JPH0471643A - Catalyst for decomposing methane gas - Google Patents

Catalyst for decomposing methane gas

Info

Publication number
JPH0471643A
JPH0471643A JP2180510A JP18051090A JPH0471643A JP H0471643 A JPH0471643 A JP H0471643A JP 2180510 A JP2180510 A JP 2180510A JP 18051090 A JP18051090 A JP 18051090A JP H0471643 A JPH0471643 A JP H0471643A
Authority
JP
Japan
Prior art keywords
catalyst
methane gas
platinum
plating
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2180510A
Other languages
Japanese (ja)
Inventor
Toyoo Sawada
澤田 豊男
Kazuhiro Kajima
一広 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2180510A priority Critical patent/JPH0471643A/en
Publication of JPH0471643A publication Critical patent/JPH0471643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst for decomposing methane gas by using a heat- resistant fiber as the catalyst carrier and platinum group metal as the active catalyst component, and depositing the platinum group metal on the heat- resistant fiber. CONSTITUTION:Silica wool, alumina wool or carbon fiber is used as the catalyst carrier, on which platinum, ruthenium, iridium or paradium is deposited as the active catalyst component by plating (chemical plating, electroless plating, electrolytic plating) or by vapor deposition method (CVD, PVD). By using this catalyst as the catalyst for decomposing methane gas, the collected amt. of precipitated carbon can be increased and the weight of the carrier itself can be decreased with larger specific surface area. Since the interval of changing the catalyst can be extended about twice, the electric power required for the cycle of heating and cooling the methane decomposing furnace can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタンガス分解用触媒に関し、特に閉鎖系空間
(宇宙船、核シェルタ、潜水艦等)で人間の呼吸により
排出される炭酸ガスを吸着・濃縮した後、脱着した炭酸
ガスを水素で還元して生成したメタンガスを分解する反
応に使用される触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a catalyst for decomposing methane gas, and particularly to a catalyst for decomposing methane gas, and particularly for adsorbing and absorbing carbon dioxide emitted by human breathing in a closed space (spacecraft, nuclear shelter, submarine, etc.). The present invention relates to a catalyst used in a reaction that decomposes methane gas produced by reducing desorbed carbon dioxide gas with hydrogen after concentration.

〔従来の技術〕[Conventional technology]

従来のメタンガス分解法を実施する装置の一態様を第4
図によって説明する。
One aspect of the device for implementing the conventional methane gas decomposition method is shown in the fourth example.
This will be explained using figures.

第4図の装置はメタンガス分解炉Jにセットされた反応
管にの内部に、ペレット状白金系触媒りを充填し、この
ペレット状白金系触媒りを保持するため、その両側部に
耐熱性繊維Mを充填することによりメタンガスを分解す
るようにしたものである。この装置を用いて、以下に示
す条件により、メタンガスを分解した場合のメタンガス
分解率は約35%であり、また析出炭素によって反応管
に内ガス流路が閉塞されるまでの時間は約9時間であっ
た。
The device shown in Figure 4 is a reaction tube set in a methane gas decomposition furnace J that is filled with pelleted platinum catalyst, and in order to hold the pelleted platinum catalyst, heat-resistant fibers are placed on both sides of the reaction tube. By filling the tank with M, methane gas is decomposed. When methane gas is decomposed using this device under the conditions shown below, the methane gas decomposition rate is approximately 35%, and the time it takes for the internal gas flow path in the reaction tube to be blocked by precipitated carbon is approximately 9 hours. Met.

