JPS60139396A - Removal of phosphorous and nitrogen from bod- containing water - Google Patents

Removal of phosphorous and nitrogen from bod- containing water

Info

Publication number
JPS60139396A
JPS60139396A JP24526583A JP24526583A JPS60139396A JP S60139396 A JPS60139396 A JP S60139396A JP 24526583 A JP24526583 A JP 24526583A JP 24526583 A JP24526583 A JP 24526583A JP S60139396 A JPS60139396 A JP S60139396A
Authority
JP
Japan
Prior art keywords
tank
sludge
aerobic
bod
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24526583A
Other languages
Japanese (ja)
Other versions
JPH0437760B2 (en
Inventor
Hiroshi Yoshie
吉江 浩
Eiji Hirooka
広岡 永治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24526583A priority Critical patent/JPS60139396A/en
Publication of JPS60139396A publication Critical patent/JPS60139396A/en
Publication of JPH0437760B2 publication Critical patent/JPH0437760B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To effectively and economically remove phosphorus and nitrogen, by applying an aerobic treatment to a solution mixture consisting of BOD-containing water, activated sludge and an aerobically treated recirculation solution while applying aerobic treatment due to gas containing 50% or more of oxygen to the treated solution. CONSTITUTION:BOD-containing water such as org. waste water is flowed into an anaerobic tank 1, and contacted and mixed with direct return sludge 9 from a final precipitation basin 3 and the recirculation nitrated solution 8 from the terminal of an aerobic tank 2 while BOD in waste water is reacted with NOx in the recirculation nitrated solution 8 to reduce and denitrify NOx. The solution mixture flowed out from the anaerobic tank 1 is flowed into the aerobic tank 2 where aerobic treatment is performed in the presence of gas containing 50vol% or more of oxygen and oxidizable substance such as ammonia is oxidized to NOx. The solution mixture flowed out from the aerobic tank 2 is flowed into the final precipiataion basin 3 to be subjected to solid-liquid separation and a part or a whole of precipitated sludge is transferred to a dephosphorization tank 5 to perform phosphorization treatment.

Description

【発明の詳細な説明】 技術分野 本発明は、BOD含有水から燐および窒素を除去する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a method for removing phosphorus and nitrogen from BOD-containing water.

従来技術 湖沼等の閉鎖性水域の富栄養化現象は、燐および窒素の
存在が主原因であるとされておシ、このような水域への
燐や窒素の流入を制限する技術の開発が急務である。一
方、都市下水や工場排水は、一般に、活性汚泥法により
処理されておυ、BODは十分に除去されているけれど
も、燐や窒素の除去は十分になされていないのが現状で
ある。
Conventional technology The presence of phosphorus and nitrogen is said to be the main cause of eutrophication in closed water bodies such as lakes, and there is an urgent need to develop technology to limit the inflow of phosphorus and nitrogen into such water bodies. It is. On the other hand, urban sewage and industrial wastewater are generally treated by the activated sludge method, and although BOD and BOD are sufficiently removed, phosphorus and nitrogen are not sufficiently removed.

廃水からの窒素の除去方法については開発が進み、廃水
中のBODを有効に利用した循環式硝化脱窒法が経済的
でしかも有効な方法として確立した技術となシつつある
。他方、廃水中の燐の除去に関しては、近年になって開
発が急速に進められている。従来よシよく知られた燐の
除去法としては、凝集剤を用いる凝集沈澱法があるが、
この方法は経済性の面からみて、満足すべき技術とは緋
えない。近年開発が進められ、注目されている他の方法
として、活性汚泥の燐の過剰摂取現象を利用する方法が
ある。この方法は、活性汚泥を嫌気状態および好気状態
に繰シ返しさらすことによシ、微生物の燐代謝機能を利
用して、汚泥中に燐を取シ込むものである。
The development of methods for removing nitrogen from wastewater is progressing, and a circulating nitrification-denitrification method that effectively utilizes BOD in wastewater is becoming an established technology as an economical and effective method. On the other hand, development of methods for removing phosphorus from wastewater has progressed rapidly in recent years. A conventionally well-known method for removing phosphorus is the coagulation-sedimentation method using a coagulant.
From an economic point of view, this method is not a satisfactory technique. Another method that has been developed in recent years and is attracting attention is a method that utilizes the phenomenon of excessive phosphorus intake in activated sludge. In this method, activated sludge is repeatedly exposed to anaerobic and aerobic conditions, thereby utilizing the phosphorus metabolism function of microorganisms to inject phosphorus into the sludge.

