JPS5818929A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5818929A
JPS5818929A JP11694881A JP11694881A JPS5818929A JP S5818929 A JPS5818929 A JP S5818929A JP 11694881 A JP11694881 A JP 11694881A JP 11694881 A JP11694881 A JP 11694881A JP S5818929 A JPS5818929 A JP S5818929A
Authority
JP
Japan
Prior art keywords
heat treatment
hours
temperature
crystal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11694881A
Other languages
Japanese (ja)
Other versions
JPS639745B2 (en
Inventor
Koichiro Honda
耕一郎 本田
Akira Osawa
大沢 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11694881A priority Critical patent/JPS5818929A/en
Publication of JPS5818929A publication Critical patent/JPS5818929A/en
Publication of JPS639745B2 publication Critical patent/JPS639745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To readily obtain a stable layer with no defect by subjecting a Si crystal to heat treatment in an inert gas atmosphere as follows: 24hr at 600-800 deg.C, 30min at 700-1,100 deg.C (applied more than once) and finally 3hr at 1,000-1,200 deg.C. CONSTITUTION:A Si crystal is constantly subjected to an atmosphere of N2, etc. where it is heat-treated at 600-800 deg.C 24hr, then, after lowering to the normal temperature, at 700-1,100 deg.C for 30min and again its temperature is reduced to the normal. Applying this short-time treatment more than once reduces the amount of O2, and therefore a stable layer without defects can be obtained. Further heat treatment at 1,000-1,200 deg.C for 3hr will produce an 80mum thickness, non-defect layer, its thickness being varied according to the treatment period.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法のうち、特に無欠陥層(
denuded zone rデヌーデッドゾーン)を
形成する熱処履方法番こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, in particular a defect-free layer (
This relates to a heat treatment method for forming a denuded zone.

半導体装置の高密度化、鳥集積化に伴って、それを製造
する時に、シリコン(Si)基板内に発生する結晶欠陥
が半導体装置の電気的特性を悪くし、製造歩留を低下さ
せる傾向が一層明瞭になって欺た。この結晶欠陥(例え
ば積層欠陥や転位など)を鱈発する原因は、酸素(01
) 、炭素(Q、重金属などの不純物含有にあることは
良く知られて勘り、特に酸素、炭素はその影響が大糠い
と言われている。
As semiconductor devices become denser and more integrated, crystal defects that occur in silicon (Si) substrates tend to deteriorate the electrical characteristics of semiconductor devices and reduce manufacturing yields. It became clearer and more deceiving. Oxygen (01
), carbon (Q, heavy metals, and other impurities) is well known and understood, and it is said that oxygen and carbon are particularly affected by these impurities.

現在、チ冒りラルス中−法(Czochralski法
;引上法)で作成されるS1単結晶には1.o x 1
ad程度の酸素量と5 X 10V4程度の炭素量の含
有は避けられないことであり、これらは結晶中で過飽和
とな忰析出状態にある。その析出した状態にある例えば
酸素を含んだS1単結晶を600〜800℃の比較的低
温度で感層すると、凝集して酸化シリコン(810゜、
XZ)が析出し、核が形成される。核を含んだsi単結
晶を用いて、半導体装置を製造するための高温度熱処理
を行えば、格子の歪が生じ、転位・積層欠陥を発生して
、半導体装置の特性が低下する。
Currently, the S1 single crystal produced by the Czochralski method (Czochralski method; pulling method) has 1. ox 1
It is unavoidable to contain an amount of oxygen on the order of ad and an amount of carbon on the order of 5×10V4, and these are in a supersaturated state of precipitation in the crystal. For example, when the precipitated S1 single crystal containing oxygen is exposed to a layer at a relatively low temperature of 600 to 800°C, it aggregates and forms silicon oxide (810°,
XZ) is precipitated and a nucleus is formed. When a Si single crystal containing nuclei is subjected to high-temperature heat treatment for manufacturing a semiconductor device, lattice distortion occurs, dislocations and stacking faults occur, and the characteristics of the semiconductor device deteriorate.

