JPH0471148B2 - - Google Patents

Info

Publication number
JPH0471148B2
JPH0471148B2 JP60056724A JP5672485A JPH0471148B2 JP H0471148 B2 JPH0471148 B2 JP H0471148B2 JP 60056724 A JP60056724 A JP 60056724A JP 5672485 A JP5672485 A JP 5672485A JP H0471148 B2 JPH0471148 B2 JP H0471148B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pressure reducing
compressor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60056724A
Other languages
Japanese (ja)
Other versions
JPS61213558A (en
Inventor
Naoki Shimokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5672485A priority Critical patent/JPS61213558A/en
Publication of JPS61213558A publication Critical patent/JPS61213558A/en
Publication of JPH0471148B2 publication Critical patent/JPH0471148B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房運転を中止することなく室外側熱
交換器の霜を効率よく除去する空冷ヒートポンプ
式暖房装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an air-cooled heat pump type heating device that efficiently removes frost from an outdoor heat exchanger without interrupting heating operation.

従来の技術 従来のこの種のものの冷凍サイクルは第4図の
ように構成されていた。
Prior Art A conventional refrigeration cycle of this type was constructed as shown in FIG.

即ち、冷房運転時で図中実線矢印で示すように
圧縮機1より高圧ガスが高圧ガス管路2、四方切
換弁3、配管4を経て室外側熱交換器5に入り凝
縮され、その後配管6を経て減圧装置7で減圧さ
れ室内側熱交換器8に入り蒸発して風を媒体にし
て室内を冷却し、その後配管9、四方切換弁3、
配管2を経て圧縮機1に戻る。
That is, during cooling operation, high-pressure gas from the compressor 1 passes through the high-pressure gas pipe 2, the four-way switching valve 3, and the pipe 4, enters the outdoor heat exchanger 5, and is condensed, as shown by the solid arrow in the figure. It is depressurized by the pressure reducing device 7, enters the indoor heat exchanger 8, evaporates, and cools the room using wind as a medium, and then the pipe 9, the four-way switching valve 3,
It returns to the compressor 1 via piping 2.

又、暖房運転時には図中破線矢印で示すように
圧縮機1、高圧ガス管2、四方切換弁3、配管9
を経て室内側熱交換器8に入り、凝縮して室内を
暖房し、その後減圧装置7を、経て室外側熱交換
器5に入つて蒸発し配管4、四方切換弁3、配管
2、圧縮機1に戻る。
In addition, during heating operation, the compressor 1, high pressure gas pipe 2, four-way switching valve 3, and piping 9 are
It enters the indoor heat exchanger 8 through which it is condensed to heat the room, and then passes through the pressure reducing device 7 and then into the outdoor heat exchanger 5 where it evaporates and is transferred to the piping 4, the four-way switching valve 3, the piping 2, and the compressor. Return to 1.

発明が解決しようとする問題点 ところが、暖房運転時には室外側熱交換器5に
て冷媒は送風機の回転により送風が行なわれ熱交
換する。この時外気の熱を吸熱して蒸発するが外
気の温度が低下し、約5℃以下になると室外側熱
交換器5に着霜現象が生じ外気の熱の吸熱が阻害
され暖房能力が低下し使用できない。このため従
来は四方切換弁3を切換、冷房運転時の冷凍サイ
クルで冷凍を循環させ、室外側熱交換器5に高圧
ガスを流入させ着霜した霜を除霜していた。この
溶解までの時間は6分〜12分位いの時間を必要と
し、前記時間は室内側熱交換器8において冷媒の
蒸発が行なわれるため室内の暖房ができず、室内
温度の急激な低下が発生する。このため室内の風
は停止させていたが、しかし多少の緩和(室温の
5℃〜6℃の低下)はあるが、使用者はコールド
ドラフト(冷風による不快感)を感じ暖房機を不
快なものとする原因を作つていた。
Problems to be Solved by the Invention However, during heating operation, the refrigerant is blown and heat exchanged in the outdoor heat exchanger 5 by the rotation of the blower. At this time, the heat from the outside air is absorbed and evaporated, but when the temperature of the outside air decreases to about 5°C or less, frost formation occurs on the outdoor heat exchanger 5, which inhibits the absorption of heat from the outside air and reduces the heating capacity. I can not use it. For this reason, conventionally, the four-way switching valve 3 was switched, the refrigeration was circulated in the refrigeration cycle during cooling operation, and high-pressure gas was introduced into the outdoor heat exchanger 5 to defrost the frost that had formed. The time required for this melting is about 6 to 12 minutes, and during this time, the indoor heat exchanger 8 evaporates the refrigerant, making it impossible to heat the room and causing a sudden drop in indoor temperature. Occur. For this reason, the indoor air flow was stopped, but although there was some relief (room temperature decreased by 5 to 6 degrees Celsius), users felt a cold draft (uncomfortable feeling due to cold air) and the heater was uncomfortable. He had created a cause for this.