立方、有機性廃水から燐および窒素を除去するだめの経
済的な方法として、生物学的脱窒と生物学的脱燐とを組
合せた方法が開発されておυ、完全嫌気−嫌気一好気活
性汚泥法がその代表的なものである。廃水と返送汚泥は
、完全嫌気槽に流入し、亜硝酸、硝酸等のN0x(窒素
酸化物)や溶存酸素の存在しない完全嫌気状態におかれ
、活性汚泥はpo4−pを放出する。完全嫌気槽の流出
混合液は、溶存酸素の存在しない嫌気槽に流入し、循環
硝化i(好気性処理循環液)と接触混合する。このとき
、循環硝化液中のNo は完全嫌気槽からの流出混合液
中の有機物(BOD)と反応し、還元脱窒される。嫌気
槽の流出混合液は、好気槽へ流入し、溶存酸素の存在下
にアンモニアは酸化されてNOxとなシ、また液中に存
在する燐は活性汚泥に摂取される。好気槽の流出混合液
は、最終沈澱池へ導かれて固液分離に付され、固液分離
された上澄液は処理水として系外に排出され、一方沈降
汚泥は一部が返送汚泥として完全嫌気槽へ送られ、残部
が余剰汚泥として系外に排出される。しかるに、このよ
うな完全嫌気−嫌気一好気活性汚泥法においては、燐の
除去は、その全量が余剰汚泥とともに系外に排出される
燐のみによるために、廃水のP/BODが大きい場合や
低負荷運転のためにΔWSS/ΔBOD (余剰汚泥/
除去BOD )が小さい場合には、流入する燐の全部を
余剰汚泥中の燐として系外に排出することが困難となシ
、処理水中に燐が漏出するという欠点がある。
A combination of biological denitrification and biological dephosphorization has been developed as an economical method for removing phosphorus and nitrogen from cubic, organic wastewater, and is completely anaerobic-anaerobic-mono-aerobic. The activated sludge method is a typical example. The wastewater and returned sludge flow into a completely anaerobic tank and are placed in a completely anaerobic state in the absence of NOx (nitrogen oxides) such as nitrous acid and nitric acid and dissolved oxygen, and the activated sludge releases PO4-P. The mixed liquid effluent from the complete anaerobic tank flows into the anaerobic tank in which dissolved oxygen does not exist, and comes into contact with and mixes with the circulating nitrification i (aerobically treated circulating liquid). At this time, No in the circulating nitrification solution reacts with organic matter (BOD) in the mixed solution discharged from the complete anaerobic tank, resulting in reduction and denitrification. The mixed liquid flowing out of the anaerobic tank flows into the aerobic tank, where ammonia is oxidized to NOx in the presence of dissolved oxygen, and phosphorus present in the liquid is taken up by activated sludge. The effluent mixed liquid from the aerobic tank is led to the final settling tank and subjected to solid-liquid separation, and the solid-liquid separated supernatant liquid is discharged outside the system as treated water, while a portion of the settled sludge is returned as sludge. The remaining sludge is sent to a complete anaerobic tank as surplus sludge, and the remainder is discharged outside the system as surplus sludge. However, in such a completely anaerobic-anaerobic-aerobic activated sludge method, phosphorus is removed only by the phosphorus that is discharged to the outside of the system together with excess sludge. ΔWSS/ΔBOD (excess sludge/
When the removed BOD) is small, it is difficult to discharge all of the inflowing phosphorus out of the system as phosphorus in excess sludge, and there is a drawback that phosphorus leaks into the treated water.

発明の目的 本発明の主要な目的は、BOD含有水から燐および窒素
を効果的および経済的に除去する方法を提供することに
ある。
OBJECTS OF THE INVENTION The primary object of the present invention is to provide a method for effectively and economically removing phosphorus and nitrogen from BOD-containing water.

