JPS61213558A - Heat pump type heating apparatus - Google Patents

Heat pump type heating apparatus

Info

Publication number
JPS61213558A
JPS61213558A JP5672485A JP5672485A JPS61213558A JP S61213558 A JPS61213558 A JP S61213558A JP 5672485 A JP5672485 A JP 5672485A JP 5672485 A JP5672485 A JP 5672485A JP S61213558 A JPS61213558 A JP S61213558A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pressure reducing
compressor
frost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5672485A
Other languages
Japanese (ja)
Other versions
JPH0471148B2 (en
Inventor
下河 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5672485A priority Critical patent/JPS61213558A/en
Publication of JPS61213558A publication Critical patent/JPS61213558A/en
Publication of JPH0471148B2 publication Critical patent/JPH0471148B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房運転を中止することなく室外側熱交換器の
霜を効率よく除去する空冷ヒートポンプ式暖房装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-cooled heat pump type heating device that efficiently removes frost from an outdoor heat exchanger without interrupting heating operation.

従来の技術 従来のこの種のものの冷凍サイクルは第4図のように構
成されていた。
2. Prior Art A conventional refrigeration cycle of this type was constructed as shown in FIG.

即ち、冷房運転時で図中実線矢印で示すように圧縮機1
より高圧ガスが高圧ガス管f%2、四方切換弁3、配管
4を経て室外側熱交換器5に入り凝縮され、その後記管
6を経て減圧装置7で減圧され室内側熱交換器8に入り
蒸発して風を媒体にして室内を冷却し、その後記管9、
四方切換弁a1配管2を経て圧縮機1に戻る。
In other words, during cooling operation, the compressor 1
The higher pressure gas passes through the high pressure gas pipe f%2, the four-way switching valve 3, and the pipe 4, enters the outdoor heat exchanger 5, is condensed, and then passes through the pipe 6, is depressurized by the pressure reducing device 7, and enters the indoor heat exchanger 8. It enters the room and evaporates, cooling the room using the wind as a medium, and then recording pipe 9.
It returns to the compressor 1 via the four-way switching valve a1 and the pipe 2.

又、暖房運転時には図中破線矢印で示すように圧縮機1
、高圧ガス管2、四方切換弁a1配管9を経て室内側熱
交換器8に入り、凝縮して室内を暖房し、その後減圧装
置7、を経て室外側熱交換器5に入って蒸発し配管4、
四方切換弁G1配管2、圧縮機1に戻る。
Also, during heating operation, the compressor 1 is
, enters the indoor heat exchanger 8 through the high-pressure gas pipe 2, four-way switching valve A1 pipe 9, condenses and heats the room, then passes through the pressure reducing device 7, enters the outdoor heat exchanger 5, evaporates, and enters the pipe. 4,
Return to four-way switching valve G1 piping 2 and compressor 1.

発明が解決しようとする問題点 ところが、暖房運転時には室外側熱交換器5にて冷媒は
送風機の回転により送風が行なわれ熱交換する。この時
外気の熱を吸熱して蒸発するが外気の温度が低下し、約
6’C以下になると室外側熱交換器5に着霜現象か生じ
外気の熱の吸熱が阻害され暖房能力が低下し使用できな
い。このため従来は四方切換弁3を切換、冷房運転時の
冷凍サイクルで冷凍を循環させ、室外側熱交換器5に高
圧ガスを流入させ着霜した箱を除霜していた。この溶解
までの時間は6分〜12分位いの時間を必要とし、前記
時間は室内側熱交換器8において冷媒の蒸発が行なわれ
るため室内の暖房ができず、室内温度の急激な低下が発
生する。このため室内の風は停止させていたが、しかし
多少の緩和(室温の5℃〜6°Cの低下)はあるが、使
用者はコールドドラフト(冷風による不快感)を感じ暖
房機を不快なものとする原因を作っていた。
Problems to be Solved by the Invention However, during heating operation, the refrigerant is blown and heat exchanged in the outdoor heat exchanger 5 by the rotation of the blower. At this time, heat from the outside air is absorbed and evaporated, but when the temperature of the outside air decreases and becomes less than about 6'C, frost formation occurs on the outdoor heat exchanger 5, which inhibits the absorption of heat from the outside air and reduces the heating capacity. and cannot be used. For this reason, conventionally, the four-way switching valve 3 was switched, the refrigeration was circulated in the refrigeration cycle during cooling operation, and high-pressure gas was introduced into the outdoor heat exchanger 5 to defrost the frosted box. The time required for this melting is about 6 to 12 minutes, and during this time the refrigerant is evaporated in the indoor heat exchanger 8, making it impossible to heat the room and causing a sudden drop in the indoor temperature. Occur. For this reason, the indoor air flow was stopped, but although there was some relief (room temperature decreased by 5°C to 6°C), users felt cold drafts (uncomfortable feeling caused by cold air) and turned off the heaters. I had created a cause for it to become a thing.