そこで本発明は着霜時、暖房運転を停止させず
着霜した霜を除去し、使用者が不快に感じさせな
いことを目的とするものである。
Therefore, an object of the present invention is to remove the frost that has formed without stopping the heating operation when frost forms, so that the user does not feel uncomfortable.

問題点を解決するための手段 上記問題点を解決するために本発明は、冷凍サ
イクルの室外側熱交換器を、熱源用熱交換器とそ
の熱源用熱交換器の配管径より小さい径の配管を
有する減圧素子部に分割し、減圧素子部を風上側
に配設し暖房サイクル通常運転時に冷媒を熱源用
熱交換器に流入させ、かつ減圧素子部への流入を
遮断し、さらに除霜時には圧縮機より吐出される
高温冷媒の一部を減圧素子部へ、その他吐出され
る冷媒を暖房サイクルの同一回路にて熱源用熱交
換器へ並行に冷媒を流入させるように構成したも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an outdoor heat exchanger of a refrigeration cycle with a heat source heat exchanger and a pipe having a diameter smaller than that of the heat source heat exchanger. The pressure reducing element part is arranged on the windward side to allow the refrigerant to flow into the heat source heat exchanger during normal operation of the heating cycle, and to block the flow into the pressure reducing element part. A portion of the high-temperature refrigerant discharged from the compressor is flowed into the pressure reducing element section, and the other refrigerant discharged is flowed into the heat source heat exchanger in parallel in the same circuit of the heating cycle.

作 用 上記構成により暖房運転を停止することなく除
霜を行なうことができる。
Effect: With the above configuration, defrosting can be performed without stopping the heating operation.

実施例 以下、本発明の一実施例について添付図面の第
1図〜第3図を参考に説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.

暖房運転時室外側熱交換器(特にアルミプレー
トフインで構成された熱交換器)への着霜状態を
観察すると、着霜状態までの過程は、まずアルミ
プレートフインで構成された熱交換の風上側から
着霜が始まり、風上側へと成長する。着霜の成長
と同時に暖房能力は低下し霜を除去する必要が発
生した。この時熱交換器の風上側から風下側まで
の着霜量を計測すると、ほとんどの着霜は風上側
に集まり、風上側の着霜量は非常に少なかつた。
この現象から第2図に示すように、室外熱交換器
5を送風機により送風される風下側に熱源用熱交
換器10と風上側に着霜した霜を除去するための
必要な熱量を有し且つ冷凍サイクル中のもつとも
高い圧縮機より吐出される高温高圧冷媒を流入さ
せ、その冷媒は霜の除去時に冷却され液化するた
め、過少冷媒とならないように、さらに圧縮機の
吸入側に高圧冷媒を吸入させないようにするた
め、風土側に配設する熱交換器に流入する配管を
減圧素子13として、第2図のように一体に構成
する。
When observing the frost formation on the outdoor heat exchanger (particularly the heat exchanger made of aluminum plate fins) during heating operation, the process of frost formation is first caused by the airflow of the heat exchanger made of aluminum plate fins. Frost begins on the upper side and grows towards the windward side. As the frost grew, the heating capacity decreased and it became necessary to remove the frost. At this time, when we measured the amount of frost from the windward side to the leeward side of the heat exchanger, most of the frost was concentrated on the windward side, and the amount of frost on the windward side was very small.
From this phenomenon, as shown in FIG. 2, the outdoor heat exchanger 5 is placed on the leeward side of the air blown by the blower, and the heat source heat exchanger 10 is placed on the windward side, which has the necessary amount of heat to remove the frost that has formed. In addition, the high-temperature, high-pressure refrigerant discharged from the extremely high compressor in the refrigeration cycle is allowed to flow in, and since the refrigerant is cooled and liquefied during the removal of frost, high-pressure refrigerant is added to the suction side of the compressor to prevent insufficient refrigerant. In order to prevent inhalation, the piping that flows into the heat exchanger disposed on the climate side is integrally constructed as a pressure reducing element 13 as shown in FIG.