発明の構成 本発明によればBOD含有水から燐および窒素を除去す
る方法が提供されるのであって、この方法は、BOD含
有水、活性汚泥および好気性処理循環液の混合液を嫌気
性処理に付し、この嫌気性処理後の処理液を少なくとも
50容量チの酸素を含む供給ガス下の好気性処理に付し
、この好気性処理後の処理液を固液分離に付し、前記固
液分離によシ得られる沈降汚泥が5 Ink/13を越
えるNOxを含む場合にはこの沈降汚泥を脱窒処理して
NOxを5 m9/II以下とし、次いで前記沈降汚泥
を脱燐処理に付すことを特徴とする。
Structure of the Invention According to the present invention, a method for removing phosphorus and nitrogen from BOD-containing water is provided. The treated liquid after the anaerobic treatment is subjected to an aerobic treatment under a supply gas containing at least 50 volumes of oxygen, and the treated liquid after the aerobic treatment is subjected to solid-liquid separation. If the settled sludge obtained by liquid separation contains NOx exceeding 5 Ink/13, the settled sludge is subjected to denitrification treatment to reduce NOx to 5 m9/II or less, and then the settled sludge is subjected to dephosphorization treatment. It is characterized by

発明の構成の具体的説明 BOD含有水、例えば、有機性廃水は嫌気槽へ流入し、
最終沈澱池からの直接返送汚泥および好気槽終端からの
循環硝化液(好気性処理循環液)と接触混合し、このと
き主に廃水中の有機物(BOD)は循環硝化液中のN0
x(亜硝酸および硝酸)と反応してNOxが還元脱窒さ
れる。所望ならば、嫌気槽には、脱燐槽で生ずる脱燐汚
泥を脱燐返送汚泥として返送してもよい。尚、嫌気槽に
おけるこのような嫌気性処理とは、この明細書において
は、溶存酸素(Do)が0.5 m9/13以下の環境
下における処理を言う。
Detailed explanation of the structure of the invention BOD-containing water, for example, organic wastewater flows into an anaerobic tank,
The sludge directly returned from the final settling tank and the circulating nitrifying liquid from the end of the aerobic tank (aerobic treatment circulating liquid) are contacted and mixed, and at this time, mainly organic matter (BOD) in the wastewater is removed from the NO0 in the circulating nitrifying liquid.
NOx is reduced and denitrified by reacting with x (nitrous acid and nitric acid). If desired, the dephosphorized sludge produced in the dephosphorization tank may be returned to the anaerobic tank as dephosphorized return sludge. In this specification, such anaerobic treatment in an anaerobic tank refers to treatment in an environment where dissolved oxygen (Do) is 0.5 m9/13 or less.

嫌気槽よシの流出混合液は、次いで、好気槽へ流入し、
少なくとも50容量チの酸素を含む供給ガス下の好気性
処理に付されて、アンモニア等の破酸化性物質が酸化さ
れ、アンモニアは亜硝酸。
The effluent mixture from the anaerobic tank then flows into the aerobic tank,
Subjected to aerobic treatment under a feed gas containing at least 50 volumes of oxygen, oxidizing substances such as ammonia are oxidized, and the ammonia is oxidized to nitrous acid.

硝酸等のNOxとなる。また、混合液中の溶解性燐は活
性汚泥中に摂取される。少なくとも50容量チの酸素を
含む供給ガスを用いるのは好気槽内に嫌気性の環境を生
成させないためであシ、このような雰囲気下においては
好気槽終端における溶存酸素は通常5 m?/lj以上
となる。また、従って、好気槽は当然ながら密閉式とな
る。
It becomes NOx such as nitric acid. Moreover, the soluble phosphorus in the mixed liquid is taken up into the activated sludge. The reason for using a feed gas containing at least 50 volumes of oxygen is to avoid creating an anaerobic environment in the aerobic tank, and under such an atmosphere the dissolved oxygen at the end of the aerobic tank is usually 5 m? /lj or more. Furthermore, the aerobic tank is naturally a closed type.

好気槽からの流出混合液は、最終沈澱池に流入して固液
分離され、上澄液は処理水として系外に排出される。通
常、重力沈降型の沈澱池を有利に用いることができるけ
れども、このような手段に限定されるものではなく、公
知の固液分離手段のいかなるものを用いてもよい。沈降
汚泥の一部は、前述したように、直接返送汚泥として嫌
気槽へ返送される。最終沈澱池上澄液の溶存酸素は0.
5m9/11以上であるのが好ましく、溶存酸素が05
mV′11未満になると処理水中に燐が漏出することが
ある。
The mixed liquid discharged from the aerobic tank flows into the final settling tank where it is separated into solid and liquid, and the supernatant liquid is discharged outside the system as treated water. Usually, a gravity sedimentation type sedimentation basin can be advantageously used, but the method is not limited to this type of means, and any known solid-liquid separation means may be used. A portion of the settled sludge is directly returned to the anaerobic tank as return sludge, as described above. Dissolved oxygen in the final sedimentation tank supernatant liquid is 0.
It is preferable that it is 5 m9/11 or more, and the dissolved oxygen is 0.5 m
If it becomes less than mV'11, phosphorus may leak into the treated water.

