JPH0469937A - Semiconductor substrate and manufacture thereof - Google Patents

Semiconductor substrate and manufacture thereof

Info

Publication number
JPH0469937A
JPH0469937A JP18364290A JP18364290A JPH0469937A JP H0469937 A JPH0469937 A JP H0469937A JP 18364290 A JP18364290 A JP 18364290A JP 18364290 A JP18364290 A JP 18364290A JP H0469937 A JPH0469937 A JP H0469937A
Authority
JP
Japan
Prior art keywords
substrates
oxygen
substrate
semiconductor substrate
stacking faults
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18364290A
Other languages
Japanese (ja)
Inventor
Koji Sueoka
浩治 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18364290A priority Critical patent/JPH0469937A/en
Publication of JPH0469937A publication Critical patent/JPH0469937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To manufacture a high-quality LSI having a high gettering power by a method wherein stacking faults are contained in a specified density in a specified range from the surfaces of oxygen-containing semiconductor substrates. CONSTITUTION:Si substrates 13 are heated in a quartz tube at about 1000 deg.C in a nitrogen atmosphere and after oxygen in the vicinities of the surfaces of the substrates 13 is diffused outwardly and the oxygen concentration in the vicinities of the surfaces is reduced, the substrates are heat-treated in a temperature range of 800 to 850 deg.C in a nitrogen atmosphere and cristobalite SiO2 is separated in the interiors of the substrates 13. Moreover, the interior of the quartz tube 11 is made into an oxygen atmosphere and when the substrates 13 are heat-treated at a temperature of 1000 deg.C, stacking faults are generated from the cristobalite SiO2 in a density of 10<7> to 10<9>/cm<3> in a range of about 50 to 100mum from the surfaces of the substrates 13. Finally, by taking out the substrates 13 subsequent to the heat treatment from the tube 11 of a heattreatment furnace 10 at a speed of 5cm/min, the substrates 13 having a high gettering power can be obtained.

Description

【発明の詳細な説明】 L!上座且亘ユI 本発明は半導体基板及びその製造方法に関し、より詳し
くはLSI等の基板として用いられる単結晶Siの半導
体基板及びその製造方法に関する。
[Detailed Description of the Invention] L! FIELD OF THE INVENTION The present invention relates to a semiconductor substrate and a method for manufacturing the same, and more particularly to a single crystal Si semiconductor substrate used as a substrate for LSI and the like and a method for manufacturing the same.

碩未Ω肢迷 Si結晶中の酸素の固滴度は、LSI製造時における代
表的な熱処理温度である1 000°Cのとき、約3 
X 10 I?atoms/cm” ”Cある。、=t
−u:対し、現在LSIの半導体基板として用いられる
単結晶Si基板内には、CZ (Czochralsk
il法に起因して約10 ”atoms/cm”の酸素
不純物が含有されている。従って、この単結晶31基板
内に含まれる酸素は常に過飽和状態となっているため、
LSI製造のための熱処理ではSi基板内で酸素が析出
し、5IOXという構造に変化する。酸素が析出してS
iOxに変化すると、体積膨張によりパンチアウト転位
や積層欠陥等の微小欠陥が発生する。特にこれらの微小
欠陥がSi基板表面から数μmのLSI素子の活性領域
に存在すると、酸化膜耐圧、リーク電流等に悪影響を及
ぼし、LSIにとって有害となる。
The solid droplet density of oxygen in the Si crystal is approximately 3 at 1000°C, which is a typical heat treatment temperature during LSI manufacturing.
X 10 I? atoms/cm” “C”. ,=t
-u: On the other hand, CZ (Czochralsk
Due to the il method, approximately 10 ``atoms/cm'' of oxygen impurities are contained. Therefore, since the oxygen contained within this single crystal 31 substrate is always in a supersaturated state,
During heat treatment for LSI manufacturing, oxygen precipitates within the Si substrate, changing the structure to 5IOX. Oxygen precipitates and S
When it changes to iOx, micro defects such as punch-out dislocations and stacking faults occur due to volume expansion. In particular, if these minute defects exist in the active region of an LSI device several micrometers from the surface of the Si substrate, they will adversely affect the oxide film breakdown voltage, leakage current, etc., and be harmful to the LSI.

