JPH0467691A - Tl-based superconductive material - Google Patents

Tl-based superconductive material

Info

Publication number
JPH0467691A
JPH0467691A JP2181205A JP18120590A JPH0467691A JP H0467691 A JPH0467691 A JP H0467691A JP 2181205 A JP2181205 A JP 2181205A JP 18120590 A JP18120590 A JP 18120590A JP H0467691 A JPH0467691 A JP H0467691A
Authority
JP
Japan
Prior art keywords
thin film
oxygen
target
burned
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2181205A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2181205A priority Critical patent/JPH0467691A/en
Publication of JPH0467691A publication Critical patent/JPH0467691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To restrain the deposition of crystals of second phase which are deposited in grain boundaries to block a current and to obtain a critical current of high density by a method wherein Ir is added to a Tl-M-Cu-O system superconducting material in a specific range of a ratio Ir/Cu. CONSTITUTION:A prescribed amount of cupric oxide, thallium sesquioxide, barium carbonate, calcium carbonate, and iridium oxide are mixed together and dispersed by a ball mill. the powder is pressure-molded by a pressure of 300kg/cm<2>, which is burned in an oxygen atmosphere at a temperature of 800-880 deg.C for a hour, and the surface layer of the burned body concerned is cut off, and the burned body is formed into a 2-inche target of 3mm in thickness. Using the target, a thin film is formed on an MgO single crystal substrate through an RF magnetron sputtering method. In succession, the thin film is annealed in an oxygen atmosphere at a temperature of 880 deg.C for 5 minutes and then treated in an oxygen plasma for 15 hours introducing oxygen to form an oxide superconductive thin film. The obtained superconductive thin film is patterned by ion beam etching. It is preferable that the ratio of the additive amount of Ir to Cu is set to be within a range of 0.005-0.08.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は配線、電磁波センサー 超伝導トランジスタ、
電流制御素子、超伝導マグネット等に用いる超伝導材料
に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to wiring, electromagnetic wave sensors, superconducting transistors,
It relates to superconducting materials used in current control elements, superconducting magnets, etc.

[従来の技術] 現在安定性、再現性共にあり世界で公認されている最も
高い臨界温度を持つ超伝導物質はArkans as大
学のA、M、Hermannらの発見したT l −M
 −Cu−○系(ここでMはアルカリ土類を示す)であ
る。主たる化合物の組成はTl2Ba2Ca2Cu30
xであり詳細はPhysica  Review  L
etters  Vol、60  No16  pp1
657、JapaneseJounal  Of  A
pplied  Physics  Vol、27  
No5 1988  PpL804等に述べられている
。この物質は120に以上の臨界温度を持つため液体窒
素(77K)を冷却剤として使用した場合Y系やBi系
に較べ大きなマージンがとれ幅広い応用が期待されてい
る。
[Prior art] The current superconducting material that is both stable and reproducible and has the highest critical temperature officially recognized in the world is T l -M, which was discovered by A. M. Hermann et al. of the University of Arkansas.
-Cu-○ system (here M represents alkaline earth). The composition of the main compound is Tl2Ba2Ca2Cu30
x and details are in Physica Review L
etters Vol, 60 No16 pp1
657, Japanese Journal of A
pplied Physics Vol, 27
No.5 1988 PpL804 etc. Since this material has a critical temperature of 120 degrees or higher, when liquid nitrogen (77K) is used as a coolant, it has a large margin compared to Y-based and Bi-based materials, and is expected to have a wide range of applications.

[発明が解決しようとする課題] しかしながら前記超伝導材料の臨界電流密度は■多結晶
になり易い材料であると共に結晶粒界部に電流を阻害す
る第2相が析出し易い。
[Problems to be Solved by the Invention] However, the critical current density of the superconducting material is as follows: (1) It is a material that tends to become polycrystalline, and a second phase that inhibits current flow is likely to precipitate at grain boundaries.

■コヒーレンス長さが短いため粒界部の影響を受は易い
■Because the coherence length is short, it is easily affected by grain boundaries.