最終沈澱池からの沈降汚泥の残部の一部又は全部は脱燐
槽へ送られて脱燐処理に付され、その残部は余剰汚泥と
して系外に排出される。このとき、脱燐槽に流入する汚
泥は、効率的な脱燐を行うためには、NOxの合計量が
5m9/l以下であることが必要である。従って、沈降
汚泥中のNOxが5m9/11以下である場合には汚泥
をそのまま脱燐槽に供給すればよいけれども、沈降汚泥
が5m9/lを越えるNo を含む場合にはこの汚泥を
脱窒処理してNo を5 m9/l以下とした後脱燐槽
へ供給する。
A part or all of the remainder of the settled sludge from the final settling tank is sent to a dephosphorization tank and subjected to dephosphorization treatment, and the remainder is discharged outside the system as surplus sludge. At this time, the total amount of NOx in the sludge flowing into the dephosphorization tank must be 5 m9/l or less in order to perform efficient dephosphorization. Therefore, if the NOx in the settled sludge is less than 5m9/l, the sludge can be fed as is to the dephosphorization tank, but if the settled sludge contains more than 5m9/l of NOx, the sludge should be subjected to denitrification treatment. After reducing the No.sub.2 concentration to 5 m9/l or less, it is supplied to the dephosphorization tank.

この脱窒処理は、汚泥を汚泥脱窒槽に供給し、嫌気状態
におくことによシ行うことができる。この方法により、
次の脱燐槽での汚泥の浮上を防止し、また汚泥からの燐
の放出を速やかに進行させることができる。汚泥脱室槽
は、単室または多画室のいずれでもよく、マた開放式で
も密閉式でもよく、また汚泥の攪拌はガス循環方式また
は機械撹拌方式のいずれによってもよい。汚泥脱室槽に
おける脱窒効果を促進するだめに、有機物を注入するこ
とは有効であり、有機物としては有機性戻水、メタノー
ル、酢酸等の多くの物質を用いることができる。
This denitrification treatment can be performed by supplying sludge to a sludge denitrification tank and leaving it in an anaerobic state. With this method,
It is possible to prevent the sludge from floating in the next dephosphorization tank, and to rapidly release phosphorus from the sludge. The sludge removal tank may be either a single chamber or a multi-chamber type, and may be an open type or a closed type, and the sludge may be stirred by either a gas circulation method or a mechanical stirring method. In order to promote the denitrification effect in the sludge removal tank, it is effective to inject organic matter, and many substances such as organic return water, methanol, acetic acid, etc. can be used as the organic matter.

脱燐処理は、公知の方法によシ行うことができる。例え
ば、特公昭54−38823号公報に開示の如くして、
嫌気性環境下に行うことができ、脱燐槽には下層部から
洗浄水を導入するのがよい。
The dephosphorization treatment can be performed by a known method. For example, as disclosed in Japanese Patent Publication No. 54-38823,
This can be carried out in an anaerobic environment, and it is preferable to introduce washing water into the dephosphorization tank from the lower layer.

燐を含む流出洗浄水は、次いで、化学的に処理されて脱
燐され、脱燐槽からの汚泥は所望により、前述の如く、
脱燐返送汚泥として嫌気槽に返送されてもよく、あるい
はその1部を系外に排出されてもよい。また、脱燐され
た洗浄水は、所望によシ、嫌気槽へ供給されてもよい。
The phosphorus-containing effluent wash water is then chemically treated to dephosphorize, and the sludge from the dephosphorization tank is optionally treated as described above.
It may be returned to the anaerobic tank as dephosphorization return sludge, or a portion thereof may be discharged outside the system. Further, the dephosphorized washing water may be supplied to an anaerobic tank, if desired.

実施レリ 以下、実施例によυ本発明を更に説明する。Implementation Reli The present invention will be further explained below with reference to Examples.

本発明者らは、ある下水処理場の初沈越流水を用いて脱
燐・脱窒試験を行った。
The present inventors conducted a dephosphorization/denitrification test using initial settling overflow water from a certain sewage treatment plant.