しかしながらSi基板において、これらの微小欠陥が表
面から十分離れた内部にのみ発生すれば、重金属等の汚
染物質を吸着して素子の活性領域から除去する、いわゆ
るゲッタリング作用が働き、高品位のLSIを製造する
上で有用となる。
However, if these micro-defects occur only in the interior of the Si substrate, which is far enough away from the surface, a so-called gettering effect takes place, which adsorbs contaminants such as heavy metals and removes them from the active region of the device, resulting in a high-quality LSI. It is useful in manufacturing.

そこで一般に、Si基桧の表面に無欠陥層(Denud
ed Zone: 02層)、SL基板内部1.−欠陥
層(IntrinsicGcvtt、erinrX:I
G層)を作る処理か行なわれている。具体的(、コは例
えば、81基様を窒素雰囲気中で4時間稈熱処理シ1.
、S1基板表由1付近Q)酸素を外力拡散させる1“、
と1.゛よ)で表面イー・1近の酸−本濃度を低トさ1
11、次いで窒素1囲’A”4“−4時間程度の熱処理
をI”Yなって、基板内部に酸素析出物苓生成さセる。
Therefore, in general, a defect-free layer (Denud
ed Zone: 02 layer), SL board interior 1. - Defect layer (IntrinsicGcvtt, erinrX:I
G layer) is being created. Specifically, for example, 81 plants were subjected to culm heat treatment for 4 hours in a nitrogen atmosphere.
, near S1 substrate surface 1 Q) External force diffusion of oxygen 1",
and 1. (2) to lower the concentration of acid near the surface 1.
11. Next, heat treatment is performed for about 4 hours under nitrogen to form oxygen precipitates inside the substrate.

そして′、このS1μ板を酸素雰1jl11.l気中で
1.6時間程度熱処理−けることにより、酸素析出物か
ら転位ループ等の欠陥を発生させるという処理が行なわ
れでいる。
Then, this S1μ plate was placed in an oxygen atmosphere. A process in which defects such as dislocation loops are generated from oxygen precipitates by heat treatment in l air for about 1.6 hours has not been carried out.

発見」す菌迭旦−よう考4(11 しかしながら、Si基板のゲッタリング能力は、31基
板内部:4.゛刑成さ才また酸素析出物の形態に大きく
依存し、でいる。七t[は、酸素析出物の形態に、↓、
り微小欠陥を発生させるものとイうてないものとが存在
し、またバンチアラ]・転位を発′l−Lや4゛いもの
と積層欠陥を発生しやすいものとが存在することに依っ
ている。
However, the gettering ability of a Si substrate is highly dependent on the form of oxygen precipitates inside the substrate. is the form of oxygen precipitates, ↓,
There are those that generate micro defects and those that do not, and there are those that easily generate stacking faults and those that generate clusters, dislocations, and dislocations. There is.

こ11らのうち、積層欠陥(」仝分なSl fMQ子の
1浴から成り、重金属原子を引き化′せるの(、゛靜イ
郊11J1東のある歪み場を形成4るため、高いゲッタ
リング能力4有4るS1都板を得る1−で有効(“’ 
E−>る2、従=)で重金属の)′I5賛1゛函・↑え
、高品乍−の1−5ε:Tを′!A:造−4るのにR適
な81基板とり”るl′−めには、内部::積It1欠
111r潜イを在さセることか1要・−・課題J−ん゛
る。
Among these 11, stacking faults ("consisting of one bath of insufficient Sl fMQ elements") are used to detract heavy metal atoms ("), forming a certain strain field, resulting in a high getter. Effective with 1- to obtain S1 Miyako board with 4 ring abilities (“'
E->ru 2, follow =) of heavy metals)'I5 praise 1゛box・↑E, high quality 1-5ε:T'! A: In order to take an R-suitable 81 board for construction, it is necessary to have an internal :: product It1 missing 111r hidden board. .

