で脱窒反
応が行われる。
The eluted iron reacts with orithrin (phosphate ion),
Precipitates as insoluble iron phosphate (FePO4). Water flowing out of the anaerobic tank flows into the denitrification tank, where a denitrification reaction takes place.

なお、硫化鉄鉱としては黄鉄鉱(FeS2)や硫化鉄(
F e S)が使用され、前者の水に対する溶解度は5
mg/C後者のものは6mg/Iである。
In addition, iron sulfide includes pyrite (FeS2) and iron sulfide (FeS2).
F e S) is used, and the former has a solubility in water of 5
mg/C of the latter is 6 mg/I.

G、実施例 以下、この発明の一実施例を図面に基づいて説明する。G. Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、11は下廃水等が流入される嫌気槽で
、この嫌気槽11には硫化鉄鉱を浸漬する。硫化鉄鉱と
しては黄鉄鉱(FeS2)や硫化鉄(F e S)が使
用される。前者は硫酸の製造原料とされて、比較的安価
に入手可能であり、後者は天然にはジリュウ鉄鉱として
産するが、鉄と硫化水素の反応によって生産される。こ
れらの硫化鉄鉱の水に対する溶解度は黄鉄鉱が5 mg
/ A’、硫化鉄が6mg/Iで′、少量ながら水に溶
解する性質がある。なお、嫌気槽11にはその流入水入
口においてNaHCO3またはCaCO3の炭素源が流
入水とともに注入される。
In FIG. 1, reference numeral 11 denotes an anaerobic tank into which sewage water and the like flow, and iron sulfide ore is immersed in this anaerobic tank 11. Pyrite (FeS2) and iron sulfide (F e S) are used as iron sulfide. The former is used as a raw material for the production of sulfuric acid and is available at a relatively low cost, while the latter occurs naturally as diurite, but is produced by the reaction of iron and hydrogen sulfide. The solubility of these iron sulfides in water is 5 mg of pyrite.
/ A', iron sulfide is 6 mg/I', and has the property of being soluble in water, albeit in a small amount. Note that a carbon source such as NaHCO3 or CaCO3 is injected into the anaerobic tank 11 at the inlet of the inflow water together with the inflow water.

嫌気槽11ないの硫化鉄鉱は少量づつ溶解して硫黄分お
よび鉄分が嫌気槽11内に溶出してくる。
Iron sulfide in the anaerobic tank 11 is dissolved little by little, and sulfur and iron are eluted into the anaerobic tank 11.

硫黄分の溶出により嫌気槽11内の嫌気度が増加し、O
RPが低下し、リンの放出が起こりやすくなる。溶出し
た鉄分は溶解したオリトリン(リン酸イオン)と反応し
て不溶性のリン酸鉄(FePO4)として沈澱する。
The anaerobic degree in the anaerobic tank 11 increases due to the elution of sulfur content, and O
RP decreases and phosphorus release becomes more likely. The eluted iron reacts with dissolved orithrin (phosphate ion) and precipitates as insoluble iron phosphate (FePO4).

嫌気槽11から流出した水は脱窒層12に流入し、脱窒
素細菌の作用により次に示す式(1)〜式(3)の反応
式により脱窒反応が起きる。
The water flowing out from the anaerobic tank 11 flows into the denitrification layer 12, and a denitrification reaction occurs according to the following reaction equations (1) to (3) due to the action of denitrifying bacteria.

2 NO3−+10 H→N2+4H20+20H−・
・・・・・(1)2NO2−+ 6H−N2+2H20
+20H−・・・・・・(2)N20+2H−+N2+
H20・・・・・・・・・・(3)この脱窒反応が行わ
れた場合、水素供与体として有機炭素源が存在しなけれ
ばらならいが、この実施例ではメタノールなどを添加し
ないで流入水中の有機物を利用する。なお、脱窒素細菌
の中には硫黄を水素供与体として利用できる菌(Thi
obacillus denitrificans)を
前述した。この硫黄脱窒細菌による脱窒反応の化学量論
式は次式で表現される。
2 NO3-+10 H→N2+4H20+20H-・
...(1) 2NO2-+ 6H-N2+2H20
+20H-...(2)N20+2H-+N2+
H20・・・・・・・・・(3) When this denitrification reaction is carried out, an organic carbon source must be present as a hydrogen donor, but in this example, the inflow was carried out without adding methanol etc. Utilizes organic matter in water. Note that among denitrifying bacteria, there are bacteria that can use sulfur as a hydrogen donor (Thi
obacillus denitrificans) as described above. The stoichiometric equation of the denitrification reaction by this sulfur denitrifying bacteria is expressed by the following equation.