従って、かような結晶欠陥を除去する方法が種々提案さ
れてjね、例えば窒素(N、)ガス雲間気中で600〜
800℃の比較的低温で数時間熱処理し、−旦常温に戻
した後、次(こ1000℃以上の高温で数時間熱処理す
ればSi単結晶の表面近傍に結晶欠陥のないデヌーデッ
ドゾーンが形成される。デヌーデッドゾーンの厚さは熱
処理条件によって異なるが、10〜IQOp鋼程度形成
され、表面に結晶欠陥が存在しない一方、結晶内部には
多数の結晶欠陥が作り出される。このようなデヌーデッ
ドゾーンに半導体デバイスを形成すると、結晶内部の結
晶欠陥が重金属などをゲッターするイントリンシックゲ
ッタリング(intrinsic gettering
)効果も相乗して、半導体素子の特性と製造歩留を著し
く向−トすることができる。
Therefore, various methods have been proposed to remove such crystal defects.
After heat treatment at a relatively low temperature of 800℃ for several hours, and then returning to room temperature, a denuded zone with no crystal defects is created near the surface of the Si single crystal. The thickness of the denuded zone varies depending on the heat treatment conditions, but it is formed on the order of 10~IQOp steel, and while there are no crystal defects on the surface, many crystal defects are created inside the crystal. When a semiconductor device is formed in a denuded zone, intrinsic gettering occurs in which crystal defects inside the crystal getter heavy metals, etc.
) The effects can be combined to significantly improve the characteristics and manufacturing yield of semiconductor devices.

発明者らはこの様なデヌーデッドゾーンについて色々と
検討したところ、熱処理前に酸素濃度がI X 10”
、2以上含有されているSi単結晶はデヌーデ、ドゾー
ンが形成されることが判り、又その熱処理方法も提案し
た。(特願昭56−024003他)本発明はかような
デヌーデッドゾーンを一層安定に且つ簡単に形成するこ
とを目的とするもので、その特徴は不活性ガス雰囲気中
で、60()〜800℃。
The inventors conducted various studies on such a denuded zone and found that the oxygen concentration before heat treatment was I x 10"
It has been found that denudes and dozones are formed in Si single crystals containing two or more of these, and a heat treatment method for this has also been proposed. (Japanese Patent Application No. 56-024003, etc.) The present invention aims to form such a denuded zone more stably and easily. 800℃.

24時間以上の第1の熱処理を行ない、次いで商〜11
00”、 0.5時間以上の第2の熱処理を少くとも1
囲以上行ない、次いで1000〜1200℃、3時間以
上の第3の熱処理を行なうことにある製造方法で、以下
詳しく説明する。
The first heat treatment is carried out for 24 hours or more, and then the
00”, a second heat treatment of 0.5 hours or more for at least 1
The manufacturing method is described in detail below, in which a third heat treatment is performed at 1000 to 1200° C. for 3 hours or more.

図表はデヌーデッドゾーンの形成と51結晶中の酸素濃
度との関係を示しており、横軸は熱処理前の酸素濃度、
縦軸は熱処理後の酸素濃度減少量である。線IはNtガ
ス雰囲気中で700℃、24時間熱処理した後、常温に
戻し、次いで同じ雰囲気中で、1200℃、3時間熱処
理したi−夕で、このような熱処理は前記したように既
に知られたものであるが、熱処理前の酸素濃度が1.I
 X 10〜程度ではデヌーデ、ドゾーンは未だ形成さ
れなかった。
The chart shows the relationship between the formation of the denuded zone and the oxygen concentration in 51 crystals, where the horizontal axis is the oxygen concentration before heat treatment,
The vertical axis is the amount of decrease in oxygen concentration after heat treatment. Line I shows heat treatment at 700°C for 24 hours in an Nt gas atmosphere, return to room temperature, and then heat treatment at 1200°C for 3 hours in the same atmosphere; as mentioned above, such heat treatment is already known. However, the oxygen concentration before heat treatment was 1. I
No denude or dezone was formed yet at X 10 or higher.

線■はN2ガス雰四気中で700”$ 24時間熱処理
した後、常温に戻し、次いで950℃、0.5時間熱処
理して常温に戻し、次いで1200℃、3時間熱処理し
たデータで、何れもN2ガス雰囲気中で熱処理するが、
図のように熱処理前の酸素濃度が1.05 X 10曹
M程度で既にデヌーデッドゾーンが形成されている。
Line (■) is data obtained by heat treatment at 700"$ for 24 hours in a N2 gas atmosphere, returning to room temperature, then heat treatment at 950℃ for 0.5 hours to return to room temperature, and then heat treatment at 1200℃ for 3 hours. is also heat treated in an N2 gas atmosphere,
As shown in the figure, a denuded zone has already been formed when the oxygen concentration before heat treatment is approximately 1.05 x 10 carbon dioxide.