本発明は上記しまた課題に鑑みな4されたもの一、結り
、J1常)、二°高いブックリンク゛能ノリをイー11
12、高品質0月、51を製造することかびきる゛r2
J1体基根乃こ、ドその製造ツノ法を提供りることを[
−1的ど[,2ている。
The present invention has been developed in view of the above-mentioned problems.
12. Producing high quality 0.51 ゛r2
We would like to provide a method for producing J1 bodies.
-1 target [,2.

課題を解決゛づる為の手段 」g[Y Lだ目的を達成するために本発明に係る半導
体基板は、酸素を包む半導体基板(こおいC,該半導体
基板の表向からほぼ50 ツノ、 m〜・l OOH,
、r、 mの範囲に積層欠陥を107個/cm’−川0
″個/CIF’密用で含有しでいることを特徴とJる。
In order to achieve the object, the semiconductor substrate according to the present invention is a semiconductor substrate (approximately 50 mm from the surface of the semiconductor substrate) that surrounds oxygen. ~・l OOH,
, r, 107 stacking faults/cm' - river 0
It is characterized by secretly containing CIF/CIF.

また半導体基板の製造方法(7おいで、酸素をさむ半導
イネ基板を還元ガス雰囲気中、約1000 ℃で加熱し
て一基板表面の酸素を外方拡散さセ、この後800°0
へ・850°にの温度雰囲で熱処理・Jることを特徴と
している。
In addition, a semiconductor substrate manufacturing method (Step 7) heats a semiconductor rice substrate sandwiching oxygen at about 1000°C in a reducing gas atmosphere to diffuse oxygen on the surface of one substrate outward;
It is characterized by heat treatment in an atmosphere at a temperature of 850°.

1里 上記した半導体基板によれば、半導体基板の表面からほ
ぼ50 ILm〜100 g mの1囲に積層欠陥を1
(]]7個/cm3−10 ’個/” Cm 3の音度
でり有[2でいるので、半導体基板内部には重金属を引
き寄セるのに最も効果のある歪み場が形成さね、半導体
基板は高いゲッタリング能力をイ]“することとなるる
6 また上記した半導体基板の製造方法によれば、酸素を含
む半導体基板を還元ガス雰囲気中、約1000℃で加熱
して基板表面の酸素を外方拡散させ、この後800℃〜
8F50°Cの温度範囲X′熱処理することにより、次
の熱処理丁稈ズ゛積層欠陥を発生ずることとなる、結晶
構造を有しまたブl、・ト状のクリストバライトSjO
□が半導体基板内部(、、:析出する6従って、高いゲ
ッタリング能力をイイ′1−る半導体基板が製造される
こととなる。
According to the semiconductor substrate described above, one stacking fault is formed in an area approximately 50 ILm to 100 gm from the surface of the semiconductor substrate.
(]] 7 pieces/cm3-10 'pieces/'' Since the sound intensity of Cm3 is 2, the most effective strain field for attracting heavy metals is formed inside the semiconductor substrate. , the semiconductor substrate has a high gettering ability.6 Also, according to the method for manufacturing a semiconductor substrate described above, a semiconductor substrate containing oxygen is heated at about 1000° C. in a reducing gas atmosphere to improve the surface of the substrate. of oxygen is diffused outward, and then heated to 800℃~
By heat-treating in the temperature range
□ is deposited inside the semiconductor substrate (6). Therefore, a semiconductor substrate with high gettering ability is manufactured.