◎メタンガス分解条件 ・反応管寸法:内径 30φ(mm )長さ 1000
  (田m) ・反応温度+1O00℃ ・ペレット状白金系触媒:アルミナ担体0,5%ルテニ
ウム触媒(0,02cm3/個)・ベレット状白金系触
媒充填量及び充填体積:41g、40cm’ ・耐熱性繊維ニジリカウール (線径1〜7μm) ・耐熱性繊維充填量及び充填体積: 3゜5g、100 cm3 、メタンガス流量: 0.141β/min・G HS
 V  (Gas Hourly 5pace νel
ocity):60hr 〔発明が解決しようとする課題〕 従来のメタンガス分解炉の反応管に充填される従来の触
媒は次に示す欠点を有していた。
◎Methane gas decomposition conditions/Reaction tube dimensions: Inner diameter 30φ (mm) Length 1000
(Tan m) ・Reaction temperature +100℃ ・Pellet-shaped platinum catalyst: 0.5% ruthenium catalyst on alumina carrier (0.02 cm3/unit) ・Bellet-shaped platinum catalyst loading amount and filling volume: 41 g, 40 cm' ・Heat resistance Fiber rainbow wool (wire diameter 1-7μm) Heat-resistant fiber filling amount and filling volume: 3°5g, 100cm3, methane gas flow rate: 0.141β/min・G HS
V (Gas Hourly 5 pace νel
[Problems to be Solved by the Invention] The conventional catalyst filled in the reaction tube of the conventional methane gas decomposition furnace had the following drawbacks.

(1)  アルミナペレットを担体とする白金系金属触
媒はその体積が1個当り約0.02 cm3と大きく、
GH3V=60hrりでメタンガスを分解する場合、約
9時間経過(触媒1 kgに対して炭素を約100g補
集)すると系内が閉塞してしまうため、反応管内の耐熱
性繊維及びペレット状白金系金属触媒を頻繁に交“換し
なければならない。
(1) The platinum-based metal catalyst using alumina pellets as a carrier has a large volume of approximately 0.02 cm3 per piece.
When decomposing methane gas at GH3V = 60 hours, the system becomes clogged after about 9 hours (approximately 100 g of carbon is collected per 1 kg of catalyst), so the heat-resistant fibers and pelleted platinum in the reaction tube become clogged. The metal catalyst must be replaced frequently.

(2)  ペレット状白金系金属触媒及び耐熱性繊維の
交換頻度が高いため、メタンガス分解炉の昇温及び降温
サイクル回数が多くなり電力消費量が大きい。
(2) Since the pelleted platinum-based metal catalyst and heat-resistant fibers are frequently replaced, the number of temperature raising and cooling cycles of the methane gas decomposition furnace increases, resulting in large power consumption.

(3)  ベレット状担体であるため、その重量が大き
い。
(3) Since it is a pellet-shaped carrier, its weight is large.

(4)  アルミナペレットを担体とする白金系金属触
媒は、その比表面積が小さいため触媒としての効果が少
なく反応に高温を必要とする。
(4) A platinum-based metal catalyst using alumina pellets as a carrier has a small specific surface area, so it is less effective as a catalyst and requires high temperature for reaction.

本発明は以上のような欠点を解消するため、反応管に充
填されたペレット状白金系金属触媒及び耐熱性繊維の交
換頻度を低減し、低温度でメタンガス分解反応が可能と
なるメタンガス分解触媒を提供しようとするものである
In order to eliminate the above-mentioned drawbacks, the present invention has developed a methane gas decomposition catalyst that reduces the frequency of replacing the pelleted platinum-based metal catalyst and heat-resistant fibers filled in the reaction tube, and enables the methane gas decomposition reaction at low temperatures. This is what we are trying to provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は耐熱性繊維に白金系金属を担持してなることを
特徴とするメタンガス分解用触媒である。
The present invention is a catalyst for decomposing methane gas characterized by having a platinum-based metal supported on heat-resistant fibers.

本発明をより詳細に説明すると、触媒担体として用いる
耐熱性繊維としてはシリカウール、アルミナウールまた
はカーボン繊維が、活性触又、触媒担体である耐熱繊維
に白金系金属を添着させる方法としては、めっき法(化
学めっき、無電解めっき、電解めっき)または蒸着法(
CV D : Chemical Vapor Dep
osition 、  P V D :Physica
l Vapor Deposition)を用いること
ができる。
To explain the present invention in more detail, silica wool, alumina wool, or carbon fiber is used as the heat-resistant fiber used as the catalyst carrier, and plating is used as the method for impregnating the heat-resistant fiber that is the active catalyst or the catalyst carrier with the platinum metal. method (chemical plating, electroless plating, electrolytic plating) or vapor deposition method (
CVD: Chemical Vapor Dep
position, PVD: Physica
1 Vapor Deposition) can be used.