そこで本発明は着霜時、暖房運転を停止させず着霜した
霜を除去し、使用者が不快に感じさせないことを目的と
するものである。
Therefore, an object of the present invention is to remove the frost that has formed without stopping the heating operation when frost forms, so that the user does not feel uncomfortable.

問題点を解決するための手段 上記問題点を解決するために本発明は、冷凍サイクルの
室外側熱交換器を、熱源用熱交換器と減圧素子部に分割
し、減圧素子Sを風上側に配設し暖房サイクル通常運転
時に冷媒を熱源用熱交換器に流入させ、かつ減圧素子部
への流入を遮断し、さらに除霜時には圧縮機より吐出さ
れる高温冷媒の一部を減圧素子部へ、その他吐出される
冷媒を暖房サイクルの同一回路にて熱源用熱交換器へ並
行に冷媒を流入させるように構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention divides the outdoor heat exchanger of the refrigeration cycle into a heat source heat exchanger and a pressure reducing element part, and places the pressure reducing element S on the windward side. During normal operation of the heating cycle, the refrigerant flows into the heat exchanger for the heat source and blocks the flow into the pressure reducing element, and during defrosting, a portion of the high temperature refrigerant discharged from the compressor is directed to the pressure reducing element. , and other discharged refrigerants are configured to flow into the heat source heat exchanger in parallel in the same circuit of the heating cycle.

作  用 上記構成により暖房運転を停止することなく除霜を行な
うことができる。
Function: With the above configuration, defrosting can be performed without stopping the heating operation.

実施例 以下、本発明の一実施例について添付図面の第1図〜第
3図を参考に説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.

暖房運転時室外側熱交換器(特にアルミプレートフィン
で構成された熱交換器)への着霜状態を観察すると、着
霜状態までの過程は、まずアルミプレートフィンで構成
された熱交換の風上側から着霜が始まり、風下側へと成
長する。着霜の成長と同時に暖房能力は低下し霜を除去
する必要が発生した。この時熱交換器の風上側から風下
側までの着霜量を計測すると、はとんどの着霜は風上側
に集まり、用下側の着霜量は非常に少なかった。
When observing the frost formation on the outdoor heat exchanger (particularly the heat exchanger made of aluminum plate fins) during heating operation, the process of frost formation is first caused by the heat exchange wind made of the aluminum plate fins. Frost begins on the upper side and grows towards the leeward side. As the frost grew, the heating capacity decreased and it became necessary to remove the frost. At this time, when we measured the amount of frost from the windward side to the leeward side of the heat exchanger, most of the frost was concentrated on the windward side, and the amount of frost on the lower side was very small.

この現象から第2図に示すように、室外熱交換器5を送
風機により送風される風下側に熱源用熱交換器10と風
上側に着霜したNを除去するための必要な熱量を有し且
つ冷凍サイクル中のもつとも高い圧縮機より吐出される
高温高圧冷媒を流入させ、その冷媒は霜の除去時に冷却
され液化するため、過少冷媒とならないように、さらに
圧縮機の吸入側に高圧冷媒を吸入させないようにするた
め、風土側に配設する熱交換器に流入する配管を減圧素
子13として、第2図のように一体に構成する。
From this phenomenon, as shown in Fig. 2, the outdoor heat exchanger 5 is placed on the leeward side where the air is blown by the blower, and the heat source heat exchanger 10 is placed on the windward side, which has the necessary amount of heat to remove the frosted N. In addition, the high-temperature, high-pressure refrigerant discharged from the extremely high compressor in the refrigeration cycle is allowed to flow in, and since the refrigerant is cooled and liquefied during the removal of frost, high-pressure refrigerant is added to the suction side of the compressor to prevent insufficient refrigerant. In order to prevent inhalation, the piping that flows into the heat exchanger disposed on the climate side is integrally constructed as a pressure reducing element 13 as shown in FIG.