支施当 以]・、本発明に係る半導体R析及びイの製造方法の実
施例を図面に基−づいC説明する。1第1図は本発明に
係る半導体基板の製造方法を模式的に示したグラフ’r
、bす、第2区は本発明(、ニー係る半導体基板の製造
方法の−に程を模式的(5′7示した石英ボルトど熱処
理炉の斜視[メ[である。第:)図中10は熱処理炉を
示L5°ごJ−リ、lp′ij処理炉コ0には、後述4
る石英ボ=1・12を挿入復−るt二めの石英fj・−
ブ11が内蔵さ、f′1ている。この石φA。
Embodiments of the semiconductor R analysis and manufacturing method according to the present invention will be described based on the drawings. 1 FIG. 1 is a graph schematically showing the method for manufacturing a semiconductor substrate according to the present invention.
The second section is a perspective view of a heat treatment furnace for quartz bolts shown at 5'7, which schematically shows the process of manufacturing a semiconductor substrate according to the present invention. 10 indicates a heat treatment furnace.
Insert and return the quartz ball = 1.12.Second quartz fj.-
There is a built-in block 11, f'1. This stone φA.

7−ブ11内の温度分布(1人「j、中央部、出[−]
でほぼ一定どなって55つ、熱処理炉10内の雰囲気は
窒素等の不活性ガスあるいは酸素のい4′れかに切り賛
えられるようにな・−〕ている。
7-Temperature distribution inside Bu 11 (1 person "j, center, out [-]
At almost constant intervals, the atmosphere inside the heat treatment furnace 10 is made up of either an inert gas such as nitrogen or oxygen.

単結晶インゴットをスライスして得た半導体基板、例え
ばS】基板】3に熱処理を施ず揚台は、まず第2図に示
した如<Si基板13を石英ボー 1・12に載置し、
この石英ボ〜!・12を上配し7た熱処理炉10の石英
チューブ11内に5 cm/minの速度で送り込む。
A semiconductor substrate obtained by slicing a single crystal ingot, for example, a Si substrate 13, is placed on a quartz board 1 and 12, as shown in FIG.
This quartz ball!・Feed the tube at a speed of 5 cm/min into the quartz tube 11 of the heat treatment furnace 10, which has a tube 7 placed above it.

次いで第1図に小したように、石英チューブ]1内でS
i基板13を窒素雰囲気中、1100℃の温度で4時間
加熱し、表面付近の酸素を外方拡散させて表面付近の酸
素濃度を低下させた後、同じく窒素雰囲気中、800〜
850°Cの温度範囲で4時間熱処理し、Si基板13
内部にクリストバライトSiO□を析出させる。そして
さらに石英チューブ11内を酸素雰囲気とし、31基板
13を1000°Cの温度て16時間熱処理すると、第
3図の写真に示した如く、写真中央のクリストバライト
SiO□から積層欠陥が発生し、このような積層欠陥が
31基板13の表面からほぼ50μm〜00μmの範囲
に10’個/cm3〜10’個/cm3の密度で発生す
る。このとき、Si基板13表面からの積層欠陥の密度
分布は第4図に示したようになり、表面から50LLm
付近で109個/cm”、loOum付近でlO?個/
cm3となる。
Then, as shown in FIG.
The i-substrate 13 was heated at a temperature of 1100° C. for 4 hours in a nitrogen atmosphere to diffuse oxygen near the surface outward to reduce the oxygen concentration near the surface, and then heated at a temperature of 800° C. in the same nitrogen atmosphere.
After heat treatment in a temperature range of 850°C for 4 hours, the Si substrate 13
Cristobalite SiO□ is precipitated inside. Further, when the inside of the quartz tube 11 is made into an oxygen atmosphere and the 31 substrate 13 is heat-treated at a temperature of 1000°C for 16 hours, stacking faults are generated from the cristobalite SiO□ in the center of the photograph, as shown in the photograph of FIG. Such stacking faults occur in a range of approximately 50 μm to 00 μm from the surface of the 31 substrate 13 at a density of 10′/cm 3 to 10′/cm 3 . At this time, the density distribution of stacking faults from the surface of the Si substrate 13 becomes as shown in FIG.
109 pieces/cm” near loOum, lO? pieces/cm near loOum
cm3.