〔作用〕[Effect]

シリカウール、アルミナウールまたはカーボン繊維を触
媒担体とし、白金、ルテニウム、イリジウムまたはパラ
ジウムを活性触媒金属としてめっき法(化学めっき、無
電解約つき、電解めっき)または蒸着法(CVD、PV
D)により添着した本発明の触媒をメタンガス分解用触
媒として適用することにより析出炭素補集量を増加させ
ることができ、また、担体の重量を低減することができ
るとともに触媒比表面積を大きくすることができる。
Plating methods (chemical plating, electroless plating, electrolytic plating) or vapor deposition methods (CVD, PV
By applying the catalyst of the present invention impregnated by D) as a catalyst for decomposing methane gas, the amount of collected carbon can be increased, and the weight of the carrier can be reduced, and the specific surface area of the catalyst can be increased. I can do it.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、内径30φ(mm)、長さ10010
00(の反応管Aの均熱部に、表面を白金(10wt%
)で被覆されたカーボン繊維(線径7〜15μm)Bを
約10g充填する。次に白金で被覆されたカーボン繊維
Bを1000tに加熱し、温度が安定した後メタンガス
流量をマスフローメータCでG、 l 41 j2/m
in  (GH3V : 60hr−’)に調整し、反
応管Aに流入させる。
In Figure 1, the inner diameter is 30φ (mm) and the length is 10010 mm.
Platinum (10wt%) was added to the surface of the soaking section of reaction tube A of
) is filled with about 10 g of carbon fiber (wire diameter: 7 to 15 μm) B. Next, carbon fiber B coated with platinum was heated to 1,000 t, and after the temperature was stabilized, the methane gas flow rate was measured using a mass flow meter C as G, l 41 j2/m
in (GH3V: 60hr-') and flowed into reaction tube A.

次に系内圧力を背圧弁りを使用して0.5kg/cm’
G (ゲージ圧)に設定する。
Next, adjust the system pressure to 0.5 kg/cm' using a back pressure valve.
Set to G (gauge pressure).

反応系が閉塞(反応管A前後の圧力差が0.5kg/c
m’G以上)したときメタンガスの流入を止め、反応管
Aが冷却した後、炭素が析出した白金で被覆したカーボ
ン繊維Bを取り出し、その重量を測定する。またメタン
ガス流入中のメタンガス分解率を求めるため、反応管出
口部のメタンガス及び水素ガス濃度をガスクロマトグラ
フ分析装置Eで分析する。
The reaction system is blocked (pressure difference before and after reaction tube A is 0.5 kg/c
m'G or more), the flow of methane gas is stopped, and after the reaction tube A has cooled, the platinum-coated carbon fiber B on which carbon has precipitated is taken out and its weight is measured. Furthermore, in order to determine the methane gas decomposition rate during the inflow of methane gas, the methane gas and hydrogen gas concentrations at the outlet of the reaction tube are analyzed by a gas chromatograph analyzer E.

その結果白金で被覆したカーボン繊維已に析出した炭素
は5.5gであり、第2図に示す通り白金で被覆したカ
ーボン繊維1 kgに対しテ約550gの析出炭素を補
集することができる。このときのメタンガス分解率は5
0%であった。
As a result, 5.5 g of carbon was deposited on the carbon fiber coated with platinum, and as shown in FIG. 2, about 550 g of precipitated carbon could be collected for 1 kg of carbon fiber coated with platinum. At this time, the methane gas decomposition rate is 5
It was 0%.

なお、こ\で使用した触媒のカーボン繊維への白金担持
方法は次の通りである。
The method for supporting platinum on the carbon fibers of the catalyst used here is as follows.