ここで5は室外側熱交換器、17はアルミプレートフィ
ンである。熱源用熱交換器10と減圧素子13は必要に
応じてフィンを分割してもよい。
Here, 5 is an outdoor heat exchanger, and 17 is an aluminum plate fin. The fins of the heat source heat exchanger 10 and the pressure reducing element 13 may be divided as necessary.

着霜が発生していない暖房運転時には、風上側の減圧素
子部13には冷媒は流入させず、従来例の暖房運転と同
様に室外側熱交換器5の風下側の熱源用熱交換器10で
空気と熱交換し蒸発する。
During the heating operation when no frost has formed, the refrigerant is not allowed to flow into the windward pressure reducing element section 13, and the heat exchanger 10 for the heat source on the leeward side of the outdoor heat exchanger 5 is operated as in the conventional heating operation. It exchanges heat with air and evaporates.

外気温度が低下し室外側熱交換器の熱源用熱交換器10
の風上側、すなわち減圧素子部13が設置されている部
分に着霜すると減圧素子13と熱源用熱交換器10に冷
媒を並行して流入させ、風上側の減圧素子13に流れる
高温高圧冷媒により風上側の着霜を溶解する。同時に熱
源用熱交換器10にも冷媒は流れ蒸発し暖房運転は続行
され暖房構能は停止されず、着霜を溶解させる。
Heat exchanger 10 for the heat source of the outdoor heat exchanger when the outside air temperature decreases
When frost forms on the windward side of the windward side, that is, the part where the pressure reducing element 13 is installed, the refrigerant flows into the pressure reducing element 13 and the heat source heat exchanger 10 in parallel, and the high temperature and high pressure refrigerant flowing into the windward side pressure reducing element 13 Melt frost on the windward side. At the same time, the refrigerant also flows to the heat source heat exchanger 10 and evaporates, heating operation continues, the heating system is not stopped, and frost is dissolved.

ここで分岐するものを減圧素子13にする目的は、室外
側熱交換器5け空冷式のものにおいてほとんどアルミプ
レートフィン17で構成し送風により熱交換するため、
室外側熱交換器5を熱源用熱交換器10と霜の除去用に
もちいる高温高圧冷媒管とを風上側、風下側に2列に分
岐する場合、風上側に送風量の抵抗が増大しない細い高
温冷媒管を必要とする。文箱の除去時熱源用熱交換器七
高温高圧冷媒管とに分岐されるため除去時圧縮機の吐出
部より高温高圧ガス冷媒が流入するため霜の除去時一部
バイパスされたガス冷媒は冷却され冷媒は液化される。
The purpose of using the decompression element 13 as the branch here is that in the outdoor heat exchanger of the 5-piece air-cooled type, it is mostly composed of aluminum plate fins 17 and heat exchange is performed by blowing air.
When the outdoor heat exchanger 5, the heat source heat exchanger 10, and the high-temperature, high-pressure refrigerant pipes used for removing frost are branched into two rows, one on the windward side and the other on the leeward side, the resistance of the air flow to the windward side does not increase. Requires thin high-temperature refrigerant pipes. When the text box is removed, the heat exchanger for the heat source is branched into the seven high-temperature, high-pressure refrigerant pipes, so the high-temperature, high-pressure gas refrigerant flows from the discharge part of the compressor during removal, so the partially bypassed gas refrigerant is cooled when removing the frost. The refrigerant is liquefied.

冷媒が液化されるとバイパスされガい他の冷媒は暖房運
転を続行しているが、この暖房運転の冷凍ブイタル中の
冷媒循環量が減少し、暖房能力が低下する。このため圧
縮機1より吐出されるバイパスされたガス冷媒の液化冷
媒量を減少させるため、配管の体積を減少させる必要が
ある。このため細い冷媒管が必要となってくる。さらに
圧縮機1より吐出された高圧高温冷媒縮機1の吸入側に
高圧冷媒を吸入するため圧縮機の破壊につながる。この
ため圧縮“機1より吐出されたバイパス冷媒を減圧する
ため減圧素子13が必要となってくる。
When the refrigerant is liquefied, it is bypassed and other refrigerants continue the heating operation, but the amount of refrigerant circulating in the refrigerant during this heating operation decreases, and the heating capacity decreases. Therefore, in order to reduce the amount of liquefied refrigerant of the bypassed gas refrigerant discharged from the compressor 1, it is necessary to reduce the volume of the piping. For this reason, thin refrigerant pipes are required. Furthermore, the high-pressure refrigerant is sucked into the suction side of the high-pressure, high-temperature refrigerant condenser 1 discharged from the compressor 1, leading to damage to the compressor. Therefore, a pressure reducing element 13 is required to reduce the pressure of the bypass refrigerant discharged from the compressor 1.