1、114 S +NO3−+〇、 699 H20+
0.337CO□+0.0842HCO3十0.084
2NH4+→0.0842 C3H7’O3N+0.5
N2+1.114 SO4”−+1.228.H+・・
・・(4)Sとしてチオ硫酸イオン(S2032−)、
イオウイオン(S2−)でも代替できる。
1, 114 S +NO3-+〇, 699 H20+
0.337CO□+0.0842HCO30.084
2NH4+→0.0842 C3H7'O3N+0.5
N2+1.114 SO4"-+1.228.H+...
...(4) S as thiosulfate ion (S2032-),
Sulfur ion (S2-) can also be used instead.

この実施例ではNaHCO3またはCaCO3などの炭
素源と硫黄を水素供与体として供給しているので、脱窒
槽12は硫黄脱窒細菌が増殖しやすい条件となっていて
、通常の脱窒細菌と硫黄脱窒細菌が共存するようになる
In this example, since a carbon source such as NaHCO3 or CaCO3 and sulfur are supplied as hydrogen donors, the conditions in the denitrification tank 12 are such that sulfur denitrifying bacteria can easily proliferate, and normal denitrifying bacteria and sulfur denitrifying Nitrogen bacteria come to coexist.

脱窒槽12から流出した水は好気槽13に流入され、水
中のアンモニア性窒素が硝化細菌の作用により次式によ
り硝化される。
The water flowing out from the denitrification tank 12 flows into the aerobic tank 13, and the ammonia nitrogen in the water is nitrified by the action of nitrifying bacteria according to the following equation.

好気槽13においては嫌気槽11で放出されたリンのう
ち、不溶性のリン酸鉄とならずにリン酸イオンとして残
った分は活性汚泥中に摂取され、ポリリン酸として蓄積
される。好気槽13の混液(硝化液)は脱窒槽12に循
環返送されて、再び脱窒反応が行われる。好気槽13か
ら流出した水は沈澱槽14に流入し、固液分離がこの槽
で行われ、上澄水は処理水として系外に排出される。
In the aerobic tank 13, the portion of the phosphorus released in the anaerobic tank 11 that does not become insoluble iron phosphate and remains as phosphate ions is taken into activated sludge and accumulated as polyphosphoric acid. The mixed liquid (nitrification liquid) in the aerobic tank 13 is circulated and returned to the denitrification tank 12, where the denitrification reaction is performed again. Water flowing out from the aerobic tank 13 flows into the settling tank 14, solid-liquid separation is performed in this tank, and supernatant water is discharged outside the system as treated water.

方、沈澱汚泥は一部、返送汚泥部15を介して嫌気槽1
1に返送され、残りは余剰汚泥として系外に排出される
。窒素N、リンPの排出形態はNが窒素ガス、Pは不溶
性のリン酸鉄(FWPO4)である。リン酸鉄は嫌気条
件でも溶出しないので、汚泥処理過程において、嫌気性
条件に置かれた場合でも、汚泥処理における返流水とし
て水処理系にもどってくることはない。
On the other hand, a part of the settled sludge is sent to the anaerobic tank 1 via the return sludge section 15.
1, and the rest is discharged outside the system as surplus sludge. Regarding the discharge form of nitrogen N and phosphorus P, N is nitrogen gas and P is insoluble iron phosphate (FWPO4). Iron phosphate does not elute even under anaerobic conditions, so even if it is placed under anaerobic conditions during the sludge treatment process, it will not return to the water treatment system as return water in the sludge treatment.

上記のように処理すれば窒素N、リンPを同時に除去す
ることができる。
By processing as described above, nitrogen N and phosphorus P can be removed at the same time.

H0発明の効果 以上述べたように、この発明によれば、次のような効果
が得られる。
Effects of H0 Invention As described above, according to this invention, the following effects can be obtained.

(1)一般に脱窒反応を行わせる場合、外部から水素供
与体としてメタノールなどの有機炭素源を供給した方が
、流入廃水中の有機物を水素供与体として用いる場合よ
り、脱窒速度が高く全窒素除去率も高い。したがって、
脱窒素の容量を縮少できる利点があるけれどもメタノー
ルなどの薬品代によりランニングコストが高くなる欠点
がある。
(1) Generally, when performing a denitrification reaction, it is better to supply an organic carbon source such as methanol as a hydrogen donor from the outside, as the denitrification rate is higher and total The nitrogen removal rate is also high. therefore,
Although it has the advantage of reducing the denitrification capacity, it has the disadvantage of increasing running costs due to the cost of chemicals such as methanol.