最後に、熱処理後のSi基板13を熱処理炉10の石英
チューブ11より50m/minの速度で取り出すこと
により、高いブックリング能力を有する31基板13を
得ることができる。
Finally, by taking out the heat-treated Si substrate 13 from the quartz tube 11 of the heat treatment furnace 10 at a speed of 50 m/min, a 31 substrate 13 having a high bookling ability can be obtained.

第5図及び第6図はそれぞれ酸素析出物生成温度を70
0°C及び900℃としたときの、Si基板表面から5
0μm付近に生成する酸素析出物及びそれから発生する
欠陥のTEM (透過型電子顕微鏡)写真である。第5
図に示した如く、81基板を700’Cで酸素析出熱処
理すると、転位ループを伴ったアモルファス球状析出物
が生成し、第6図に示した如く900℃で酸素析出熱処
理を施すと、正八面体構造を有し、欠陥を伴わない安定
なアモルファスの析出物が生成する。いずれの場合にも
積層欠陥は発生せず、800〜850 ’Cの温度範囲
以外での酸素析出熱処理では、高いゲッタリング能力を
有する81基板が得られていないことがわかる。
Figures 5 and 6 show the oxygen precipitate formation temperature at 70°C.
5 from the Si substrate surface at 0°C and 900°C
This is a TEM (transmission electron microscope) photograph of oxygen precipitates formed around 0 μm and defects generated therefrom. Fifth
As shown in the figure, when the 81 substrate is heat-treated for oxygen precipitation at 700'C, amorphous spherical precipitates with dislocation loops are formed, and when heat-treated for oxygen precipitation at 900°C as shown in Figure 6, regular octahedral precipitates are formed. A stable amorphous precipitate with a structure and no defects is formed. It can be seen that stacking faults did not occur in any case, and an 81 substrate with high gettering ability was not obtained by oxygen precipitation heat treatment outside the temperature range of 800 to 850'C.

次に、酸素析出物生成温度と31基板表面の欠陥密度と
の関係を調べた結果を第7図に示す。31基板表面の欠
陥密度の測定は、本実施例に係る方法により内部に10
7個/cm3〜109個/cm3程度の積層欠陥を発生
させたSi基板に、表面からCuを拡散させ、さらに1
000℃の温度で1時間の熱処理を施した後、Si基板
表面をエツチングして行なった。また比較例として、7
00℃、750’C1900℃の各酸素析出熱処理によ
り得られた、内部に積層欠陥を含まないSi基板につい
ても同様にして表面の欠陥密度の測定を行なった。ここ
で、Si基板表面付近に存在する欠陥はCuに起因して
発生するため、この欠陥密度はゲッタリング能力を示し
ていることになる。
Next, FIG. 7 shows the results of investigating the relationship between the oxygen precipitate formation temperature and the defect density on the surface of the 31 substrate. 31 The defect density on the substrate surface was measured using the method according to this example.
Cu is diffused from the surface of the Si substrate in which stacking faults of about 7 to 109 stacking faults/cm3 have occurred, and then 1
After heat treatment was performed at a temperature of 1,000° C. for 1 hour, the surface of the Si substrate was etched. Also, as a comparative example, 7
The surface defect density was similarly measured for Si substrates containing no stacking faults inside, which were obtained by oxygen precipitation heat treatment at 00°C, 750°C, and 1900°C. Here, since the defects existing near the surface of the Si substrate are caused by Cu, this defect density indicates the gettering ability.