この実施列に用いた実験設備のフローチャートを第1図
に示す。また、主要実験装置の仕様の概略を第1表に示
す。
A flowchart of the experimental equipment used in this series is shown in FIG. Table 1 outlines the specifications of the main experimental equipment.

嫌気槽1は密閉槽であシ、2画室に仕切られている。混
合液の攪拌は機械攪拌によシ行りた。また、好気槽2は
密閉式であシ、4画室に仕切られている。この好気槽に
は純匿99%以上の酸素ガスが供給され、曝気は表面曝
気によシ行われた。
The anaerobic tank 1 is a closed tank and is partitioned into two compartments. The mixed solution was stirred by mechanical stirring. Further, the aerobic tank 2 is of a closed type and is partitioned into four compartments. Oxygen gas with a purity of 99% or more was supplied to this aerobic tank, and aeration was performed by surface aeration.

好気槽2終端のDoは5789/it以上であシ、最終
沈澱池3の上澄液のDoは0.51n9/1以上であっ
た。
The Do at the end of the aerobic tank 2 was 5789/it or more, and the Do of the supernatant liquid in the final sedimentation tank 3 was 0.51n9/1 or more.

汚泥脱窒漕4は、実験当初から設置されておシ、密閉槽
であシ、4画室に仕切られている。この汚泥脱室槽には
、有機物として流入水(処理原水)と同じ初沈毬流水を
若干量注入した。
The sludge denitrification tank 4 was installed from the beginning of the experiment and is divided into four compartments, one being a closed tank. A small amount of initial settling water, which is the same as the inflow water (treated raw water), was injected into this sludge removal tank as organic matter.

第2表にこの実施汐りに用いた条件を示し、第3表には
その処理成績を示す。
Table 2 shows the conditions used for this experiment, and Table 3 shows the treatment results.

以下余白 第2表 *汚泥弼、基準 第3表 *流入水のNQ −NはO ** T−N=T−KN+NO−N 本発明では1好気性処理を少なくとも50容量チの酸素
を含む供給ガスを用いて行い、好気槽終端のDoを5〜
/1以上としているために、最終沈澱池に流入した混合
液は長時間に亘シ好気的な雰囲気を保ち、従って混合液
に同伴するNOxを還元脱窒することが起シにくい。そ
のため璧素ガスに起因する汚泥の浮上や微細SSの懸濁
が極めて少なくなり、処理水のSSは良好なものとなる
。即ち、第3表に示すように、処理水のSSは4 m9
/ljと非常に良好であった。また、このように処理水
のSSを良好に保つためには、最終沈澱池の上澄液のD
Oを0.5 mシを以上に保持するのが好ましい。しか
して、好気槽終端のDoが前述の如< 5 m9713
以上に保持されている場合には、この最終沈澱池の上澄
液のDoは通常の運転条件下においては一般に0.5 
In9/1以上に維持され得るのである。処理水のSS
が安定して低い1直に保持される場合には、処理水のB
OD等が低い直で安定化することにもつながシ、特に処
理水のT−Pを低い値で安定させるために重要である。
Table 2 with blank space below It is carried out using gas, and the Do at the end of the aerobic tank is set to 5~
/1 or more, the mixed liquid flowing into the final settling tank maintains an aerobic atmosphere for a long time, and therefore it is difficult to reduce and denitrify the NOx accompanying the mixed liquid. Therefore, the floating of sludge and the suspension of fine SS due to elemental gas are extremely reduced, and the SS of the treated water becomes good. That is, as shown in Table 3, the treated water SS is 4 m9
/lj, which was very good. In addition, in order to maintain a good SS of the treated water, the D of the supernatant liquid in the final sedimentation tank must be
It is preferable to maintain O at 0.5 m or more. Therefore, Do at the end of the aerobic tank is as described above < 5 m9713
Under normal operating conditions, the Do of the supernatant liquid in the final sedimentation tank is generally 0.5.
In can be maintained at In9/1 or higher. Treated water SS
If the B of the treated water is kept at a stable low level,
This is also important for stabilizing the OD etc. at a low level, and is particularly important for stabilizing the T-P of the treated water at a low value.