■異方性が強い。 (結晶を配向させる必要がある) 等の理由により大変低いものであった。その値はコンス
タントに得られる値で薄膜は10’A/cm2台、線材
は10 ” A / c m 2台前半が一般的であっ
た。 通常臨界電流密度は薄膜を主体としたエレクトロ
ニクスへの応用で10’A/cm2以上、線材を主体と
した重電機器への応用で105A/cm2以上必要と言
われているがこの様に値はまだ2桁も差がある。これら
の対策として超伝導物質の単結晶化があるが単結晶化は
大口径化が困難であるだけでなくコストが非常に高くな
るため実用化に向けては多結晶に於て臨界電流密度を上
げる必要がある。
■Strong anisotropy. (It is necessary to orient the crystals.) It was very low due to the following reasons. The value is a value that can be constantly obtained, and is generally in the 10'A/cm2 range for thin films, and in the lower 10'' A/cm2 range for wire rods.Usually, the critical current density is applied to electronics mainly using thin films. It is said that 10'A/cm2 or more is required for application to heavy electrical equipment mainly made of wires, and 105A/cm2 or more is required for applications in heavy electrical equipment mainly made of wires, but as shown above, there is still a difference of two orders of magnitude.Superconductivity Single crystallization of materials is possible, but since single crystallization is not only difficult to increase in diameter but also extremely expensive, it is necessary to increase the critical current density in polycrystals for practical use.

また超伝導トランジスターやジョセフソン素子では数n
mと極めて薄い絶縁層や半導体層を形成しなくてはなら
ないため表面は平滑であることが必要であるが現状は数
+nmの凹凸を持っていた。
In addition, in superconducting transistors and Josephson devices, several n
Since an extremely thin insulating layer or semiconductor layer must be formed, the surface must be smooth, but at present it has irregularities of several nanometers.

本発明はこの様な問題を解決するものであり、その目的
とするところは製造コストの安い多結晶体に於て高い臨
界電流密度を持つと共に薄膜ではデバイス化に必要な表
面モホロジーを確保したTl系超伝導材料を得んとする
ものである。
The present invention is intended to solve these problems, and its purpose is to develop Tl that has a high critical current density in a polycrystalline material that is low in production cost, and that has a surface morphology that is necessary for device fabrication in a thin film. The aim is to obtain superconducting materials.

[課題を解決するための手段] 1)Tl−M−Cu−0系超伝導物質(ここでMはアル
カリ土類元素を示す)にIrを添加したこと2)Ir/
Cuは0.005〜0.08の範囲内であることを特徴
とする。
[Means for solving the problem] 1) Adding Ir to a Tl-M-Cu-0 based superconducting material (here M represents an alkaline earth element) 2) Adding Ir/
Cu is characterized by being within the range of 0.005 to 0.08.

[実施例] 以下実施例に従い本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to Examples.

先ずターゲットを作る。所定量の酸化第二銅、三二酸化
タリウム、炭酸バリウム、炭酸カルシューム、酸化イリ
ジウムをボールミルにより混合分散させる。次にこの粉
末を300kg/cm’で加圧成形した後800°C〜
880 ’C酸素ガス雰囲気中で1時間焼成、表面層を
切削除去し2インチ厚ξ3mmのターゲットを得る。
First, create a target. Predetermined amounts of cupric oxide, thallium sesquioxide, barium carbonate, calcium carbonate, and iridium oxide are mixed and dispersed using a ball mill. Next, this powder is pressure-molded at 300 kg/cm' and then heated to 800°C~
The target was fired for 1 hour at 880'C in an oxygen gas atmosphere, and the surface layer was removed to obtain a target with a thickness of 2 inches and ξ3 mm.

次にRFマグネトロンスパッタでMgO(100)単結
晶基板上に上記ターゲットを用い薄膜を形成する。この
時の成膜条件は、初期真空度: 1・8〜2.3*IC
17Torr、使用ガス: アルゴン(70%)酸素(
30%)の混合ガス、出力100〜155W、スパッタ
時のガス圧:1.5〜3.2*1O−3Torr、基板
温度:150’C1成膜速度:  4〜8nm/m1J
1、膜厚3ooo〜3500人である。尚基板は表面粗
さのバラツキによる臨界電流密度への影響を押さえるた
め研磨面ではなくへきかい面を用いた。
Next, a thin film is formed on an MgO (100) single crystal substrate by RF magnetron sputtering using the above target. The film forming conditions at this time were: initial degree of vacuum: 1.8 to 2.3*IC
17 Torr, gas used: argon (70%) oxygen (
30%) mixed gas, output 100-155W, gas pressure during sputtering: 1.5-3.2*1O-3Torr, substrate temperature: 150'C1, film formation rate: 4-8nm/m1J
1. Film thickness is 300 to 3500 people. In order to suppress the influence of variations in surface roughness on the critical current density, the substrate was not polished but had a cracked surface.