第7図から明らかなように、本実施例に係る方法により
製造された31基板は、800〜850°Cの温度範囲
以外で製造された31基板に比べて、Cuに起因する欠
陥密度が非常に低(、強いゲッタリング作用が働いたこ
とがわかる。従って、本実施例方法により製造されたS
i基板は高品質のLSIを製造するための基板として非
常に有用であるといえる。
As is clear from FIG. 7, the 31 substrate manufactured by the method according to this example has a much higher defect density due to Cu than the 31 substrate manufactured outside the temperature range of 800 to 850°C. It can be seen that a strong gettering effect worked on the S produced by the method of this example.
It can be said that the i-substrate is extremely useful as a substrate for manufacturing high-quality LSIs.

次に、熱処理の最後の工程である1000°Cでの熱処
理時間を種々変えて、Si基板内部に発生する積層欠陥
の密度を変化させた各31基板の格子間酸素濃度を測定
した。その結果を第8図に示す。
Next, the interstitial oxygen concentration of each of the 31 substrates was measured by changing the heat treatment time at 1000° C., which is the final step of the heat treatment, to change the density of stacking faults generated inside the Si substrate. The results are shown in FIG.

第8図から明らかなように、積層欠陥密度が1010個
/cm3以上になると格子間酸素濃度は大幅に減少して
いることがわかる。格子間に存在する酸素はSi基板の
強度を増加させる作用を有しており、格子間酸素濃度が
大幅に減少するIQIO個/cm3以上の積層欠陥密度
では、81基板の強度が弱く実用に向かない。一方、積
層欠陥密度が小さくなるほどゲッタリング能力は低下す
る。
As is clear from FIG. 8, when the stacking fault density becomes 1010/cm3 or more, the interstitial oxygen concentration decreases significantly. The interstitial oxygen has the effect of increasing the strength of the Si substrate, and at stacking fault densities of IQIO/cm3 or higher, where the interstitial oxygen concentration decreases significantly, the strength of the 81 substrate is too weak to be suitable for practical use. It's fleeting. On the other hand, the smaller the stacking fault density, the lower the gettering ability.

以上のことから、表面がらほぼ50μm〜1100uの
範囲に10’個/cm3〜109個/cm3の密度の積
層欠陥を含有する本実施例に係る半導体基板は、高いゲ
ッタリング能力を有すると共に、十分な強度を有してい
ることがわかる。
From the above, the semiconductor substrate according to this example, which contains stacking faults with a density of 10' pieces/cm3 to 109 pieces/cm3 in the range of approximately 50 μm to 1100 μm on the surface, has high gettering ability and sufficient It can be seen that it has a strong strength.

及五Ω盈呈 以上の説明により明らかなように1本発明に係る半導体
基板にあっては、半導体基板の表面がらほぼ50μm=
1oOμmの範囲に積層欠陥を107個/cm”〜10
’個/cm”の密度で含有しているので、高いゲッタリ
ング能力を有することとなる。従ってLSI製造のため
の熱処理では、半導体基板の表面に付着した重金属等の
汚染物質を素子の活性領域から除去4るゲッタリング作
用が強く働き、高品質のり、、 S Iを歩留まり良く
製造づることかできる。
As is clear from the above explanation, in the semiconductor substrate according to the present invention, the surface of the semiconductor substrate is approximately 50 μm=
Stacking faults in the range of 1oOμm 107/cm”~10
It has a high gettering ability because it is contained at a density of ``pieces/cm''.Therefore, in heat treatment for LSI manufacturing, contaminants such as heavy metals attached to the surface of the semiconductor substrate are removed from the active area of the device. The gettering effect of removal from the film works strongly, making it possible to produce high-quality glue and SI with good yield.