カーボン繊維を硝酸10%溶液中で2〜3時間加熱後濾
過水洗し、乾燥する。白金を王水で溶解後加熱濃縮して
塩酸酸性とした後、温水を加え約80rdとする。この
溶液に前記の乾燥したカーボン繊維を加えて、次いでこ
の溶液にホルマリン(37vo1%)を約8m1.加え
た後、NaOH溶液(30wt%)を溶液が弱アルカリ
性を示すまで加える。その後、カーボン繊維を溶液から
取り出し、水洗した後、120〜150℃で乾燥する。
The carbon fibers are heated in a 10% nitric acid solution for 2 to 3 hours, filtered, washed with water, and dried. After dissolving platinum in aqua regia, heating and concentrating the solution to make it acidic with hydrochloric acid, warm water was added to make the solution about 80 rd. The dried carbon fibers were added to this solution, and then about 8 ml of formalin (37 vol. 1%) was added to this solution. After addition, NaOH solution (30 wt%) is added until the solution becomes slightly alkaline. Thereafter, the carbon fibers are taken out of the solution, washed with water, and then dried at 120 to 150°C.

メタンガス分解反応は炭酸ガス還元・酸素回収システム
の一部に用いることができる。第3図に示す通り、炭酸
ガス還元・酸素回収システムは人間の呼吸により排出さ
れた炭酸ガスを分離・濃縮F後、その炭酸ガスを水素で
還元Gすることにより、メタンガスと水が生成する。メ
タンガスは分解工されることにより、固体炭素及び水素
が生成し、水素は炭酸ガス還元用として再利用される。
The methane gas decomposition reaction can be used as part of a carbon dioxide reduction/oxygen recovery system. As shown in Fig. 3, the carbon dioxide reduction/oxygen recovery system separates and concentrates carbon dioxide gas emitted by human breathing, and then reduces the carbon dioxide gas with hydrogen, thereby producing methane gas and water. Methane gas is decomposed to produce solid carbon and hydrogen, and the hydrogen is reused for reducing carbon dioxide gas.

また炭酸ガスを還元することにより得られる水は、酸素
と水素とに電気分解Hされ、酸素は人間の呼吸用として
、水素は炭酸ガス還元用として再利用される。メタンガ
ス分解反応とは、以上の反応中Iの反応を示す。
Furthermore, water obtained by reducing carbon dioxide gas is electrolyzed into oxygen and hydrogen, and the oxygen is reused for human respiration and the hydrogen is reused for reducing carbon dioxide gas. The methane gas decomposition reaction refers to reaction I in the above reactions.

〔発明の効果〕〔Effect of the invention〕

本発明のメタンガス分解を用いてメタンガスを熱分解す
ることにより、触媒交換頻度を約2倍に延長できるため
、メタン分解炉の昇温、降温サイクルに要する電力を低
減できる。またメタンガス分解率を反応温度1000℃
で約15%向上することができるとともに触媒重量を約
スに軽減できるため、宇宙船等に使用する場合有利であ
る。
By thermally decomposing methane gas using the methane gas decomposition method of the present invention, the frequency of catalyst replacement can be approximately doubled, thereby reducing the power required for the temperature raising and temperature lowering cycles of the methane decomposition furnace. In addition, the methane gas decomposition rate was measured at a reaction temperature of 1000°C.
The catalyst weight can be improved by about 15% and the weight of the catalyst can be reduced by about 100%, which is advantageous when used in spacecraft and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のメタンガス分解用触媒の効
果を把握するために使用したメタン分解分解装置の概略
図、第2図は本発明の一実施例のメタンガス分解用触媒
の効果を示す図表、第3図はメタンガス分解反応が組み
込まれる反応系を説明するためのフロー、第4図は従来
のメタンガス分解装置の一態様を示す概略図である。 明
Figure 1 is a schematic diagram of a methane decomposition device used to understand the effects of the methane gas decomposition catalyst of one embodiment of the present invention, and Figure 2 is a schematic diagram of the methane gas decomposition device used to understand the effects of the methane gas decomposition catalyst of one embodiment of the present invention. FIG. 3 is a flowchart for explaining a reaction system in which a methane gas decomposition reaction is incorporated, and FIG. 4 is a schematic diagram showing an embodiment of a conventional methane gas decomposition apparatus. Akira