第1図において、1は圧縮機、3は暖房運転、冷房運転
を切換える四方切換弁、5は熱源用熱交換器10と減圧
素子13とを分岐して構成される室外側熱交換器、8け
室内側熱交換器、12は暖房運転時及び溶解時に室外側
熱交換器5内の減圧素子に流入を開閉させる電磁弁、7
は減圧装置であり、2.4.6.9.11、及び14は
配管である。
In FIG. 1, 1 is a compressor, 3 is a four-way switching valve that switches between heating operation and cooling operation, 5 is an outdoor heat exchanger configured by branching a heat source heat exchanger 10 and a pressure reducing element 13, and 8 12 is a solenoid valve that opens and closes an inflow to a pressure reducing element in the outdoor heat exchanger 5 during heating operation and melting; 7;
is a pressure reducing device, and 2.4.6.9.11 and 14 are piping.

なお、第3図において18は電動機、15及び16は送
風後である。
In addition, in FIG. 3, 18 is an electric motor, and 15 and 16 are after blowing air.

まず冷房運転時は第1図中実線矢印で示す如く圧縮機1
より圧縮され吐出した冷媒は配管2、凹室外側熱交換器
5で分岐される。そして、熱源用熱交換器10に流入し
送風機15にて熱交換され、冷媒は凝縮する。さらに配
管6を経て減圧装置7で減圧され、室内側熱交換器8に
入り冷媒は蒸発し、送風機16の回転により送風によっ
て室内を冷却する。蒸発した冷媒は配管9、四方切換弁
3、配管2を経て圧縮機1に戻る。
First, during cooling operation, the compressor 1 is
The more compressed and discharged refrigerant is branched through the pipe 2 and the concave chamber outside heat exchanger 5. The refrigerant then flows into the heat source heat exchanger 10, where it is heat exchanged by the blower 15, and is condensed. Further, the refrigerant is depressurized by the pressure reducing device 7 through the piping 6, enters the indoor heat exchanger 8, and evaporates, and the air is blown by the rotation of the blower 16 to cool the room. The evaporated refrigerant returns to the compressor 1 via the pipe 9, the four-way switching valve 3, and the pipe 2.

こうして従来例と同様に冷房サイクルが構成される。In this way, a cooling cycle is configured in the same manner as in the conventional example.

次に暖房運転時は第1図の破線矢印で示す如く、圧縮機
1より圧縮されて吐出した冷媒は室外熱交換器5が着霜
しない、外気温度の高い通常暖房運転時は電磁弁12を
遮断させているため、配管2、四方切換弁3、配管9を
経て室内側熱交換器8、に入り凝縮された送風機16の
回転により室内の暖房を行い、その後冷媒は減圧装置7
.′を経て室外熱交換器5内の熱源側熱交換器10に流
入し、冷媒は蒸発し、送風機15にて送風し熱交換させ
、従来例と同様に配管4、四方切換弁3、配管2、圧縮
機1へと戻る。
Next, during heating operation, the refrigerant compressed and discharged from the compressor 1 does not form frost on the outdoor heat exchanger 5, as shown by the broken arrow in FIG. Since it is shut off, the refrigerant enters the indoor heat exchanger 8 through the pipe 2, the four-way switching valve 3, and the pipe 9, and the room is heated by the rotation of the blower 16 where the condensed refrigerant enters the indoor heat exchanger 8.
.. ', the refrigerant flows into the heat source side heat exchanger 10 in the outdoor heat exchanger 5, evaporates, and is blown by the blower 15 to exchange heat, and the pipe 4, the four-way switching valve 3, and the pipe 2 are connected as in the conventional example. , return to compressor 1.