また本発明に係る半導体基板の製造方法sr: 、Jニ
オ)ば、酸素を含む半導体基板な環7Tニガノ、雰囲気
中、約1000 ’C,で加熱し、で基板25面の酸褥
;を外方”拡散さセ、この後800℃−= 850 ’
(二′、の清A度11」凹こ′熱処理Jるので、積層欠
陥を発!tさセ゛るクリストバライト5102をオハ出
させるζどがCぎる。従)で、高いゲッタリング能力を
持−′つ半導体基板を製造することができるゆ
In addition, the method for manufacturing a semiconductor substrate according to the present invention is to heat a semiconductor substrate containing oxygen at about 1000'C in an atmosphere, and remove the acid solution from the 25th surface of the substrate. After that, 800℃-=850'
(2', cleanliness of A 11" heat treatment) causes stacking faults! It is too difficult to release cristobalite 5102. It has high gettering ability. ' A space that can manufacture two semiconductor substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る牢−導体基板の製造方’J’JI
の工程を模式的に示し2だグラフ、第2図は本発明に係
る半導体基板の製造方法の一工程を説明するために使用
される装置を模式的(J゛示した斜視図、第3図は本発
明に係る半導体基板内部の積層欠陥のTEM写真、節4
図は本発明に係る半導体基板内部の積層欠陥の表面から
の密度労作なイ、したグ・)ノ、第5図は700°C:
で崖導体基板内部に生成し7た酸素析出物及び転イQル
 ブの”’r 111 %i ”II’; p、第6図
は900℃で゛4′:導体基板内部(5゛ト4,1コ繋
(2j・酸素析出物のT E h、・1写兵、第7図(
J酸+4析出物ム1成温度と表−面欠陥密度どの関係を
示ジノ・グX7)、第ε旧メ1は積層欠陥密度ど絡J′
間酸素よ1z゛どの関係を示したグyノ゛Cル〕る8 13・・・81基板 特お出願人 代   理   人 住人金属工業株式4会社
Figure 1 shows a method for manufacturing a cell-conductor substrate according to the present invention.
FIG. 2 is a graph schematically showing the process of manufacturing a semiconductor substrate according to the present invention. is a TEM photograph of stacking faults inside a semiconductor substrate according to the present invention, Section 4
The figure shows the density exertion from the surface of the stacking fault inside the semiconductor substrate according to the present invention.
Figure 6 shows the oxygen precipitates and transfer Q-lubes formed inside the cliff conductor substrate at 900°C. 4, 1 connection (2j・T E h of oxygen precipitates, ・1 copy, Fig. 7 (
J'
8 13...81 Substrate Special Applicant Representative Jinju Metal Industry Co., Ltd. 4 Company

Claims (2)

【特許請求の範囲】[Claims] (1)酸素を含む半導体基板において、該半導体基板の
表面からほぼ50μm〜100μmの範囲に積層欠陥を
10^7個/cm^3〜10^9個/cm^3の密度で
含有していることを特徴とする半導体基板。
(1) A semiconductor substrate containing oxygen contains stacking faults within a range of approximately 50 μm to 100 μm from the surface of the semiconductor substrate at a density of 10^7 pieces/cm^3 to 10^9 pieces/cm^3. A semiconductor substrate characterized by:
(2)酸素を含む半導体基板を還元ガス雰囲気中、約1
000℃で加熱して基板表面の酸素を外方拡散させ、こ
の後800℃〜850℃の温度範囲で熱処理することを
特徴とする半導体基板の製造方法。
(2) Place the semiconductor substrate containing oxygen in a reducing gas atmosphere for about 1 hour.
1. A method for manufacturing a semiconductor substrate, which comprises heating at 000°C to diffuse oxygen on the surface of the substrate outward, and then heat-treating at a temperature in the range of 800°C to 850°C.
JP18364290A 1990-07-10 1990-07-10 Semiconductor substrate and manufacture thereof Pending JPH0469937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18364290A JPH0469937A (en) 1990-07-10 1990-07-10 Semiconductor substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18364290A JPH0469937A (en) 1990-07-10 1990-07-10 Semiconductor substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0469937A true JPH0469937A (en) 1992-03-05