次に880°C酸素ガス雰囲気中で5分画アニル処理、
酸素プラズマ中で15時間酸素導入処理を行い酸化物超
伝導薄膜を得た。ここで酸素プラズマにより酸素を導入
しているのは加熱処理ではTlが飛び組成がずれるため
である。
Next, 5-fraction annealing treatment at 880°C in an oxygen gas atmosphere,
Oxygen introduction treatment was performed in oxygen plasma for 15 hours to obtain an oxide superconducting thin film. The reason why oxygen is introduced by oxygen plasma here is that during heat treatment, Tl is removed and the composition is shifted.

得られた超伝導薄膜をイオンビームエツチングによりバ
ターニングした後臨界電流密度を4端子法により測定し
た。測定雰囲気はHeカス中(Heは熱伝導が良く試料
温度を均一化出来ると共に不活性であり試料の変質を防
ぐことが出来る)?!II+定温度は77にで冷却には
極低温冷凍機(ダイキン工業製)を用いた。結果を比較
例(■rg加無し、添加量が適正範囲外のもの)と共に
第1表にボした。
After the obtained superconducting thin film was patterned by ion beam etching, the critical current density was measured by a four-terminal method. Is the measurement atmosphere in He scum (He has good thermal conductivity and can equalize the sample temperature, and is inert and can prevent deterioration of the sample)? ! II+ constant temperature was 77, and a cryogenic refrigerator (manufactured by Daikin Industries) was used for cooling. The results are listed in Table 1 along with comparative examples (1) RG was not added, the amount added was outside the appropriate range.

第1表 表より判るように実際の応用にはまだ僅が足りないもの
もあるがTl−M−Cu系超伝導材料(Mはアルカリ土
類元素)にIrを添加することより顕著に臨界電流密度
が向上している。これは工rの添加により電流を阻害す
る第2相の析出を抑制しているためと薄膜を平滑なもの
にしているためと考えられる。尚添加量はI r / 
Cuの比で0゜005〜0.08の範囲内が好ましい。
As can be seen from Table 1, there are some things that are still insufficient for actual applications, but adding Ir to Tl-M-Cu based superconducting materials (M is an alkaline earth element) significantly increases the critical current. Density is improved. This is thought to be because the addition of phosphor suppresses the precipitation of the second phase that inhibits current flow and because the thin film is made smooth. The amount added is I r /
The Cu ratio is preferably within the range of 0.005 to 0.08.

添加量は少ないと効果はなく、多すぎると超伝導物質の
構造を破壊するため逆に臨界電流密度は但下する。
If the amount added is too small, there will be no effect, and if it is too large, the structure of the superconducting material will be destroyed, and on the contrary, the critical current density will be lowered.

また臨界電流密度向上の上でも役立っている平滑性向上
は前にも述べたようにデバイス化の上でも良い結果をも
たらす。
Furthermore, the improvement in smoothness, which is also useful in increasing the critical current density, also brings about good results in terms of device fabrication, as mentioned earlier.

実施例では薄膜に於て述べたが線材やバルクでも効果は
同じであり何等差し支えない。但し値段が高いため材料
使用量の少ない薄膜の方が適しているといえる。また高
臨界温度相の安定化のためpbで元素の一部を置換した
系でも効果は同じであり何等差し支えない。
In the embodiments, a thin film was described, but the same effect can be achieved with a wire rod or a bulk film, and there is no problem. However, since it is expensive, thin films that require less material are more suitable. Furthermore, a system in which some of the elements are replaced with PB to stabilize the high critical temperature phase has the same effect and there is no problem.

[発明の効果コ 以上述べたように本発明によれば結晶の粒界部に析出し
電流を阻害する第2相を抑制すると共に材料を平滑化出
来るため製造コストの安い多結晶体でも高い臨界電流密
度を得ることが出来る。またデバイス化に必要な表面モ
ホロジーも良くなる。
[Effects of the Invention] As described above, according to the present invention, it is possible to suppress the second phase that precipitates at the grain boundaries of crystals and inhibit current flow, and to smooth the material, so that even polycrystalline materials, which are inexpensive to manufacture, can have high criticality. Current density can be obtained. In addition, the surface morphology required for device fabrication also improves.

尚この材料は配線、電磁波センサー 磁束メモリ、ジョ
セフソン素子、超伝導トランジスタ、磁気シールド材、
送電ケーブル、通信ケーブル、超伝導モータ、超伝導マ
グネット等に応用できる。
This material is used for wiring, electromagnetic wave sensors, magnetic flux memory, Josephson elements, superconducting transistors, magnetic shielding materials,
It can be applied to power transmission cables, communication cables, superconducting motors, superconducting magnets, etc.

以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三部 他1名that's all Applicant: Seiko Epson Corporation Representative Patent Attorney Kizobe Suzuki and 1 other person

Claims (1)

【特許請求の範囲】 1)Tl−M−Cu−O系超伝導物質(ここでMはアル
カリ土類元素を示す)にIrを添加したことを特徴とす
るTl系超伝導材料。 2)Ir/Cuは0.005〜0.08の範囲内である
ことを特徴とする特許請求の範囲第1項記載のTl系超
伝導材料。
[Scope of Claims] 1) A Tl-based superconducting material characterized in that Ir is added to a Tl-M-Cu-O based superconducting material (here, M represents an alkaline earth element). 2) The Tl-based superconducting material according to claim 1, wherein Ir/Cu is within the range of 0.005 to 0.08.
JP2181205A 1990-07-09 1990-07-09 Tl-based superconductive material Pending JPH0467691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2181205A JPH0467691A (en) 1990-07-09 1990-07-09 Tl-based superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2181205A JPH0467691A (en) 1990-07-09 1990-07-09 Tl-based superconductive material

Publications (1)

Publication Number Publication Date
JPH0467691A true JPH0467691A (en) 1992-03-03

Family

ID=16096674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2181205A Pending JPH0467691A (en) 1990-07-09 1990-07-09 Tl-based superconductive material

Country Status (1)

Country Link
JP (1) JPH0467691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268799B1 (en) 1996-04-10 2001-07-31 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus and method of use
JP2009152021A (en) * 2007-12-20 2009-07-09 Nec Fielding Ltd Image projection device, light source lifetime prediction method of the image projection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268799B1 (en) 1996-04-10 2001-07-31 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus and method of use
US6690282B2 (en) 1996-04-10 2004-02-10 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus
US7006004B2 (en) 1996-04-10 2006-02-28 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus
JP2009152021A (en) * 2007-12-20 2009-07-09 Nec Fielding Ltd Image projection device, light source lifetime prediction method of the image projection device

Similar Documents

Publication Publication Date Title
JPH0474714A (en) Tl superconductor material
JP2711253B2 (en) Superconducting film and method for forming the same
JP3188358B2 (en) Method for producing oxide superconductor thin film
JPH0467691A (en) Tl-based superconductive material
JP2501620B2 (en) Preparation method of superconducting thin film
JPH01167221A (en) Production of superconducting thin film
JPH0412028A (en) Tl-based superconducting material
JPH0412017A (en) Tl superconductor material
JPH0412018A (en) Tl superconductive material
US5104850A (en) Preparation of high temperature superconducting coated wires by dipping and post annealing
JPH0474716A (en) Bi-system superconductive material
JP2654568B2 (en) How to make superconducting material
JPH0412024A (en) Bi-based superconductive material
JP2544759B2 (en) How to make a superconducting thin film
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH0474717A (en) Bi-system superconductive material
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP2544761B2 (en) Preparation method of superconducting thin film
JP2567416B2 (en) Preparation method of superconducting thin film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JPH0474718A (en) Bi-system superconductive material
JPH01219019A (en) Production of oxide superconductor film
JP2544760B2 (en) Preparation method of superconducting thin film
JPH0412027A (en) Bi-based superconductive material