脱燐槽への脱燐供給汚泥中にNo が5 RIV/lを
越えるときは、脱燐槽ではNOxの還元脱窒によシ発生
する窒素ガスによシ汚泥の浮上が起シ、また汚泥からの
燐の放出も遅れることとなる。しかして、最終沈澱池か
らの沈降汚泥中にNOxが5 〃LV1を越えるときは
、脱燐槽へ供給する前にこの汚泥を汚泥脱室槽において
NOを還元脱窒する。これによって、脱燐槽での汚泥の
浮上は防止され、かつ、燐の放出が促進されることとな
シ、そのため脱燐後の汚泥を脱燐返送汚泥として返送す
る場合には好気槽において再び活発に燐を過剰摂取する
こととなるのである。
When No exceeds 5 RIV/l in the dephosphorized sludge supplied to the dephosphorization tank, the sludge rises to the surface due to the nitrogen gas generated by the reduction and denitrification of NOx in the dephosphorization tank, and the sludge The release of phosphorus from the tank will also be delayed. When NOx in the settled sludge from the final settling tank exceeds 5 LV1, the sludge is subjected to NO reduction and denitrification in the sludge removal tank before being supplied to the dephosphorization tank. This prevents the sludge from floating in the dephosphorization tank and promotes the release of phosphorus. Therefore, when the sludge after dephosphorization is returned as dephosphorization return sludge, it should be kept in the aerobic tank. This results in an active over-intake of phosphorus again.

実施例の実験期間(18日間)中の脱燐槽での汚泥の浮
上は皆無であった。
There was no sludge floating in the dephosphorization tank during the experimental period (18 days) in the example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に用いた実験設備のフローチ
ャートである。 1・・・嫌気槽、2・・・好気槽、3・・・最終沈#池
、4・・・汚泥脱窒槽、5・・・脱燐槽、6・・・酸素
供給、7・・・流入水、8・・・循環硝化液、9・・・
直接返送汚泥、10・・・脱燐供給汚泥、11・・・余
剰汚泥、12・・・脱燐返送汚泥、13・・・洗浄水、
14・・・有機物供給、15・・・嫌気槽流出混合液、
16・・・好気槽流出混合液、17・・・処理水、18
・・・汚泥脱窒槽流出汚泥、19・・・脱燐槽流出洗浄
水。 特許出願人 昭和電工株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 吉 1)維 夫 弁理士 山 口 昭 之 弁理士 西 山 雅 也
FIG. 1 is a flowchart of experimental equipment used in an example of the present invention. 1...Anaerobic tank, 2...Aerobic tank, 3...Final sedimentation tank, 4...Sludge denitrification tank, 5...Dephosphorization tank, 6...Oxygen supply, 7...・Inflow water, 8... Circulating nitrification liquid, 9...
Direct return sludge, 10...Dephosphorization supply sludge, 11...Excess sludge, 12...Dephosphorization return sludge, 13...Washing water,
14... Organic matter supply, 15... Anaerobic tank effluent mixed liquid,
16...Aerobic tank effluent mixed liquid, 17...Treated water, 18
...Sludge denitrification tank outflow sludge, 19...Dephosphorization tank outflow cleaning water. Patent applicant Showa Denko Co., Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Yoshi 1) Tsuyoshi Patent attorney Akira Yamaguchi Patent attorney Masaya Nishiyama

Claims (1)

【特許請求の範囲】[Claims] 1、BOD含有水から燐および窒素を除去する方法であ
って、BOD含有水、活性汚泥および好気性処理循環液
の混合液を嫌気性処理に付し、この嫌気性処理後の処理
液を少なくとも50容量チの酸素を含む供給ガス下の好
気性処理に付し、この好気性処理後の処理液を固液分離
に付し、前記固液分離によ!ll得られる沈降汚泥が5
 m9/11を越えるNOxを含む場合にはこの沈降汚
泥を脱窒処理してNOxを5 m9/l!以下とし、次
いで前記沈降汚泥を脱燐処理に付すととを特徴とする方
法。
1. A method for removing phosphorus and nitrogen from BOD-containing water, in which a mixed liquid of BOD-containing water, activated sludge, and aerobic treatment circulating liquid is subjected to anaerobic treatment, and the treated liquid after the anaerobic treatment is at least It is subjected to aerobic treatment under a supply gas containing 50 volumes of oxygen, and the treated liquid after this aerobic treatment is subjected to solid-liquid separation. The amount of settled sludge obtained is 5
If it contains NOx exceeding m9/11, this settled sludge is denitrified to reduce NOx to 5 m9/l! A method characterized by the following: and then subjecting the settled sludge to a dephosphorization treatment.
JP24526583A 1983-12-28 1983-12-28 Removal of phosphorous and nitrogen from bod- containing water Granted JPS60139396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24526583A JPS60139396A (en) 1983-12-28 1983-12-28 Removal of phosphorous and nitrogen from bod- containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24526583A JPS60139396A (en) 1983-12-28 1983-12-28 Removal of phosphorous and nitrogen from bod- containing water