Family

ID=16139364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18364290A Pending JPH0469937A (en) 1990-07-10 1990-07-10 Semiconductor substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0469937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897222A (en) * 1994-09-26 1996-04-12 Toshiba Ceramics Co Ltd Manufacture of silicon wafer, and silicon wafer
WO2002025717A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
WO2003092065A1 (en) * 2002-04-26 2003-11-06 Sumitomo Mitsubishi Silicon Corporation High resistance silicon wafer and method for production thereof
JP2004056132A (en) * 2002-07-16 2004-02-19 Hynix Semiconductor Inc Method for fabricating semiconductor wafer
JP2007235153A (en) * 2002-04-26 2007-09-13 Sumco Corp High-resistance silicon wafer, and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897222A (en) * 1994-09-26 1996-04-12 Toshiba Ceramics Co Ltd Manufacture of silicon wafer, and silicon wafer
WO2002025717A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
JP2002100631A (en) * 2000-09-20 2002-04-05 Shin Etsu Handotai Co Ltd Silicon wafer, silicon epitaxial wafer and method for manufacturing these
EP1326270A1 (en) * 2000-09-20 2003-07-09 Shin-Etsu Handotai Company Limited Silicon wafer and silicon epitaxial wafer and production methods therefor
US6858094B2 (en) 2000-09-20 2005-02-22 Shin-Etsu Handotai Co., Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
EP1326270A4 (en) * 2000-09-20 2007-07-18 Shinetsu Handotai Kk Silicon wafer and silicon epitaxial wafer and production methods therefor
KR100841062B1 (en) * 2000-09-20 2008-06-25 신에쯔 한도타이 가부시키가이샤 Silicon wafer and silicon epitaxial wafer and production methods therefor
WO2003092065A1 (en) * 2002-04-26 2003-11-06 Sumitomo Mitsubishi Silicon Corporation High resistance silicon wafer and method for production thereof
JP2007235153A (en) * 2002-04-26 2007-09-13 Sumco Corp High-resistance silicon wafer, and manufacturing method thereof
KR100829767B1 (en) * 2002-04-26 2008-05-16 가부시키가이샤 섬코 High resistance silicon wafer and method for production thereof
US7397110B2 (en) 2002-04-26 2008-07-08 Sumitomo Mitsubishi Silicon Corporation High resistance silicon wafer and its manufacturing method
JP2004056132A (en) * 2002-07-16 2004-02-19 Hynix Semiconductor Inc Method for fabricating semiconductor wafer

Similar Documents

Publication Publication Date Title
EP1402567B1 (en) Film or layer made of semi-conductive material and method for producing said film or layer
JP4928932B2 (en) Method of manufacturing composite material wafer and method of recycling used donor substrate
JPH11150119A (en) Method and device for heat-treating silicon semiconductor substance
JP2007251129A5 (en)
JPH0469937A (en) Semiconductor substrate and manufacture thereof
JPH05155700A (en) Production of gettering wafer having lamination defect generating nuclei and silicon wafer produced by the method
JPS59124136A (en) Process of semiconductor wafer
JP2003068743A (en) Epitaxial wafer and its manufacturing method
JPS60247935A (en) Manufacture of semiconductor wafer
JPH08213403A (en) Semiconductor substrate and manufacture thereof
JPH08250506A (en) Silicon epitaxial wafer and its manufacture
JPS5818929A (en) Manufacture of semiconductor device
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH08290995A (en) Silicon single crystal and its production
JP3262945B2 (en) Method of manufacturing SOI substrate and SOI substrate manufactured by this method
JPH0897221A (en) Manufacture of silicon wafer, and silicon wafer
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JPH04171827A (en) Manufacture of semiconductor device
JP2652346B2 (en) Manufacturing method of silicon wafer
JPH05283350A (en) Manufacture of epitaxial semiconductor wafer
JPS59119842A (en) Manufacture of semiconductor device
JPH0621063A (en) Heat treatment of silicon wafer
JPH08264398A (en) Manufacture of silicon semiconductor wafer
JPS6115335A (en) Gettering method for silicon wafer