なお、減圧素子13の配管13aの径は、熱源
用熱交換器10の配管10aの径より小さく、か
つ、減圧素子13の配管13aは、熱源用熱交換
器10の配管10aの風上部に配設されており、
室外側熱交換器の通風抵抗を大きく高めることな
く、除霜運動時以外における運転効率の低下を防
止する。ここで5は室外側熱交換器、17はアル
ミプレートフアンである。熱源用熱交換器10と
減圧素子13は必要に応じてフインを分割しても
よい。
Note that the diameter of the pipe 13a of the pressure reducing element 13 is smaller than the diameter of the pipe 10a of the heat source heat exchanger 10, and the pipe 13a of the pressure reducing element 13 is arranged on the windward side of the pipe 10a of the heat source heat exchanger 10. has been established,
To prevent a decrease in operating efficiency other than during defrosting movement without significantly increasing ventilation resistance of an outdoor heat exchanger. Here, 5 is an outdoor heat exchanger, and 17 is an aluminum plate fan. The fins of the heat source heat exchanger 10 and the pressure reducing element 13 may be divided as necessary.

着霜が発生していない暖房運転時には、風上側
の減圧素子部13には冷媒は流入させず、従来例
の暖房運転と同様に室外側熱交換器5の風下側の
熱源用熱交換器10で空気と熱交換し蒸発する。
外気温度が低下し室外側熱交換器の熱源用熱交換
器10の風上側、すなわち減圧素子部13が設置
されている部分に着霜すると減圧素子13と熱源
用熱交換器10に冷媒を並行して流入させ、風上
側の減圧素子13に流れる高温高圧冷媒により風
上側の着霜を溶解する。同時に熱源用熱交換器1
0にも冷媒は流れ蒸発し暖房運転は続行され暖房
機能は停止されず、着霜を溶解させる。
During the heating operation when no frost has formed, the refrigerant is not allowed to flow into the windward pressure reducing element section 13, and the heat exchanger 10 for the heat source on the leeward side of the outdoor heat exchanger 5 is operated as in the conventional heating operation. It exchanges heat with air and evaporates.
When the outside air temperature decreases and frost forms on the windward side of the heat source heat exchanger 10 of the outdoor heat exchanger, that is, the part where the pressure reducing element section 13 is installed, the refrigerant is supplied to the pressure reducing element 13 and the heat source heat exchanger 10 in parallel. The frost on the windward side is melted by the high-temperature, high-pressure refrigerant flowing into the pressure reducing element 13 on the windward side. At the same time, heat exchanger 1 for heat source
Even at zero, the refrigerant flows and evaporates, heating operation continues, the heating function is not stopped, and the frost is dissolved.