線層は700t、 24時間熱処理した後、常温に戻し
、次いで950℃、05時間熱処理して常温に戻し、更
に11(X)C,0,5時間熱処理して常温に戻し、次
いで121XF、 3時間熱処理したデータで、何れも
N、ガス雰囲気中であるが、この場合には熱処理前の酸
素濃度が1.OX 10〜程度の81結晶もデヌーデッ
ドゾーンが形成され。したがって、本発明の第2の熱処
理として700〜1100℃の温度で比較的短時間行わ
れる熱処理の追加方法は酸素量が減少しやすくて安定し
たデヌーデッドゾーンが得られるものである。
The wire layer was heat treated at 700t for 24 hours, then returned to room temperature, then heat treated at 950℃ for 0.5 hours to return to room temperature, further heat treated at 11(X)C for 0.5 hours to return to room temperature, then 121XF, 3 The data are for time heat treatment, both in N and gas atmospheres, but in this case the oxygen concentration before heat treatment was 1. A denuded zone was also formed in 81 crystals of OX 10 and above. Therefore, as the second heat treatment of the present invention, the method of adding heat treatment performed at a temperature of 700 to 1100° C. for a relatively short time is a method in which the amount of oxygen is easily reduced and a stable denuded zone can be obtained.

又、発明者らが繭紀Il案した方法には、例えば第1の
熱処理を600〜800℃、10時間以上、第2の熱処
理を1150〜1250℃、2時間以上、第3の熱処理
を950〜10!50℃、 1時間以上と同じく3−の
熱処理を行なってデス−デッドゾーンな形成する方法も
あるが、その場合は熱処理の雰囲気を非酸化性としたり
、酸化性としたりして甚だ雰囲気の制御が複雑であるが
、本発明は一貫としてN、ガスなどの不活性(非酸化性
)ガス雰囲気中で熱処理するから、その処理が非常に簡
単化される利点がある。
In addition, the method proposed by the inventors includes, for example, a first heat treatment at 600 to 800°C for 10 hours or more, a second heat treatment at 1150 to 1250°C for 2 hours or more, and a third heat treatment at 950°C. ~10! There is also a method of forming a death zone by performing heat treatment at 50℃ for more than 1 hour to form a death zone, but in that case, the atmosphere for heat treatment may be non-oxidizing or oxidizing, causing severe damage. Although controlling the atmosphere is complicated, the present invention has the advantage that the heat treatment is performed in an atmosphere of an inert (non-oxidizing) gas such as N or gas, which greatly simplifies the process.

且つ、本発明において第3の熱処理条件は1000〜1
2oO℃、3時間であるが、この#&理時間では厚さ8
0μ−のデヌーデッドゾーンが形成され、その地理時間
の長短によりその厚さを変えることが可能である。
Moreover, in the present invention, the third heat treatment condition is 1000 to 1
The temperature is 2oO℃ for 3 hours, but the thickness is 8
A denuded zone of 0 μ- is formed, and its thickness can be changed depending on the length of the geographical time.

以上の説明から明らかなように、本発明はデヌーデッド
ゾーンが安定して簡単に形成で鯉、半導体装置の品質陶
土に極めて貢献するもので、その効果は大きい。
As is clear from the above description, the present invention greatly contributes to the quality of chinaware for semiconductor devices by stably and easily forming a denuded zone, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

図はデヌーデッドゾーンの形成有無を示すデータ図表で
ある。図中、線■は従来の熱処理条件、線■、線線層本
発明にかhる熱処理条件で得たデータを示す。
The figure is a data chart showing whether a denuded zone is formed or not. In the figure, line 2 indicates data obtained under conventional heat treatment conditions, and line 2 indicates data obtained under heat treatment conditions according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] シリコン結晶を熱処理して無欠陥層を形成するに際し、
不活性ガス雰囲気中(こおいて、温度600〜soo℃
で、24時間以上の第1熱処理を行ない、次いで温度7
00〜1100℃で、30分以上の第2熱処理を少なく
ともl回以上行ない、次いで温度1000〜1200″
Cで、3時間以上の第3の熱処理を行なう工程からなる
ことを特徴とする半導体装置の製造方法。
When heat treating silicon crystal to form a defect-free layer,
In an inert gas atmosphere (temperature 600~soo℃)
Then, the first heat treatment was carried out for 24 hours or more, and then the temperature was increased to 7.
00 to 1100°C for 30 minutes or more at least 1 times, and then at a temperature of 1000 to 1200''
A method for manufacturing a semiconductor device, comprising the step of performing a third heat treatment for 3 hours or more in step C.
JP11694881A 1981-07-24 1981-07-24 Manufacture of semiconductor device Granted JPS5818929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11694881A JPS5818929A (en) 1981-07-24 1981-07-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11694881A JPS5818929A (en) 1981-07-24 1981-07-24 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5818929A true JPS5818929A (en) 1983-02-03
JPS639745B2 JPS639745B2 (en) 1988-03-01