しかし、この発明では硫化鉄鉱のような安価な水素供与
体を利用しているので、脱窒速度はメタノール供給の場
合には及ばないけれども相当高めることができる。これ
により脱窒槽の容易を縮少することかできるとともに、
ランニングコストを安くすることができる。
However, since the present invention utilizes an inexpensive hydrogen donor such as pyrite, the denitrification rate can be significantly increased, although not as high as in the case of methanol feed. This makes it possible to reduce the complexity of the denitrification tank, and
Running costs can be reduced.

(2)また、リンの生物学的除去方式は流入廃水のBO
D/P比の影響を受け、除去性能が不安定であり、処理
水リン濃度を常にi ppm以下とすることは困難であ
る。しかし、この発明では硫化鉄を溶解させて不溶性の
リン酸鉄とすることにより、リンの生物学的除去作用に
悪影響を与えることなく、処理水リン濃度を常に1 p
pm以下とすることができる。生物学的リン除去法では
雨水が流入水に混入するとDo値が高くなり、リンの放
出が起こりにくくなるためにリンの除去性能が低下する
(2) In addition, the biological removal method of phosphorus is the BO of influent wastewater.
The removal performance is unstable due to the influence of the D/P ratio, and it is difficult to always keep the phosphorus concentration in treated water below i ppm. However, in this invention, by dissolving iron sulfide to form insoluble iron phosphate, the phosphorus concentration in treated water can be maintained at 1 p without adversely affecting the biological removal of phosphorus.
pm or less. In the biological phosphorus removal method, when rainwater mixes with inflow water, the Do value increases and phosphorus release becomes difficult to occur, resulting in a decrease in phosphorus removal performance.

しかし、この発明のように嫌気槽に硫化鉄鉱を補填する
ことにより、硫化鉄鉱から溶出する硫黄分が酸化され、
Do値の上昇を防止して嫌気的雰囲気を維持することが
できる。したがって、リンの放出が起こる必要条件であ
る嫌気的雰囲気が維持されることからリンの除去性能を
安定化させる効果が得られる。
However, by supplementing the anaerobic tank with iron sulfide as in this invention, the sulfur content eluted from the iron sulfide is oxidized.
An anaerobic atmosphere can be maintained by preventing the Do value from increasing. Therefore, since the anaerobic atmosphere, which is a necessary condition for phosphorus release, is maintained, the effect of stabilizing the phosphorus removal performance can be obtained.

(3)この発明で使用される硫化鉄鉱は最初はかなり大
量に補填するが、消失するまでには相当時間がかかり、
はとんど維持管理は不要である。即ち、凝集沈澱や晶析
などの既存の物理化学的リン除去方法と比較しても、低
コストで維持管理が容易であり、省資源、省力化を可能
にすることができる。
(3) Although the iron sulfide ore used in this invention initially compensates in a fairly large amount, it takes a considerable amount of time to disappear.
Almost no maintenance is required. That is, compared to existing physicochemical phosphorus removal methods such as coagulation sedimentation and crystallization, it is low cost and easy to maintain and manage, making it possible to save resources and labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成説明図、第2図
A−Dは生物学的室□素除去方法を示す構成説明図、第
3図は脱リン濃縮槽を組み込んだ修正好気−嫌気活性汚
泥法の構成説明図、第4図A〜Cはリン除去法を示す構
成説明図である。 11・・・嫌気槽、12・・・脱窒槽、13・・・好気
槽、14・・・沈澱槽、15・・・返送汚泥部。 第2図(A) ゝ4 第2図(C) 第2図(D) 第3図 1−−−−一層目し槽 2.2a−−−一説室糟 3−−−−一層7影僧 4−−−−−仮送汚ヲ尼路 氾木
Fig. 1 is an explanatory diagram showing an embodiment of the present invention, Fig. 2 A-D is an explanatory diagram showing a biological cell removal method, and Fig. 3 is an explanatory diagram showing a modification method incorporating a dephosphorization concentration tank. An explanatory diagram of the configuration of the gas-anaerobic activated sludge method, and FIGS. 4A to 4C are explanatory diagrams of the configuration of the phosphorus removal method. 11... Anaerobic tank, 12... Denitrification tank, 13... Aerobic tank, 14... Sedimentation tank, 15... Return sludge section. Figure 2 (A) ゝ4 Figure 2 (C) Figure 2 (D) Figure 3 1--1st layer eye tank 2.2a---1st layer room 3---1st layer 7 shadow monk 4-----Temporary Transport Dirty Woniji Floodwood