ここで分岐するものを減圧素子13にする目的
は、室外側熱交換器5は空冷式のものにおいてほ
とんどアルミプレートフイン17で構成し送風に
より熱交換するため、室外側熱交換器5を熱源用
熱交換器10と霜の除去用にもちいる高温高圧冷
媒管とを風上側、風下側に2列に分岐する場合、
風上側に送風量の抵抗が増大しない細い高温冷媒
管を必要とする。又霜の除去時熱源用熱交換器と
高温高圧冷媒管とに分岐されるため除去時圧縮機
の吐出部より高温高圧ガス冷媒が流入するため霜
の除去時一部バイパスされたガス冷媒は冷却され
た冷媒は液化される。冷媒が液化されるとバイパ
スされない他の冷媒は暖房運転を続行している
が、この暖房運転の冷凍サイクル中の冷媒循環量
が減少し、暖房能力が低下する。このため圧縮機
1より吐出されるバイパスされたガス冷媒の液化
冷媒量を減少させるため、配管の体積を減少させ
る必要がある。このため細い冷媒管が必要となつ
てくる。さらに圧縮機1より吐出された高圧高温
冷媒を一部バイパスするため、霜を除去した後、
冷媒は冷却され低温冷媒になるが、圧力が減圧さ
れず、圧縮機1の吸入側に高圧冷媒を吸入するた
め圧縮機の破壊につながる。このため圧縮機1よ
り吐出されたバイパス冷媒を減圧するため減圧素
子13が必要となつてくる。
The purpose of using the depressurizing element 13 as the branch here is that the outdoor heat exchanger 5 is mostly composed of aluminum plate fins 17 in the air-cooled type and exchanges heat by blowing air, so the outdoor heat exchanger 5 is used as a heat source. When the heat exchanger 10 and high-temperature, high-pressure refrigerant pipes used for removing frost are branched into two rows on the windward side and the leeward side,
A thin high-temperature refrigerant pipe is required on the windward side that does not increase resistance to air flow. Also, when removing frost, it is branched into the heat exchanger for the heat source and the high-temperature, high-pressure refrigerant pipe, so the high-temperature, high-pressure gas refrigerant flows in from the discharge part of the compressor during frost removal, so the gas refrigerant that was partially bypassed during frost removal is cooled. The refrigerant is liquefied. When the refrigerant is liquefied, other refrigerants that are not bypassed continue the heating operation, but the amount of refrigerant circulated during the refrigeration cycle of this heating operation decreases, and the heating capacity decreases. Therefore, in order to reduce the amount of liquefied refrigerant of the bypassed gas refrigerant discharged from the compressor 1, it is necessary to reduce the volume of the piping. For this reason, thin refrigerant pipes are required. Furthermore, in order to partially bypass the high pressure and high temperature refrigerant discharged from the compressor 1, after removing the frost,
Although the refrigerant is cooled and becomes a low-temperature refrigerant, the pressure is not reduced and high-pressure refrigerant is sucked into the suction side of the compressor 1, leading to damage to the compressor. Therefore, a pressure reducing element 13 is required to reduce the pressure of the bypass refrigerant discharged from the compressor 1.

第1図において、1は圧縮機、3は暖房運転、
冷房運転を切換える四方切換弁、5は熱源用熱交
換器10と減圧素子13とを分岐して構成される
室外側熱交換器、8は室内側熱交換器、12は暖
房運転時及び溶解時に室外側熱交換器5内の減圧
素子に流入を開閉させる電磁弁、7は減圧装置で
あり、2,4,6,9,11、及び14は配管で
ある。
In Fig. 1, 1 is a compressor, 3 is a heating operation,
A four-way switching valve for switching cooling operation, 5 an outdoor heat exchanger configured by branching a heat source heat exchanger 10 and a pressure reducing element 13, 8 an indoor heat exchanger, 12 during heating operation and melting. A solenoid valve 7 is a pressure reducing device that opens and closes an inflow to a pressure reducing element in the outdoor heat exchanger 5, and 2, 4, 6, 9, 11, and 14 are piping.

なお、第3図において18は電動機、15及び
16は送風機である。
In addition, in FIG. 3, 18 is an electric motor, and 15 and 16 are blowers.