Claims (1)

【特許請求の範囲】[Claims] 耐熱性繊維に白金系金属を担持してなることを特徴とす
るメタンガス分解用触媒。
A catalyst for decomposing methane gas, which is made by supporting a platinum-based metal on heat-resistant fibers.
JP2180510A 1990-07-10 1990-07-10 Catalyst for decomposing methane gas Pending JPH0471643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180510A JPH0471643A (en) 1990-07-10 1990-07-10 Catalyst for decomposing methane gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180510A JPH0471643A (en) 1990-07-10 1990-07-10 Catalyst for decomposing methane gas

Publications (1)

Publication Number Publication Date
JPH0471643A true JPH0471643A (en) 1992-03-06

Family

ID=16084512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180510A Pending JPH0471643A (en) 1990-07-10 1990-07-10 Catalyst for decomposing methane gas

Country Status (1)

Country Link
JP (1) JPH0471643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536866A (en) * 2002-07-22 2005-12-02 オヴォニック バッテリー カンパニー インコーポレイテッド Coated catalyst material
JP2006255533A (en) * 2005-03-15 2006-09-28 Toyota Central Res & Dev Lab Inc Gas cleaning material and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536866A (en) * 2002-07-22 2005-12-02 オヴォニック バッテリー カンパニー インコーポレイテッド Coated catalyst material
JP4785384B2 (en) * 2002-07-22 2011-10-05 オヴォニック バッテリー カンパニー インコーポレイテッド Coated catalyst material
JP2006255533A (en) * 2005-03-15 2006-09-28 Toyota Central Res & Dev Lab Inc Gas cleaning material and its manufacturing method

Similar Documents

Publication Publication Date Title
CN109012659B (en) Preparation method of noble metal-loaded activated carbon fiber monatomic catalyst for normal-temperature catalytic degradation of VOCs (volatile organic chemicals)
Yeung et al. Palladium composite membranes by electroless plating technique: relationships between plating kinetics, film microstructure and membrane performance
Zhang et al. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes
EP2377815A1 (en) Ammonia synthesis method
JP2009183950A (en) Process for purifying exhaust gas
JPH0129439B2 (en)
US10328412B2 (en) Hydrogen storage system by catalytic dehydrogenation of amines
CN103977744B (en) A kind of method of catalytic degradation hexachloro-benzene
JP2006507938A (en) Application of conductive adsorbents, activated carbon granules and carbon fibers as catalytic reaction substrates
JP3347478B2 (en) Exhaust gas purification method
CN103638981A (en) Supported type Au catalyst containing organic polymer electronic auxiliary
US20110268242A1 (en) Hydrogen and Oxygen Recombination Catalyst, Recombination Apparatus, and Nuclear Plant
EP3756758A1 (en) Catalyst for preparing vinyl chloride by cracking 1,2-dichloroethane and preparation and regeneration methods therefor
JP2002253967A (en) Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide
JP3688314B2 (en) Ammonia decomposition method
CN103977795A (en) Preparation method for catalyst for degrading hexachlorobenzene
WO2020206976A1 (en) Preparation method for noble metal-loaded porous organic framework atomic-scale catalyst for catalytic degradation of vocs at room temperature
JP2016164109A (en) Ammonia oxidation decomposition catalyst, and hydrogen production method and hydrogen production device using the ammonia oxidation decomposition catalyst
JPH0471643A (en) Catalyst for decomposing methane gas
WO2021235443A1 (en) Reaction system, method for collecting solid carbon, method for producing gas containing hydrogen, catalyst set, and catalyst for solid carbon collection
CN108117046A (en) A kind of hydrogen manufacturing metal membrane reactor
CN108939811B (en) Gaseous iodine extraction method
JP2897958B2 (en) Amorphous alloy catalyst for exhaust gas purification
JPH0833490B2 (en) Method and apparatus for decontaminating waste gas from a fusion reactor fuel cycle
JPS5919732B2 (en) Catalyst for water-hydrogen exchange reaction