Family

ID=14699689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11694881A Granted JPS5818929A (en) 1981-07-24 1981-07-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5818929A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505759A (en) * 1983-12-19 1985-03-19 Mara William C O Method for making a conductive silicon substrate by heat treatment of oxygenated and lightly doped silicon single crystals
US5506178A (en) * 1992-12-25 1996-04-09 Sony Corporation Process for forming gate silicon oxide film for MOS transistors
WO2002049091A1 (en) 2000-12-13 2002-06-20 Shin-Etsu Handotai Co., Ltd. Anneal wafer manufacturing method and anneal wafer
US7081422B2 (en) 2000-12-13 2006-07-25 Shin-Etsu Handotai Co., Ltd. Manufacturing process for annealed wafer and annealed wafer
JP4615161B2 (en) * 2001-08-23 2011-01-19 信越半導体株式会社 Epitaxial wafer manufacturing method
JP2015164179A (en) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 Electrode plate for plasma processing devices, and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505759A (en) * 1983-12-19 1985-03-19 Mara William C O Method for making a conductive silicon substrate by heat treatment of oxygenated and lightly doped silicon single crystals
US5506178A (en) * 1992-12-25 1996-04-09 Sony Corporation Process for forming gate silicon oxide film for MOS transistors
WO2002049091A1 (en) 2000-12-13 2002-06-20 Shin-Etsu Handotai Co., Ltd. Anneal wafer manufacturing method and anneal wafer
JP2002184779A (en) * 2000-12-13 2002-06-28 Shin Etsu Handotai Co Ltd Annealed wafer and method of manufacturing the same
EP1343200A1 (en) * 2000-12-13 2003-09-10 Shin-Etsu Handotai Co., Ltd Anneal wafer manufacturing method and anneal wafer
US7081422B2 (en) 2000-12-13 2006-07-25 Shin-Etsu Handotai Co., Ltd. Manufacturing process for annealed wafer and annealed wafer
EP1343200A4 (en) * 2000-12-13 2007-09-12 Shinetsu Handotai Kk Anneal wafer manufacturing method and anneal wafer
KR100847925B1 (en) 2000-12-13 2008-07-22 신에츠 한도타이 가부시키가이샤 Anneal wafer manufacturing method and anneal wafer
JP4615161B2 (en) * 2001-08-23 2011-01-19 信越半導体株式会社 Epitaxial wafer manufacturing method
JP2015164179A (en) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 Electrode plate for plasma processing devices, and method for manufacturing the same

Also Published As

Publication number Publication date
JPS639745B2 (en) 1988-03-01

Similar Documents

Publication Publication Date Title
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPS5818929A (en) Manufacture of semiconductor device
JPS63227026A (en) Gettering method for silicon crystal substrate
JPH09148336A (en) Si semiconductor substrate and manufacturing method
JPS60247935A (en) Manufacture of semiconductor wafer
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JPH0636979A (en) Semiconductor device
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPS5994809A (en) Production of semiconductor element
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JPS6326541B2 (en)
JP2652346B2 (en) Manufacturing method of silicon wafer
JP2652344B2 (en) Silicon wafer
JPS624327A (en) Manufacture of semiconductor device
JP2588632B2 (en) Oxygen precipitation method for silicon single crystal
JPH0319687B2 (en)
JPH06291123A (en) Fabrication of semiconductor device
JPS6115335A (en) Gettering method for silicon wafer
JPS58116741A (en) Manufacture of semiconductor device
JPH04276627A (en) Semiconductor device production method
JPS594128A (en) Manufacture of semiconductor device
JPH05283350A (en) Manufacture of epitaxial semiconductor wafer
JPS61168599A (en) Method of purifying silicon wafer
JPS58170020A (en) Manufacture of semiconductor device