まず冷房運転時は第1図中実線矢印で示す如く
圧縮機1より圧縮され吐出した冷媒は配管2、四
方切換弁13、配管4,14とに分岐されるが、
配管14の回路は電磁弁12で遮断され、冷媒は
室外側熱交換器5で分岐される。そして、熱源用
熱交換器10に流入し送風機15にて熱交換さ
れ、冷媒は凝縮する。さらに配管6を経て減圧装
置7で減圧され、室内側熱交換器8に入り冷媒は
蒸発し、送風機16の回転により送風によつて室
内を冷却する。蒸発した冷媒は配管9、四方切換
弁3、配管2を経て圧縮機1に戻る。
First, during cooling operation, the refrigerant compressed and discharged from the compressor 1 is branched into the pipe 2, the four-way switching valve 13, and the pipes 4 and 14, as shown by the solid line arrow in FIG.
The circuit of the pipe 14 is cut off by the solenoid valve 12, and the refrigerant is branched at the outdoor heat exchanger 5. The refrigerant then flows into the heat source heat exchanger 10, where it is heat exchanged by the blower 15, and is condensed. Further, the refrigerant is depressurized by a pressure reducing device 7 through a pipe 6, enters an indoor heat exchanger 8, and evaporates, and the air is blown by the rotation of the blower 16 to cool the room. The evaporated refrigerant returns to the compressor 1 via the pipe 9, the four-way switching valve 3, and the pipe 2.

こうして従来例と同様に冷房サイクルが構成さ
れる。
In this way, a cooling cycle is configured in the same manner as in the conventional example.

次に暖房運転時は第1図の破線矢印で示す如
く、圧縮機1より圧縮されて吐出した冷媒は室外
熱交換器5が着霜しない、外気温度の高い通常暖
房運転時は電磁弁12を遮断させているため、配
管2、四方切換弁3、配管9を経て室内側熱交換
器8、に入り凝縮された送風機16の回転により
室内の暖房を行い、その後冷媒は減圧装置7を経
て室外熱交換器5内の熱源側熱交換器10に流入
し、冷媒は蒸発し、送風機15にて送風し熱交換
させ、従来例と同様に配管4、四方切換弁3、配
管2、圧縮機1へと戻る。
Next, during heating operation, the refrigerant compressed and discharged from the compressor 1 does not form frost on the outdoor heat exchanger 5, as shown by the broken arrow in FIG. Since the refrigerant is shut off, the refrigerant enters the indoor heat exchanger 8 through the pipe 2, four-way switching valve 3, and pipe 9, and heats the room by rotating the blower 16. After that, the refrigerant passes through the pressure reducing device 7 and returns to the outside. The refrigerant flows into the heat source side heat exchanger 10 in the heat exchanger 5, evaporates, and is blown by the blower 15 to exchange heat, and as in the conventional example, the refrigerant is connected to the pipe 4, four-way switching valve 3, pipe 2, and compressor 1. Return to.

こうして暖房サイクルが構成されるが、外気温
度が低下し室外側熱交換器5に着霜した場合い、
暖房サイクルは電磁弁12を開かせ、圧縮機1よ
り吐出したガス冷媒の一部を配管11を経てバイ
パスし室外側熱交換器5内減圧素子13へと流入
し、減圧素子13の配設される位置は送風機15
で送風される風上側であり、減圧素子13部に高温
ガス冷媒が流入するため、風上側に着霜した霜は
除去される。その後、減圧された冷媒は四方切換
弁3を経て圧縮機1に吸入される。又圧縮機1よ
り吐出されたバイパス冷媒以外の冷媒は、四方切
換弁3、室内熱交換器8、減圧装置7、室外側熱
源側熱交換器10、四方切換弁3を経て、圧縮機
1を吸入され従来例と同様に暖房運転を行う。こ
のように、暖房運転を続行しながら室外側熱交換
器5に着霜した霜を除去することが出来る。
The heating cycle is configured in this way, but if the outside air temperature drops and frost forms on the outdoor heat exchanger 5,
In the heating cycle, the solenoid valve 12 is opened, and a part of the gas refrigerant discharged from the compressor 1 bypasses the pipe 11 and flows into the pressure reducing element 13 in the outdoor heat exchanger 5. The position of the blower is 15.
Since the high temperature gas refrigerant flows into the pressure reducing element 13, frost formed on the windward side is removed. Thereafter, the depressurized refrigerant is sucked into the compressor 1 via the four-way switching valve 3. In addition, the refrigerant other than the bypass refrigerant discharged from the compressor 1 passes through the four-way switching valve 3, the indoor heat exchanger 8, the pressure reducing device 7, the outdoor heat source side heat exchanger 10, and the four-way switching valve 3, and then flows through the compressor 1. The air is inhaled and heating operation is performed in the same way as in the conventional example. In this way, the frost formed on the outdoor heat exchanger 5 can be removed while continuing the heating operation.