こうして暖房サイクルが構成されるが、外気温度が低下
し室外側熱交換器5に着霜した場合い、暖房サイクルは
電磁弁12を開かせ、圧縮機1より吐出したガス冷媒の
一部を配管11を経てバイパスし室外側熱交換器5内減
圧素子13へと流入し、減圧素子13の配設される位置
は送風機15で送風される風上側にあり、減圧素子13
部に高温ガス冷媒が流入するため、風上側に着霜した霜
は除去される。その後、減圧された冷媒は四方切換弁3
を経て圧縮機1に吸入される。又圧縮機1より吐出され
たバイパス冷媒以外の冷媒は、四方切換弁3、室内熱交
換器8、減圧装置7、室外側熱源側熱交換器10、四方
切換弁3を経て、圧縮機1を吸入され従来例と同様に暖
房運転を行う。
In this way, a heating cycle is configured, but when the outside air temperature drops and frost forms on the outdoor heat exchanger 5, the heating cycle opens the solenoid valve 12 and pipes a part of the gas refrigerant discharged from the compressor 1. 11 and flows into the pressure reducing element 13 in the outdoor heat exchanger 5.
Since high-temperature gas refrigerant flows into the windward side, frost that has formed on the windward side is removed. After that, the depressurized refrigerant is transferred to the four-way switching valve 3
The air is sucked into the compressor 1 through the In addition, the refrigerant other than the bypass refrigerant discharged from the compressor 1 passes through the four-way switching valve 3, the indoor heat exchanger 8, the pressure reducing device 7, the outdoor heat source side heat exchanger 10, and the four-way switching valve 3, and then flows through the compressor 1. The air is inhaled and heating operation is performed in the same way as in the conventional example.

このように、暖房運転を続行しながら室外側熱交換器5
に着霜した霜を除去することが出来る。
In this way, while continuing the heating operation, the outdoor heat exchanger 5
It is possible to remove frost that has formed on the surface.

溶解が終了すれば、電磁弁12を閉じ冷媒の流れを遮断
し通常の暖房運転へもどり、暖房サイクル時着霜した霜
を除去する冷凍サイクルが形成される。
When the melting is completed, the electromagnetic valve 12 is closed to cut off the flow of refrigerant and normal heating operation is resumed, forming a refrigeration cycle for removing frost formed during the heating cycle.

発明の効果 本発明の空冷と一トポンプ式暖房装置は、暖房運転時室
外熱交換器の着霜の除去を暖房運転を停止せず、使用者
に不快感を与えないで霜を除去し、さらに冷凍サイクル
構成を減圧素子部にて除去することにより、冷凍サイク
ル中の冷媒循環量゛の過
Effects of the Invention The air-cooling and one-pump type heating device of the present invention can remove frost on an outdoor heat exchanger during heating operation without stopping heating operation and without causing discomfort to the user. By removing the refrigeration cycle structure at the decompression element, excessive refrigerant circulation during the refrigeration cycle can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すヒートポンプ式暖房装
置の冷媒回路図、第2図は同実施例における室外側熱交
換器の要部斜視図、第3図は同室外側熱交換器を具備し
た空気調和機の概略構成  図、第4図は従来例を示す
冷媒回路図である。 1・・・・・・aE圧縮機3 ・・四方切換弁、5・・
・・・室外側熱交換器、7・・・・・・減圧装置、8・
・・・・・室内側熱交換器、10・・・・・・熱源用熱
交換器、12・・・・・・電磁弁、13・・・・・・減
圧素子、15・・・・・・室外側送風機、16・・・・
・・室内側送風機、17・・・・・・アルミプレートフ
ィン、18・・・・・・電動機。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!・
・圧縮機 7・・戚X表量 δ・1.宣古#1配蒙器 〆O・桔朝戴呻答 !?・・・覚瑳奔 第2図 第3図 □ 第4図 、7 15・・・宝タト値りjンEy自−機・/6− 望丙償
)送風機 lθ・・・電動機
Fig. 1 is a refrigerant circuit diagram of a heat pump type heating device showing an embodiment of the present invention, Fig. 2 is a perspective view of main parts of an outdoor heat exchanger in the same embodiment, and Fig. 3 is a diagram showing the outdoor heat exchanger in the same embodiment. Schematic structure of the equipped air conditioner Figure 4 is a refrigerant circuit diagram showing a conventional example. 1... aE compressor 3... Four-way switching valve, 5...
... Outdoor heat exchanger, 7... Pressure reduction device, 8.
... Indoor heat exchanger, 10 ... Heat source heat exchanger, 12 ... Solenoid valve, 13 ... Pressure reducing element, 15 ...・Outdoor blower, 16...
...Indoor blower, 17...Aluminum plate fin, 18...Electric motor. Name of agent: Patent attorney Toshio Nakao and 1 other person!・
・Compressor 7... Relative X surface amount δ・1. Xuanko #1 distribution device 〆O・Kanchodai groans and answers! ?・・・Kakuseiben Figure 2 Figure 3 □ Figure 4, 7 15...Takara Tato value j Ey machine//6- Bohei compensation) Blower lθ... Electric motor