Publications (2)

Publication Number Publication Date
JPS60139396A true JPS60139396A (en) 1985-07-24
JPH0437760B2 JPH0437760B2 (en) 1992-06-22

Family

ID=17131105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24526583A Granted JPS60139396A (en) 1983-12-28 1983-12-28 Removal of phosphorous and nitrogen from bod- containing water

Country Status (1)

Country Link
JP (1) JPS60139396A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000024252A (en) * 2000-02-01 2000-05-06 김창수 Advanced Treatment System using Rotating Immobilized Phosphorus Sweeper from Wastewater, Sewage and Industrial Wastewater
KR100319375B1 (en) * 1999-07-30 2002-01-09 채문식 Method and Apparatus of Nitrogen Removal from the Recycle Water in the Sewage Treatment Plant
CN100369834C (en) * 2004-12-30 2008-02-20 天津科技大学 Sewage treatment facility integrative anaerobic baffle-aerobic-adsorptive regeneration
CN102614840A (en) * 2012-04-12 2012-08-01 南昌航空大学 Preparation method for magnetic nano material for efficiently removing phosphate radicals and nitrates
CN102814165A (en) * 2012-09-10 2012-12-12 南昌航空大学 Method for improving chitosan acidoresistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539258A (en) * 1978-09-13 1980-03-19 Ebara Infilco Co Ltd Biologically treating method for waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539258A (en) * 1978-09-13 1980-03-19 Ebara Infilco Co Ltd Biologically treating method for waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319375B1 (en) * 1999-07-30 2002-01-09 채문식 Method and Apparatus of Nitrogen Removal from the Recycle Water in the Sewage Treatment Plant
KR20000024252A (en) * 2000-02-01 2000-05-06 김창수 Advanced Treatment System using Rotating Immobilized Phosphorus Sweeper from Wastewater, Sewage and Industrial Wastewater
CN100369834C (en) * 2004-12-30 2008-02-20 天津科技大学 Sewage treatment facility integrative anaerobic baffle-aerobic-adsorptive regeneration
CN102614840A (en) * 2012-04-12 2012-08-01 南昌航空大学 Preparation method for magnetic nano material for efficiently removing phosphate radicals and nitrates
CN102814165A (en) * 2012-09-10 2012-12-12 南昌航空大学 Method for improving chitosan acidoresistance

Also Published As

Publication number Publication date
JPH0437760B2 (en) 1992-06-22

Similar Documents

Publication Publication Date Title
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
US6638427B2 (en) Waste water treatment method being able to treat surface active agent, nitrogen, hydrogen peroxide and phosphor with high efficiency
KR100390633B1 (en) Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby
JPS60206494A (en) Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method
JP3477161B2 (en) Wastewater treatment method and apparatus
JPS60139396A (en) Removal of phosphorous and nitrogen from bod- containing water
JPH0788500A (en) Method for treating sewage countercurrent water
JP3799557B2 (en) Wastewater treatment method
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JP2000189995A (en) Method and device for removing nitrogen in waste water
KR100420647B1 (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor
JP4464035B2 (en) Treatment method of sludge return water
KR100438323B1 (en) High intergated Biological Nutrient Removal System
JP2678123B2 (en) Sewage treatment method
JP2004105872A (en) Method of treating waste water
JP4371441B2 (en) Treatment method of sludge treatment system return water
JP3125628B2 (en) Wastewater treatment method
JP3271326B2 (en) Biological phosphorus removal method and apparatus
KR100318367B1 (en) Waste water treatment apparatus
KR100295499B1 (en) Sewage treatment equipment
JP3381071B2 (en) Denitrification and dephosphorization method using returned sludge by activated sludge method
KR100280228B1 (en) Method and apparatus for removing nutrients from sewage
JPS61118194A (en) Biological treatment of waste water
JPS6244998B2 (en)
KR970065444A (en) Development of Advanced Step Aeration System for Nitrogen Removal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term