溶解が終了すれば、電磁弁12を閉じ冷媒の流
れを遮断し通常の暖房運転へもどり、暖房サイク
ル時着霜した霜を除去する冷凍サイクルが形成さ
れる。
When the melting is completed, the electromagnetic valve 12 is closed to cut off the flow of refrigerant and normal heating operation is resumed, forming a refrigeration cycle for removing frost formed during the heating cycle.

発明の効果 本発明の空冷ヒートポンプ式暖房装置は、暖房
運転時室外熱交換器の着霜の除去を暖房運転を停
止せず、使用者に不快感を与えないで霜を除去
し、さらに冷凍サイクル構成を減圧素子部にて除
去することにより、冷凍サイクル中の冷媒循環量
の過少による暖房能力の低下、圧縮機に高圧冷媒
を吸入し圧縮機を破壊する問題等が改善される効
果を奏す。
Effects of the Invention The air-cooled heat pump type heating device of the present invention removes frost from the outdoor heat exchanger during heating operation without stopping the heating operation and without causing discomfort to the user, and furthermore, removes frost from the outdoor heat exchanger during heating operation without causing discomfort to the user. By removing the structure at the pressure reducing element section, problems such as a reduction in heating capacity due to an insufficient amount of refrigerant circulation in the refrigeration cycle, and problems such as damage to the compressor caused by suction of high-pressure refrigerant into the compressor can be achieved.