Claims (3)

【特許請求の範囲】[Claims] (1)流入水とともに炭素源を嫌気槽に導入した後、そ
の導入水を嫌気槽内に補填された硫化鉄鉱と反応させ、
この硫化鉄鉱から溶出される硫黄分および鉄分を含んだ
水を、脱窒素槽に導入し、この槽で硫黄脱窒反応を生起
させた後、脱窒槽から流出した水を好気槽に流入させて
硝化細菌により硝化させるとともに一部を脱窒槽に返送
させ、好気槽からの流出水は沈澱層を介して上澄水を処
理水として排出するようにしたことを特徴とする窒素お
よびリンの同時除去方法。
(1) After introducing a carbon source into an anaerobic tank along with inflow water, the introduced water is reacted with iron sulfide supplemented in the anaerobic tank,
The water containing sulfur and iron eluted from the iron sulfide ore is introduced into a denitrification tank, where a sulfur denitrification reaction occurs, and then the water flowing out from the denitrification tank is flowed into an aerobic tank. This method is characterized in that the water is nitrified by nitrifying bacteria and a part of the water is returned to the denitrification tank, and the runoff water from the aerobic tank is discharged as supernatant water through a sedimentation layer as treated water. Removal method.
(2)硫化鉄鉱が浸漬され、炭素源が流入水とともに導
入される嫌気槽と、この嫌気槽に導入された流入水が硫
化鉄鉱と反応し、流出した水が導入され、導入水により
脱窒反応が生起される脱窒槽と、この脱窒槽から流出す
る水が導入され、硝化細菌の作用により導入水が硝化さ
れるとともに一部の導入水が脱窒槽に返送されるように
した好気槽と、この好気槽から流出した水が導入され、
導入水から固液分離を行って上澄水を処理水として排出
させるとともに沈澱汚泥を嫌気槽に返送する沈澱層とを
備えた窒素およびリンの同時除去装置。
(2) An anaerobic tank in which iron sulfide is immersed and a carbon source is introduced together with the inflow water, and the inflow water introduced into this anaerobic tank reacts with the iron sulfide, and the outflow water is introduced, and the introduced water is denitrified. A denitrification tank in which a reaction occurs, and an aerobic tank in which water flowing out from this denitrification tank is introduced, the introduced water is nitrified by the action of nitrifying bacteria, and some of the introduced water is returned to the denitrification tank. Then, water flowing out from this aerobic tank was introduced,
A simultaneous nitrogen and phosphorus removal device that performs solid-liquid separation from introduced water and discharges supernatant water as treated water, as well as a sedimentation layer that returns settled sludge to an anaerobic tank.
(3)主としてリンの放出を行わせる嫌気槽を備えた廃
水処理装置において、 前記嫌気槽に硫化鉄鉱を補填するようにしたことを特徴
とする窒素およびリンの同時除去装置。
(3) A wastewater treatment device equipped with an anaerobic tank that mainly discharges phosphorus, characterized in that the anaerobic tank is supplemented with iron sulfide ore.
JP18651090A 1990-07-13 1990-07-13 Method and apparatus for simultaneous removal of nitrogen and phosphorus Pending JPH0474598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18651090A JPH0474598A (en) 1990-07-13 1990-07-13 Method and apparatus for simultaneous removal of nitrogen and phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18651090A JPH0474598A (en) 1990-07-13 1990-07-13 Method and apparatus for simultaneous removal of nitrogen and phosphorus

Publications (1)

Publication Number Publication Date
JPH0474598A true JPH0474598A (en) 1992-03-09

Family

ID=16189768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18651090A Pending JPH0474598A (en) 1990-07-13 1990-07-13 Method and apparatus for simultaneous removal of nitrogen and phosphorus

Country Status (1)