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方切換弁、室内側熱交換器、減圧装置、室外
側熱交換器により空気を熱源とする冷暖房装置を構成し
、前記室外側熱交換器を熱源用熱交換器と減圧素子部に
分岐して、減圧素子部を風上側に配設し、暖房サイクル
通常運転時に冷媒を熱源用熱交換器に流入させ、かつ減
圧素子部への流入を遮断し、さらに除霜時には圧縮機よ
り吐出される高温冷媒の一部を減圧素子部へ流入させる
回路を構成したヒートポンプ式暖房装置。
A compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger constitute an air conditioning system that uses air as a heat source, and the outdoor heat exchanger is used as a heat source heat exchanger and a pressure reducing element part. The refrigerant is branched and the pressure reducing element is placed on the windward side, allowing the refrigerant to flow into the heat source heat exchanger during normal operation of the heating cycle, and blocking the refrigerant from flowing into the pressure reducing element, and then being discharged from the compressor during defrosting. A heat pump type heating device that has a circuit that allows a portion of the high-temperature refrigerant to flow into the pressure reducing element.
JP5672485A 1985-03-20 1985-03-20 Heat pump type heating apparatus Granted JPS61213558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5672485A JPS61213558A (en) 1985-03-20 1985-03-20 Heat pump type heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5672485A JPS61213558A (en) 1985-03-20 1985-03-20 Heat pump type heating apparatus

Publications (2)

Publication Number Publication Date
JPS61213558A true JPS61213558A (en) 1986-09-22
JPH0471148B2 JPH0471148B2 (en) 1992-11-12

Family

ID=13035439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5672485A Granted JPS61213558A (en) 1985-03-20 1985-03-20 Heat pump type heating apparatus

Country Status (1)

Country Link
JP (1) JPS61213558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026971U (en) * 1988-06-24 1990-01-17

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859250U (en) * 1971-11-05 1973-07-27
JPS5726153U (en) * 1980-07-18 1982-02-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859250U (en) * 1971-11-05 1973-07-27
JPS5726153U (en) * 1980-07-18 1982-02-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026971U (en) * 1988-06-24 1990-01-17

Also Published As

Publication number Publication date
JPH0471148B2 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
WO2008069559A1 (en) Air conditioning system with heat recovery function
CN110173776B (en) Pre-cooling type runner humidifying fresh air treatment device
JPH08105652A (en) Air conditioner
KR100528292B1 (en) Heat-pump type air conditioner
JP4396141B2 (en) Air conditioner
JPS61213558A (en) Heat pump type heating apparatus
JP3724011B2 (en) Air conditioner
JP2014145546A (en) Air conditioner
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JP3677887B2 (en) Air conditioner
JPS61101762A (en) Air-cooled heat pump type heating apparatus
KR102291575B1 (en) Air-Conditioning System and Control Method thereof
JPH10253188A (en) Air conditioner
JPS61223457A (en) Air-cooled heat pump type heating apparatus
JPH11248290A (en) Air conditioner
JP2000310433A (en) Ice storage air conditioning system
JPH11241836A (en) Air conditioner
JPS5885047A (en) Ventilation control device for cold insulating type air conditioner
JPS59219669A (en) Heat pump air conditioner
KR100241440B1 (en) System Load Reduction Device of Air Conditioning Equipment
JPH07239157A (en) Operation controlling method for air-conditioner
JPH08136067A (en) Air conditioner
KR20030023077A (en) cooling or heating cycle of air-conditioner
JPH08320172A (en) Air conditioner
JPS6296129A (en) Air conditioner for diesel locomotive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees