JPH0464243A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0464243A
JPH0464243A JP17523190A JP17523190A JPH0464243A JP H0464243 A JPH0464243 A JP H0464243A JP 17523190 A JP17523190 A JP 17523190A JP 17523190 A JP17523190 A JP 17523190A JP H0464243 A JPH0464243 A JP H0464243A
Authority
JP
Japan
Prior art keywords
thermal conductivity
silicon carbide
heat dissipation
semiconductor device
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17523190A
Other languages
Japanese (ja)
Inventor
Takeshi Matsumoto
剛 松本
Hiromi Kagohara
楮原 広美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17523190A priority Critical patent/JPH0464243A/en
Publication of JPH0464243A publication Critical patent/JPH0464243A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To make it possible the permittivity of silicon carbide ceramic having high thermal conductivity to be changeable by adding alumina on the ceramic. CONSTITUTION:A metallized film is formed on a sintered insulating substrate, which contains a main component of silicon carbide, and additional components of beryllium and/or beryllium oxide and alumina. A semiconductor laser device is brazed to the metallized film. The aluminal content of the sintered compact is preferably 0.005-0.15wt.% of silicon carbide. Thermal conductivity of the sintered compact is not less than 2.0W/cm deg.C at room temperature. When this is used as a heat sink 2 of the semiconductor laser, fall of heat resistance and good heat sink effect can be obtained because of high thermal conductivity of the sintered compact. Occurrence of resonance within the package can effectively be suppressed because it is possible the permittivity of heat sink 2 to be changeable and high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザのパッケージに好適な放熱基板
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat dissipation substrate suitable for a semiconductor laser package.

〔従来の技術〕[Conventional technology]

従来、高熱伝導性セラミックスを半導体装置に応用した
例は多く、例えば、特公昭63−42414号公報のよ
うに、高熱伝導炭化ケイ素セラミック上に半導体素子を
搭載して、良好な放熱特性が得られたことが記載されて
いる。この中で、高熱伝導炭化ケイ素セラミックの熱膨
張係数が、81半導体素子の熱膨張係数とほぼ同様であ
るため、温度サイクル等の信頼性試験についても良好な
結果が得られたと記載されている。
In the past, there have been many examples of applying highly thermally conductive ceramics to semiconductor devices. For example, as in Japanese Patent Publication No. 63-42414, a semiconductor element is mounted on a highly thermally conductive silicon carbide ceramic to obtain good heat dissipation characteristics. It is stated that In this document, it is stated that since the thermal expansion coefficient of the high thermal conductivity silicon carbide ceramic is almost the same as that of the 81 semiconductor element, good results were obtained in reliability tests such as temperature cycling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、半導体素子を搭載するために必要な放
熱基板の諸特性及び製造方法について言及しているもの
の、使用すべき周波数帯については特に考慮されていな
い。また、上記技術に見られる様な、高熱伝導セラミッ
クスを応用した半導体装置の場合、常用周波数帯は1M
Hzであり。
Although the above-mentioned conventional technology mentions various characteristics of a heat dissipation board necessary for mounting a semiconductor element and a manufacturing method, it does not particularly consider the frequency band to be used. In addition, in the case of semiconductor devices that apply high thermal conductivity ceramics, as seen in the above technology, the common frequency band is 1M.
It is Hz.

これを超える周波数帯で、放熱基板の特性が半導体装置
の電気的特性に影響するか否かについては特に言及され
ていない。
There is no particular mention of whether or not the characteristics of the heat dissipation substrate affect the electrical characteristics of the semiconductor device in a frequency band exceeding this.

本発明の目的は、放熱性の優れた半導体レーザーパッケ
ージに好適な誘電率が可変である放熱基板を提供するこ
とにあり、また、本発明により、高周波領域であるIG
Hz付近で、半導体レーザーパッケージで発生する共振
問題を解決することにある。
An object of the present invention is to provide a heat dissipation substrate with a variable dielectric constant suitable for a semiconductor laser package with excellent heat dissipation.
The objective is to solve the resonance problem that occurs in semiconductor laser packages around Hz.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は高熱伝導性炭化ケ
イ素セラミックスに酸化アルミニウムを添加することで
、セラミックスの誘電率を可変にしたものである。
In order to achieve the above object, the present invention adds aluminum oxide to highly thermally conductive silicon carbide ceramics to make the dielectric constant of the ceramics variable.

〔作用〕[Effect]

酸化ベリリウムを含有する炭化ケイ素セラミックスは、
酸化アルミニウムの添加により、その誘電率が可変とな
る。しかし、その添加量が0.15重量%を越えると、
熱伝導率が2.OW/a11℃以下。
Silicon carbide ceramics containing beryllium oxide are
The addition of aluminum oxide makes its dielectric constant variable. However, if the amount added exceeds 0.15% by weight,
Thermal conductivity is 2. OW/a 11℃ or less.

そして、比抵抗が106Ω国以下となり、半導体装置の
基板としては、その特性を満足しなくなる。
Then, the specific resistance becomes less than 106Ω, and the substrate no longer satisfies its characteristics as a substrate for a semiconductor device.

従って、熱伝導率及び比抵抗が従来の高熱伝導炭化ケイ
素セラミックスに劣ることなく、且つ、必要な所定の誘
電率を得るためには、酸化アルミニウムの添加量が、0
.05〜0.15重量%であることが望ましい。
Therefore, in order to maintain thermal conductivity and resistivity comparable to those of conventional high thermal conductivity silicon carbide ceramics, and to obtain the required dielectric constant, the amount of aluminum oxide added must be 0.
.. The amount is preferably 0.05 to 0.15% by weight.

〔実施例〕〔Example〕

〈実施例1〉 純度98%の炭化ケイ素粉末(平均粒径2μm)100
重量部、酸化ベリリウム粉末1重量部に、酸化アルミニ
ウムをそれぞれ、0,0.05゜0.10,0.15,
0.2 重量部配合し、バインダ及び溶剤を加え充分に
混合し、造粒した後、直径300m、厚さ2m+に仮成
形した。次いで、この仮成形体を黒鉛ダイス内に組み込
み、真空ホットプレス装置により、真空度10−a〜1
0″″!1Torr、圧力200 kg/an?、温度
2100℃の条件下で焼結した。この様にして得られた
相対密度98%以上のそれぞれの焼結体を、両面研削し
、口25.4mに切断した。熱伝導率はレーザフラッシ
ュ法により熱拡散率を測定して算出した。誘電率及び比
抵抗は、基極の両面に電極をつけて、室温で測定した。
<Example 1> Silicon carbide powder with a purity of 98% (average particle size 2 μm) 100
0, 0.05°, 0.10, 0.15°, aluminum oxide to 1 part by weight of beryllium oxide powder, respectively.
0.2 parts by weight was added, a binder and a solvent were added, and the mixture was thoroughly mixed. After granulation, it was preformed to a diameter of 300 m and a thickness of 2 m+. Next, this temporary molded body is assembled into a graphite die, and the degree of vacuum is 10-a to 1 using a vacuum hot press device.
0″″! 1 Torr, pressure 200 kg/an? , sintered at a temperature of 2100°C. Each of the sintered bodies thus obtained, each having a relative density of 98% or more, was ground on both sides and cut into a length of 25.4 m. Thermal conductivity was calculated by measuring thermal diffusivity using a laser flash method. The dielectric constant and specific resistance were measured at room temperature by attaching electrodes to both sides of the base electrode.

第1図は、酸化アルミニウム含有量と各特性値の関係を
示す。
FIG. 1 shows the relationship between aluminum oxide content and each characteristic value.

誘電率を250以上で安定に得るには、酸化アルミニウ
ム含有量が0.05重量以上必要であるが、0.15重
量%を越えると熱伝導率が2.OW/■℃より低くなる
ため、酸化アルミニウム含有量の範囲は0.05〜0.
15重量%が好ましい。
To stably obtain a dielectric constant of 250 or more, the aluminum oxide content must be 0.05% by weight or more, but if it exceeds 0.15% by weight, the thermal conductivity will decrease to 2.5% by weight. Since it is lower than OW/■°C, the aluminum oxide content ranges from 0.05 to 0.
15% by weight is preferred.

〈実施例2〉 第2図は各種セラミックスを放熱基板として実装し、熱
抵抗を測定するための構造図である。放熱基板2のサイ
ズは5 m X 5■X0.635閣で、上、下面面に
はメタライズを施した。半導体レーザ1のサイズは4 
an X 4 m X 0 、406 mで、放熱基板
2と半導体レーザ1、放熱基板2と銅ステム3の間はそ
れぞれP b −5S n 、 P b −40Snは
んだで接合した。また、接合層の厚さは0.1mm以下
とした。
<Example 2> FIG. 2 is a structural diagram for mounting various ceramics as a heat dissipation substrate and measuring thermal resistance. The size of the heat dissipation board 2 was 5 m x 5 m x 0.635 m, and the upper and lower surfaces were metallized. The size of semiconductor laser 1 is 4
An X 4 m Further, the thickness of the bonding layer was 0.1 mm or less.

第3図は、第2図で説明した熱抵抗測定サンプルを使用
して、各種セラミックス毎に測定した一定熱量印加時間
と熱抵抗の関係を示した図である。
FIG. 3 is a diagram showing the relationship between constant heat application time and thermal resistance measured for each type of ceramic using the thermal resistance measurement sample described in FIG. 2.

印加時間が大きくなるにつれて、各種セラミックス間の
熱抵抗差は大きくなる。この中で1本発明の放熱基板は
良好な結果を示し、AQN等と比較して、熱抵抗は低く
なった。
As the application time increases, the difference in thermal resistance between various ceramics increases. Among these, one of the heat dissipating substrates of the present invention showed good results, and the thermal resistance was lower than that of AQN and the like.

〈実施例3〉 第4図は、本発明の放熱基板を半導体レーザパッケージ
に実装した場合の模式図である。放熱基板6の上下両面
にはT i / P t / A uの3層連続蒸着膜
メタライズを施し、サイズを1 xi X 0 、5m
 X 0 、2 m とした。放熱基板6と半導体レー
ザ5、放熱基板6と金属ステム6は、それぞれ、Pb−
60Sn、Au−205nのはんだで接合した。また、
半導体レーザ上面はP極とし、φ20μmの金線を用い
て正極と接続した。一方、半導体レーザ下面のN極は、
Au−20Snはんだの接合部を通し、放熱基板の上面
メタライズと接し、金線9を通して、金属ステム7に接
地した。このパッケージ構造で、放熱基板6をARNと
して、応答周波数IGHzで発振のテストを行なったと
ころ、共振が発生し必要な発振スペクトルが得ら乳なか
った。
<Example 3> FIG. 4 is a schematic diagram when the heat dissipation substrate of the present invention is mounted on a semiconductor laser package. The upper and lower surfaces of the heat dissipation substrate 6 are metallized with a three-layer continuous vapor deposition film of T i / P t / Au, and the size is 1 x x 0, 5 m.
X 0 was set to 2 m. The heat dissipation board 6 and the semiconductor laser 5, and the heat dissipation board 6 and the metal stem 6 are each made of Pb-
It was joined with 60Sn and Au-205n solder. Also,
The top surface of the semiconductor laser was made into a P pole, and connected to the positive electrode using a gold wire with a diameter of 20 μm. On the other hand, the N pole on the bottom surface of the semiconductor laser is
It was passed through the Au-20Sn solder joint, brought into contact with the upper surface metallization of the heat dissipation board, and was grounded to the metal stem 7 through the gold wire 9. When an oscillation test was conducted with this package structure at a response frequency of IGHz using the heat dissipation board 6 as ARN, resonance occurred and the required oscillation spectrum could not be obtained.

そこで、第5図に示すような等価回路を考えて共振周波
数が回路の1/P丁ごにほぼ、比例することから、放熱
基板6を従来の高熱伝導SiCに置き換えてテストした
が、AQNの場合と同様に良好な結果が得られなかった
。そこで放熱基板6を本発明の放熱基板に置き換えたと
ころ、良好な応答性が得られた。ここで使用したAQN
の誘電率は9、従来の高熱伝導SiCは4o、そして、
本発明の放熱基板は、250〜500である。第4図で
説明したパッケージの場合、インダクタンスLの発生主
要因は金線8と考えられる。また、抵抗Rはほぼ一定と
考えられるので、放熱基板の容量Cを変化させた場合、
共振周波数は1/Kにほぼ比例すると考えられる。従っ
て、本発明の放熱基板を使用した場合、共振周波数はA
QNの場合と比較して175〜1/7、低くなったと考
察される。
Therefore, considering the equivalent circuit shown in Fig. 5, and since the resonant frequency is approximately proportional to 1/P of the circuit, we replaced the heat dissipation board 6 with a conventional high thermal conductivity SiC and tested it. As usual, good results were not obtained. Therefore, when the heat dissipation board 6 was replaced with the heat dissipation board of the present invention, good responsiveness was obtained. AQN used here
The dielectric constant of is 9, conventional high thermal conductivity SiC is 4o, and
The heat dissipation board of the present invention has a diameter of 250 to 500. In the case of the package described in FIG. 4, the main cause of the inductance L is considered to be the gold wire 8. Also, since the resistance R is considered to be almost constant, if the capacitance C of the heat dissipation board is changed,
The resonance frequency is considered to be approximately proportional to 1/K. Therefore, when using the heat dissipation board of the present invention, the resonant frequency is A
It is considered that this is 175 to 1/7 lower than in the case of QN.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体レーザの放熱基板に用いた場合
、熱伝導率が大きいので、熱抵抗の低下及び良好な放熱
効果がある。また、放熱基板の誘電率が可変、かつ、大
きく出来るので、パンケージの共振対策に効果がある。
According to the present invention, when used as a heat dissipation substrate for a semiconductor laser, the thermal conductivity is high, so there is a reduction in thermal resistance and a good heat dissipation effect. Furthermore, since the dielectric constant of the heat dissipation substrate can be varied and increased, it is effective in countering resonance of the pan cage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の放熱基板の酸化アルミニウム含有量と
熱伝導率、比抵抗、及び誘電率の関係を示した特性図、
第2図は熱抵抗測定サンプルの説明図、第3図は各種放
熱基板を用いた場合の出力印加時間と熱抵抗の関係を示
した特性図、第4図は、本発明の放熱基板を半導体レー
ザのパッケージに組み込んだ場合の説明図、第5図は、
第4図に示した半導体レーザーパッケージの等価回路図
である。 1・・・半導体レーザ、2・・・放熱基板、3・・・銅
ステム、4・・・はんだ、5・・・半導体レーザ、6・
・高熱伝導第1図 1イしアルぐ二7ム含有!(皇量・/a)第2図 第3図 印力0@間(ynj) 第4図 第 図
FIG. 1 is a characteristic diagram showing the relationship between aluminum oxide content, thermal conductivity, specific resistance, and dielectric constant of the heat dissipation substrate of the present invention;
Fig. 2 is an explanatory diagram of a thermal resistance measurement sample, Fig. 3 is a characteristic diagram showing the relationship between output application time and thermal resistance when various heat dissipation substrates are used, and Fig. 4 is a diagram showing the relationship between the heat dissipation substrate of the present invention and a semiconductor. Figure 5 is an explanatory diagram when it is assembled into a laser package.
5 is an equivalent circuit diagram of the semiconductor laser package shown in FIG. 4. FIG. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Heat dissipation board, 3... Copper stem, 4... Solder, 5... Semiconductor laser, 6...
・Contains high thermal conductivity. (Imperial//a) Figure 2 Figure 3 Inryoku 0 @ between (ynj) Figure 4 Figure

Claims (1)

【特許請求の範囲】 1、炭化ケイ素を主成分とし、ベリリウムまたは酸化ベ
リリウムの少なくとも一種を含み、かつ、酸化アルミニ
ウムを含む電気絶縁性焼結体からなる基体表面に金属化
膜を有し、前記金属化膜上にろう材を介して半導体レー
ザ素子が接合されていることを特徴とする半導体装置。 2、請求項1において、前記焼結体の酸化アルミニウム
の含有量が、炭化ケイ素100重量部に対し、0.05
〜0.15重量部である半導体装置。 3、請求項1または2において、前記焼結体の室温での
熱伝導率が2.0W/cm℃以上である半導体装置。 4、請求項1または2において、前記焼結体の室温での
比抵抗が10^6Ωcm以上である半導体装置。 5、請求項1または2において、前記焼結体の誘電率が
、周波数1MHzで250以上である半導体装置。
[Scope of Claims] 1. Having a metallized film on the surface of a base made of an electrically insulating sintered body containing silicon carbide as a main component, containing at least one of beryllium or beryllium oxide, and containing aluminum oxide, A semiconductor device characterized in that a semiconductor laser element is bonded onto a metallized film via a brazing material. 2. In claim 1, the content of aluminum oxide in the sintered body is 0.05 parts by weight based on 100 parts by weight of silicon carbide.
~0.15 parts by weight of a semiconductor device. 3. The semiconductor device according to claim 1 or 2, wherein the sintered body has a thermal conductivity of 2.0 W/cm°C or more at room temperature. 4. The semiconductor device according to claim 1 or 2, wherein the sintered body has a specific resistance of 10^6 Ωcm or more at room temperature. 5. The semiconductor device according to claim 1 or 2, wherein the dielectric constant of the sintered body is 250 or more at a frequency of 1 MHz.
JP17523190A 1990-07-04 1990-07-04 Semiconductor device Pending JPH0464243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17523190A JPH0464243A (en) 1990-07-04 1990-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17523190A JPH0464243A (en) 1990-07-04 1990-07-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0464243A true JPH0464243A (en) 1992-02-28

Family

ID=15992563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17523190A Pending JPH0464243A (en) 1990-07-04 1990-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0464243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123738A (en) * 2005-10-31 2007-05-17 Sony Corp Optical transmission module, optical transmission/reception module and optical communication apparatus
US7457333B2 (en) 2003-03-14 2008-11-25 Sumitomo Electric Industries, Ltd. Light-transmitting module capable of responding a high-frequency over 10 GHz

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457333B2 (en) 2003-03-14 2008-11-25 Sumitomo Electric Industries, Ltd. Light-transmitting module capable of responding a high-frequency over 10 GHz
JP2007123738A (en) * 2005-10-31 2007-05-17 Sony Corp Optical transmission module, optical transmission/reception module and optical communication apparatus

Similar Documents

Publication Publication Date Title
JPH0261539B2 (en)
US5311399A (en) High power ceramic microelectronic package
JPH03211860A (en) Semiconductor package
JPS5831755B2 (en) Base for electrical insulation
JPH0464243A (en) Semiconductor device
JP4227610B2 (en) Manufacturing method of heat dissipation base
JPS59126665A (en) Thick film hybrid integrated circuit
JP3387221B2 (en) High thermal conductive ceramic package for semiconductor
JPH08279569A (en) Ceramic lid for package
JPH0337308B2 (en)
JP3457958B2 (en) Package for optical transmission module
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPS62226645A (en) Wiring substrate
JPH0518477B2 (en)
JPS6056298B2 (en) semiconductor equipment
JP3222348B2 (en) Manufacturing method of ceramic package
JP3283119B2 (en) Circuit board
JP2006041231A (en) Ceramic circuit board and electric apparatus
JPH01151252A (en) Ceramic package and its manufacture
JP3850312B2 (en) Semiconductor element storage package and semiconductor device
JP2003188295A (en) Heat sink for semiconductor element receiving package and for optical communication module package
JPH03173166A (en) Heat-dissipating substrate for semiconductor
JP2735750B2 (en) Aluminum nitride sintered body having metallized metal layer
JPS6342414B2 (en)
JP2515672Y2 (en) Package for storing semiconductor devices