Country Link
JP (1) JPH0474598A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055891A (en) * 1999-12-13 2001-07-04 김형벽ㅂ Post-Denitrification Device of Conventional Activated Sludge Process Using Sulfur
KR100384350B1 (en) * 1999-03-11 2003-05-16 대한주택공사 Advanced treatment apparatus and method in wastewater using anaerobic reactor with iron media and anoxic-aerobic recycling process
JP2004082107A (en) * 2002-06-24 2004-03-18 Kuraray Co Ltd Equipment and method for treating waste water containing nitrogen-containing dyestuff
US7109022B1 (en) 1998-09-25 2006-09-19 Nitchitsu Co., Ltd Composition containing calcium carbonate particles dispersed in sulfur for removing nitrate nitrogen
WO2015089971A1 (en) * 2013-12-17 2015-06-25 南京大学 Natural pyrrhotite biological filter and method for utilizing same to synchronously remove nitrate-nitrogen and phosphorus from water
CN108439613A (en) * 2018-04-23 2018-08-24 南京大学 A kind of modularization sewage denitrification and dephosphorization treatment process based on sulphur autotrophic denitrification
CN110407321A (en) * 2019-08-14 2019-11-05 中国矿业大学 Multilevel hierarchy packed-bed reactor city secondary effluent advanced nitrogen phosphorus removing method
CN110627226A (en) * 2019-10-31 2019-12-31 湖南三友环保科技有限公司 Inorganic composite powder carrier and application thereof in enhanced biological denitrification of town sewage treatment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109022B1 (en) 1998-09-25 2006-09-19 Nitchitsu Co., Ltd Composition containing calcium carbonate particles dispersed in sulfur for removing nitrate nitrogen
KR100384350B1 (en) * 1999-03-11 2003-05-16 대한주택공사 Advanced treatment apparatus and method in wastewater using anaerobic reactor with iron media and anoxic-aerobic recycling process
KR20010055891A (en) * 1999-12-13 2001-07-04 김형벽ㅂ Post-Denitrification Device of Conventional Activated Sludge Process Using Sulfur
JP2004082107A (en) * 2002-06-24 2004-03-18 Kuraray Co Ltd Equipment and method for treating waste water containing nitrogen-containing dyestuff
JP4663218B2 (en) * 2002-06-24 2011-04-06 株式会社クラレ Waste water treatment apparatus and treatment method containing nitrogen-containing dye
WO2015089971A1 (en) * 2013-12-17 2015-06-25 南京大学 Natural pyrrhotite biological filter and method for utilizing same to synchronously remove nitrate-nitrogen and phosphorus from water
US10239774B2 (en) 2013-12-17 2019-03-26 Nanjing University Natural pyrrhotite biological filter and method for utilizing same to synchronously remove nitrate-nitrogen and phosphorus from water
CN108439613A (en) * 2018-04-23 2018-08-24 南京大学 A kind of modularization sewage denitrification and dephosphorization treatment process based on sulphur autotrophic denitrification
CN108439613B (en) * 2018-04-23 2020-06-26 南京大学 Modularized sewage nitrogen and phosphorus removal treatment process based on sulfur autotrophic denitrification
CN110407321A (en) * 2019-08-14 2019-11-05 中国矿业大学 Multilevel hierarchy packed-bed reactor city secondary effluent advanced nitrogen phosphorus removing method
CN110627226A (en) * 2019-10-31 2019-12-31 湖南三友环保科技有限公司 Inorganic composite powder carrier and application thereof in enhanced biological denitrification of town sewage treatment

Similar Documents

Publication Publication Date Title
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
JPH0474598A (en) Method and apparatus for simultaneous removal of nitrogen and phosphorus
JPS5881491A (en) Purification of filthy water with activated sludge
JPH049119B2 (en)
JPH04151000A (en) Method and apparatus for simultaneous removal of nitrogen and phosphorus
JPH05115897A (en) Waste water treatment using sulfur bacteria and device therefor
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JPS6254075B2 (en)
RU2225366C2 (en) Transition biological-abiotic waste treatment
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JPS58146495A (en) Treatment of organic waste liquid
JP3837757B2 (en) Method for treating selenium-containing water
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPS60139396A (en) Removal of phosphorous and nitrogen from bod- containing water
JP3755167B2 (en) Method for treating selenium-containing water
JP2594733B2 (en) Sewage nitrification denitrification method
JP4523786B2 (en) How to remove nitrogen from wastewater
JPH09122687A (en) Treatment of selenium-containing water
JPH0131960B2 (en)
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JPS60153999A (en) Treatment of waste water
JPH0291000A (en) Batch-wise type soil water treatment process
KR19990081030A (en) Biological Nitrogen / Phosphorus Removal Method with Changes in Inflow Sewage Nitrogen
JPH0218155B2 (en)