しかも、減圧素子の配管が熱源用熱交換器の配
管の風上部に配設されていることにより、着霜部
分における効率的な除霜が行えるとともに、室外
側熱交換器の通風抵抗を大きく高めることがな
く、除霜運転時以外における運転効率の低下を防
止することができる。
Furthermore, by placing the pressure reducing element piping on the windward side of the heat source heat exchanger piping, it is possible to efficiently defrost the frosted area and greatly increase the ventilation resistance of the outdoor heat exchanger. Therefore, it is possible to prevent a decrease in operating efficiency at times other than during defrosting operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すヒートポンプ
式暖房装置の冷媒回路図、第2図は同実施例にお
ける室外側熱交換器の要部斜視図、第3図は同室
外側熱交換器を具備した空気調和機の概略構成
図、第4図は従来例を示す冷媒回路図である。 1……圧縮機、3……四方切換弁、5……室外
側熱交換器、7……減圧装置、8……室内側熱交
換器、10……熱源用熱交換器、12……電磁
弁、13……減圧素子、15……室外側送風機、
16……室内側送風機、17……アルミプレート
フイン、18……電動機。
Fig. 1 is a refrigerant circuit diagram of a heat pump type heating device showing an embodiment of the present invention, Fig. 2 is a perspective view of main parts of an outdoor heat exchanger in the same embodiment, and Fig. 3 is a diagram showing the outdoor heat exchanger in the same embodiment. FIG. 4 is a schematic configuration diagram of the equipped air conditioner, and FIG. 4 is a refrigerant circuit diagram showing a conventional example. 1... Compressor, 3... Four-way switching valve, 5... Outdoor heat exchanger, 7... Pressure reducing device, 8... Indoor heat exchanger, 10... Heat source heat exchanger, 12... Electromagnetic Valve, 13...pressure reducing element, 15...outdoor side blower,
16... Indoor blower, 17... Aluminum plate fin, 18... Electric motor.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方切換弁、室内側熱交換器、減圧
装置、室内側熱交換器により空気を熱源とする冷
暖房装置を構成し、前記室外側熱交換器を熱源用
熱交換器とその熱源用熱交換器の配管径より小さ
い径の配管を有する減圧用素子部に分岐して、前
記減圧素子部の配管を前記熱源用熱交換器の配管
の風上部に配設し、暖房サイクル通常運転時に冷
媒を前記熱源用熱交換器に流入させ、かつ前記減
圧素子部への流入を遮断し、さらに除霜時には前
記圧縮機より吐出される高温冷媒の一部を前記減
圧素子部へ流入させる回路を構成したヒートポン
プ式暖房装置。
1 A compressor, a four-way switching valve, an indoor heat exchanger, a pressure reduction device, and an indoor heat exchanger constitute an air-conditioning system that uses air as a heat source, and the outdoor heat exchanger is used as a heat exchanger for heat source and for its heat source. It is branched into a pressure reducing element section having a pipe having a diameter smaller than that of the heat exchanger, and the pipe of the pressure reducing element section is disposed on the windward side of the heat source heat exchanger pipe, and when the heating cycle is in normal operation. A circuit that allows refrigerant to flow into the heat source heat exchanger, blocks the flow into the pressure reducing element section, and further allows a part of the high temperature refrigerant discharged from the compressor to flow into the pressure reducing element section during defrosting. The constructed heat pump type heating device.
JP5672485A 1985-03-20 1985-03-20 Heat pump type heating apparatus Granted JPS61213558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5672485A JPS61213558A (en) 1985-03-20 1985-03-20 Heat pump type heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5672485A JPS61213558A (en) 1985-03-20 1985-03-20 Heat pump type heating apparatus

Publications (2)

Publication Number Publication Date
JPS61213558A JPS61213558A (en) 1986-09-22
JPH0471148B2 true JPH0471148B2 (en) 1992-11-12

Family

ID=13035439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5672485A Granted JPS61213558A (en) 1985-03-20 1985-03-20 Heat pump type heating apparatus

Country Status (1)

Country Link
JP (1) JPS61213558A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026971U (en) * 1988-06-24 1990-01-17

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726153U (en) * 1980-07-18 1982-02-10

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859250U (en) * 1971-11-05 1973-07-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726153U (en) * 1980-07-18 1982-02-10

Also Published As

Publication number Publication date
JPS61213558A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
JP4771721B2 (en) Air conditioner
JP4892305B2 (en) Outside air conditioning air conditioner
WO2008069559A1 (en) Air conditioning system with heat recovery function
JP2010243004A (en) Dehumidification system
JP2919829B2 (en) Cooling / heating combined air conditioner and control method therefor
CN104848497A (en) Air conditioner
JPH08105652A (en) Air conditioner
JP2008121997A (en) Air conditioner
JPH074794A (en) Air-conditioning equipment
JP4396141B2 (en) Air conditioner
JP3724011B2 (en) Air conditioner
JP2010071497A (en) Air conditioner
JPH0471148B2 (en)
JPH074686A (en) Air conditioner
JP2000146319A (en) Heat pump type air conditioner
JPH10329532A (en) Vehicular air conditioner
CN110207417A (en) Air-conditioning system
KR102291575B1 (en) Air-Conditioning System and Control Method thereof
JPH10253188A (en) Air conditioner
JPS61101762A (en) Air-cooled heat pump type heating apparatus
JP2000310433A (en) Ice storage air conditioning system
JPH11248290A (en) Air conditioner
JPH07117323B2 (en) Air conditioner
JPH03286978A (en) Cooling and heating apparatus
JPS5885047A (en) Ventilation control device for cold insulating type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees