JPH0463978A - Fluid compressor - Google Patents

Fluid compressor

Info

Publication number
JPH0463978A
JPH0463978A JP17133890A JP17133890A JPH0463978A JP H0463978 A JPH0463978 A JP H0463978A JP 17133890 A JP17133890 A JP 17133890A JP 17133890 A JP17133890 A JP 17133890A JP H0463978 A JPH0463978 A JP H0463978A
Authority
JP
Japan
Prior art keywords
cylinder
bearing member
rotating body
end side
circumferential surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17133890A
Other languages
Japanese (ja)
Inventor
Makoto Hayano
早野 誠
Masayuki Okuda
正幸 奥田
Takuya Hirayama
卓也 平山
Kanji Sakata
坂田 寛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17133890A priority Critical patent/JPH0463978A/en
Publication of JPH0463978A publication Critical patent/JPH0463978A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member
    • F04C18/107Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member with helical teeth

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To restrain seal leak between respective working chambers to minimum by instituting dimensional relation between a logical eccentric quantity and an execution eccentric quantity of a rotor into a prescribed condition. CONSTITUTION:In a fluid compressor, against a logical eccentric quantity (eo) of a rotor 5 against a bearing member 15 when clearance Cmc between a cylinder 1 and the bearing member 15 and clearance Cmp between the rotor 5 and the bearing member 15 are zero, an execution eccentric quantity (e) of the rotor 5 against the bearing member 15 when the clearance Cmc, Cmp exist, is instituted to satisfy the following condition: (eo)<=(e)<=(eo)+Cmc+Cmp. Hereby, the clearance of the rotor 5 against the cylinder 1 can be made small. Consequently, seal leak between respective working chambers (a) can be restrained to minimum.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はたとえば冷凍サイクルの冷媒ガスを圧縮する
のに適するヘリカルブレード方式の流体圧縮機に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a helical blade type fluid compressor suitable for compressing refrigerant gas in a refrigeration cycle, for example.

(従来の技術) 従来より一般的な圧縮機として、レシプロ方式、ロータ
リ方式等のものが知られており、その外に、シリンダの
吸込端側から作動室に流入した冷媒をシリンダの吐出端
側の作動室へ順次移送させながら圧縮していき外部へ吐
出するヘリ力ルブレード方式の流体圧縮機が提供されて
いる。
(Prior Art) Conventionally, general compressors such as reciprocating type and rotary type are known. A helical blade type fluid compressor is provided which compresses fluid while sequentially transferring it to a working chamber and then discharges the fluid to the outside.

ヘリカルブレード方式の圧縮機の概要は、例えば、第4
図に示す如くステータ及びロータから成る駆動手段(図
示していない)によって回転するシリンダ1と、シリン
ダ1内にeたけ偏心して配置されオルダムリング3を介
してシリンダ1に対し相対的に旋回可能な回転体5とを
備え、回転体5の外周面には回転体5の略全長に亘って
螺旋状の溝7か形成され、この溝7に螺旋状のブレード
9が出入自在に嵌合されている。ブレード9の外周面は
シリンダ1の内周面と接触し合い、ブレド9は回転体5
と相対的に旋回する。シリンダ1に対する回転体5は相
対的に偏心して旋回するため回転体外周面とこれに対向
するシリンダ内周面との間には、相対速度が生じ、さら
にこの相対速度は一回転を一周期して変化する。そのた
めに、前記した如くブレード9が螺旋状の溝7に対して
出入することで回転体5とシリンダ1との間の空間に複
数の作動室11が軸方向に沿って形成されるようになる
。作動室11の容積は、ブレード9が嵌合される螺旋状
の溝7のピッチによって決定され、溝7のピッチは、回
転体5の一端から他端に向かって徐々に小さくなってい
る。したがって、前記ブレード9によって形成される作
動室11の容積は、吸込端側となる軸受部材13から吐
出端側となる軸受部材15に向かって徐々に小さくなる
ため、吐出端側へ向けて順次移送される間に冷媒は徐々
に圧縮されて外に吐出される構造となっている。
For an overview of the helical blade type compressor, see Section 4, for example.
As shown in the figure, a cylinder 1 is rotated by a driving means (not shown) consisting of a stator and a rotor, and is arranged eccentrically by e in the cylinder 1 and is rotatable relative to the cylinder 1 via an Oldham ring 3. A spiral groove 7 is formed on the outer peripheral surface of the rotating body 5 over substantially the entire length of the rotating body 5, and a spiral blade 9 is fitted into this groove 7 so as to be freely removable and removable. There is. The outer circumferential surface of the blade 9 is in contact with the inner circumferential surface of the cylinder 1, and the blade 9 is in contact with the inner circumferential surface of the cylinder 1.
rotate relative to the Since the rotating body 5 rotates eccentrically relative to the cylinder 1, a relative speed is generated between the outer circumferential surface of the rotating body and the inner circumferential surface of the cylinder opposing it, and furthermore, this relative speed corresponds to one cycle of one revolution. and change. Therefore, as described above, when the blade 9 moves in and out of the spiral groove 7, a plurality of working chambers 11 are formed in the space between the rotating body 5 and the cylinder 1 along the axial direction. . The volume of the working chamber 11 is determined by the pitch of the spiral groove 7 into which the blade 9 is fitted, and the pitch of the groove 7 gradually decreases from one end of the rotating body 5 to the other end. Therefore, the volume of the working chamber 11 formed by the blade 9 gradually decreases from the bearing member 13 on the suction end side to the bearing member 15 on the discharge end side. During this time, the refrigerant is gradually compressed and discharged outside.

(発明が解決しようとする課題) 前記した如くヘリカルブレード方式の流体圧縮機にあっ
ては、回転体5に旋回運動を与えるためにeたけ偏心し
ており、この偏心量eは、論理偏心量eoに対してe−
eoの関係に設定されている。しかしながら、シリンダ
1及び回転体5は、軸受部材13.15に対してクリア
ランス、遊びが存在するため、このクリアランスは回転
体5が矢印イ方向に動く動き代となってあられれ作動室
11間aのシール性が低下するようになる。シル性が低
下すると、シール漏れによる体積率の低F等により効率
か著しく悪くなる問題があった。
(Problems to be Solved by the Invention) As mentioned above, in the helical blade type fluid compressor, the rotating body 5 is eccentric by an amount e in order to give a turning motion, and this eccentricity e is equal to the theoretical eccentricity eo. against e-
The relationship is set as eo. However, since the cylinder 1 and the rotating body 5 have clearance and play with respect to the bearing member 13.15, this clearance becomes a movement range for the rotating body 5 to move in the direction of arrow A. The sealing performance of the product will deteriorate. When the sealing properties deteriorate, there is a problem in that the efficiency deteriorates significantly due to a low volume fraction due to seal leakage.

そこで、この発明にあっては各作動室間のシール漏れが
最小に抑えられる効率のよい流体圧縮機を提供すること
を目的としている。
Therefore, an object of the present invention is to provide an efficient fluid compressor in which seal leakage between working chambers can be minimized.

C発明の構成コ (課題を解決するための手段) 前記目的を達成するために、この発明にあっては、吸込
端側の軸受部材と吐出端側の軸受部材とで両端か密閉支
持された回転可能なシリンダと、このシリンダの軸方向
に沿って偏心して配置され、前記シリンダの内周面に一
部が接触した状態で前記シリンダと相対的に旋回可能な
円筒状の回転体と、この回転体の外周に設けられ前記シ
リンダの吸込端側から吐出端側へ向かって順次小さくな
るピッチで形成された螺旋状の溝と、この溝に出入自在
に嵌合されるとともに前記シリンダの内周面と接触する
外周面を有し前記シリンダの内周面と回転体の外周面と
の間を複数の作動室に区画する螺旋状のブレードと、前
記回転体とシリンダとを、相対的に旋回させる駆動手段
とを備え、前記回転体とシリンダの相対的な旋回時にシ
リンダの吸込端側から作動室に流入した流体を吐出端側
の作動室へ順次圧縮しながら移送し外部へ吐出する流体
圧縮機において、前記シリンダと軸受部材のクリアラン
スC0、と、回転体と軸受部材のクリアランスC=、が
ゼロの時の軸受部材に対する回転体の論理偏心量eoに
対し、前記クリアランスC4゜。
C. Constitution of the Invention (Means for Solving the Problems) In order to achieve the above object, in this invention, both ends are hermetically supported by a bearing member on the suction end side and a bearing member on the discharge end side. a rotatable cylinder; a cylindrical rotating body that is arranged eccentrically along the axial direction of the cylinder and that can rotate relative to the cylinder with a portion in contact with the inner circumferential surface of the cylinder; A spiral groove is provided on the outer periphery of the rotating body and is formed at a pitch that gradually decreases from the suction end side to the discharge end side of the cylinder, and the inner periphery of the cylinder is fitted into the groove so as to be able to move in and out. A spiral blade having an outer circumferential surface in contact with a surface and partitioning a plurality of working chambers between the inner circumferential surface of the cylinder and the outer circumferential surface of the rotating body, and the rotating body and the cylinder are rotated relative to each other. a fluid compressor that sequentially compresses and transfers the fluid flowing into the working chamber from the suction end side of the cylinder to the working chamber on the discharge end side when the rotating body and the cylinder rotate relative to each other, and discharges it to the outside. In the machine, when the clearance C0 between the cylinder and the bearing member and the clearance C between the rotating body and the bearing member are zero, the clearance C4° is compared to the theoretical eccentricity eo of the rotating body with respect to the bearing member.

Cmpが存在する時の軸受部材に対する回転体の実施偏
心量eを、eo≦e≦eo+Cff1e+CIIPの条
件としである。
The actual eccentricity e of the rotating body with respect to the bearing member when Cmp exists is eo≦e≦eo+Cff1e+CIIP.

(作用) かかる流体圧縮機によれば、軸受部材に対する回転体の
実施偏心量eを、eo≦e≦eo+C0゜十〇、、、、
の条件として組付けたため、シリンダに対する回転体の
クリアランスを小さくできるため、各作動室間のシール
漏れは最小に抑えられる。この結果、体積率の低下を招
くことはなく効率の向上が図れるようになる。
(Function) According to this fluid compressor, the actual eccentricity e of the rotating body with respect to the bearing member is eo≦e≦eo+C0゜10,...
Since the cylinder was assembled under the following conditions, the clearance of the rotating body to the cylinder can be reduced, and seal leakage between each working chamber can be minimized. As a result, efficiency can be improved without causing a decrease in volume fraction.

(実施例) 以下、第1図乃至第3図の図面を参照しながらこの発明
の一実施例を詳細に説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings of FIGS. 1 to 3.

第1図は従来と同一構造のものであり、同一部材には同
一符号を符しである。第3図は第1図りの拡大図を示し
たもので、シリンダ1の端部は吐出端側の軸受部材15
の外周面に回転自在に嵌合支持されている。シリンダコ
の反対側の端部は吸込端側の軸受部材13の外周面に回
転自在に嵌合支持され、シリンダ1内は両軸受部材13
.’1.5によって密閉されている。回転体5はその中
心線Bがシリンダ1の中心線Aに対してαだけ偏心して
配置され、外周面の一部(同図下側)はシリンダ1の内
周面1aと線接触している。
FIG. 1 shows the same structure as the conventional one, and the same members are denoted by the same reference numerals. FIG. 3 shows an enlarged view of the first drawing, and the end of the cylinder 1 is connected to the bearing member 15 on the discharge end side.
is rotatably fitted and supported on the outer circumferential surface of. The opposite end of the cylinder is rotatably fitted and supported on the outer peripheral surface of a bearing member 13 on the suction end side, and inside the cylinder 1 both bearing members 13
.. '1.5 sealed. The rotating body 5 is arranged so that its center line B is offset by α with respect to the center line A of the cylinder 1, and a part of the outer circumferential surface (lower side in the figure) is in line contact with the inner circumferential surface 1a of the cylinder 1. .

一方、回転体5の支軸部5bは、吐出端側の軸受部材1
5の軸受穴17に、他方の支軸部5aは吸込端側の軸受
部材13にそれぞれ回転自在に嵌挿されている。
On the other hand, the support shaft portion 5b of the rotating body 5 is connected to the bearing member 1 on the discharge end side.
The other support shaft portion 5a is rotatably fitted into the bearing member 13 on the suction end side in the bearing hole 17 of No. 5.

支軸部5bの中心線Bは軸受穴17の中心線Cに対して
βだけ偏心し、シリンダ1−の中心線Aと軸受穴17の
中心線Cはeだけ偏心している。この実施偏心量eの時
の吐出端側の軸受部材15とシリンダ1との間にクリア
ランスC−を有している。また、軸受部材15と軸受穴
17との間にクリアランスC1を有しており、これら各
クリアランスC1elcffil+と実施偏心量eとは
e。≦e≦e+Cff1.+C,,の関係に設定されて
いる。ここで、eoは、各クリアランスC7゜+  C
mOがセロの時に、回転体5の中心線Bと軸受穴17の
中心線Cとか限りなくゼロに近い理論偏心量となってい
る。また、吐出チューブ23は吐出端側の軸受部材15
に設けられた吐出路2つを介して最終の作動室11と連
通している。
The center line B of the support shaft portion 5b is eccentric by β with respect to the center line C of the bearing hole 17, and the center line A of the cylinder 1- and the center line C of the bearing hole 17 are eccentric by e. A clearance C- is provided between the bearing member 15 on the discharge end side and the cylinder 1 when the actual eccentricity is e. Further, there is a clearance C1 between the bearing member 15 and the bearing hole 17, and each of these clearances C1elcffil+ and the actual eccentricity e are e. ≦e≦e+Cff1. The relationship is set as +C, . Here, eo is each clearance C7゜+C
When mO is zero, the center line B of the rotating body 5 and the center line C of the bearing hole 17 have a theoretical eccentricity that is extremely close to zero. Further, the discharge tube 23 has a bearing member 15 on the discharge end side.
It communicates with the final working chamber 11 via two discharge passages provided in the.

駆動手段25は密閉ケース1に固定されたステータ25
aと、前記回転体5が固着された回転可能なロータ25
bとから成っている。
The driving means 25 is a stator 25 fixed to the sealed case 1.
a, and a rotatable rotor 25 to which the rotating body 5 is fixed.
It consists of b.

なお、他の機能部品は従来と同一のため同一符号を符し
て詳細な説明は省略する。
Note that other functional parts are the same as the conventional ones, so they are denoted by the same reference numerals and detailed explanations will be omitted.

このように構成された流体圧縮機によれば、軸受穴]7
側のクリアランスCmcはシリンダ1側のクリアランス
Cmcに比べて小さく設定されるようになり、作動室1
1と作動室11の間aのシール漏れを小さく抑えられる
。したがって、駆動手段25によってシリンダ1が回転
すれば、オルダムリング3を介して回転体5も回転する
。シリンダ1に対する回転体5は、相対的に偏心して旋
回するため回転体5の外周面とそれに対向するシリンダ
]の内周面との間には相対速度が生じ、さらにその相対
速度は一回転を周期として変化しながらシリンダ1内で
内転し、シリンダ1に対して回転体5は旋回運動する結
果、吸込端側の作動室11に送り込まれた冷媒ガスは吐
出端側の作動室11へ向けて効率よく圧縮され吐出チュ
ーブ23から外へ吐出されるようになる。なお、この実
施例では吐出端側の軸受部材15側について説明したか
吸込端側の軸受部材13についても同様である。
According to the fluid compressor configured in this way, the bearing hole]7
The side clearance Cmc is now set smaller than the clearance Cmc on the cylinder 1 side, and the working chamber 1
1 and the working chamber 11 can be suppressed to a small extent. Therefore, when the cylinder 1 is rotated by the driving means 25, the rotating body 5 is also rotated via the Oldham ring 3. Since the rotating body 5 rotates eccentrically relative to the cylinder 1, a relative speed occurs between the outer circumferential surface of the rotating body 5 and the inner circumferential surface of the opposing cylinder. The rotating body 5 rotates internally within the cylinder 1 while changing the cycle, and as a result of the rotational movement of the rotating body 5 with respect to the cylinder 1, the refrigerant gas sent into the working chamber 11 on the suction end side is directed toward the working chamber 11 on the discharge end side. It is efficiently compressed and discharged from the discharge tube 23. In addition, in this embodiment, the explanation has been made on the bearing member 15 side on the discharge end side, but the same applies to the bearing member 13 on the suction end side.

[発明の効果コ 以上、説明したように、この発明の流体圧縮機によれば
、軸受穴の実施偏心量eを、eoSe≦e o+ Cm
e + Cspとしたためピストンとシリンダのクリア
ランスが小さくなる結果、各作動室間の漏れが小さく抑
えられて、体積率の低下を招くことがなくなり、効率の
向上が図れるようになる。
[Effects of the Invention] As explained above, according to the fluid compressor of the present invention, the actual eccentricity e of the bearing hole satisfies eoSe≦e o+ Cm
Since e + Csp is used, the clearance between the piston and the cylinder is reduced, and as a result, leakage between the working chambers is suppressed to a small level, and the volume ratio does not decrease, making it possible to improve efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は流体圧縮機全体を示す縦断面図、第2図はブレ
ードを組付けた回転体の斜視図、第3図は第1図のD部
拡大図、第4図は説明図である。 1・・・シリンダ 5・・・回転体 7・・・溝 9・・・ブレード 11・・・作動室 13〜15・・軸受部材 23・・電動要素(駆動手段)
Figure 1 is a vertical sectional view showing the entire fluid compressor, Figure 2 is a perspective view of a rotating body with blades attached, Figure 3 is an enlarged view of section D in Figure 1, and Figure 4 is an explanatory diagram. . 1...Cylinder 5...Rotating body 7...Groove 9...Blade 11...Working chambers 13-15...Bearing member 23...Electric element (driving means)

Claims (1)

【特許請求の範囲】[Claims] 吸込端側の軸受部材と吐出端側の軸受部材とで両端が密
閉支持された回転可能なシリンダと、このシリンダの軸
方向に沿って偏心して配置され、前記シリンダの内周面
に一部が接触した状態で前記シリンダと相対的に旋回可
能な円筒状の回転体と、この回転体の外周に設けられ前
記シリンダの吸込端側から吐出端側へ向かって順次小さ
くなるピッチで形成された螺旋状の溝と、この溝に出入
自在に嵌合されるとともに前記シリンダの内周面と接触
する外周面を有し前記シリンダの内周面と回転体の外周
面との間を複数の作動室に区画する螺旋状のブレードと
、前記回転体とシリンダとを、相対的に旋回させる駆動
手段とを備え、前記回転体とシリンダの相対的な旋回時
にシリンダの吸込端側から作動室に流入した流体を吐出
端側の作動室へ順次圧縮しながら移送し外部へ吐出する
流体圧縮機において、前記シリンダと軸受部材のクリア
ランスC_m_cと、回転体と軸受部材のクリアランス
C_m_pがゼロの時の軸受部材に対する回転体の論理
偏心量e_0に対し、前記クリアランスC_m_c、C
_m_pが存在する時の軸受部材に対する回転体の実施
偏心量eを、e_0≦e≦e_0+C_m_c+C_m
_pの条件としたことを特徴とする流体圧縮機。
A rotatable cylinder whose both ends are hermetically supported by a bearing member on the suction end side and a bearing member on the discharge end side; A cylindrical rotating body that can rotate relative to the cylinder while in contact with the cylinder, and a spiral formed on the outer periphery of the rotating body with a pitch that gradually decreases from the suction end side to the discharge end side of the cylinder. a plurality of working chambers are formed between the inner circumferential surface of the cylinder and the outer circumferential surface of the rotating body, and the outer circumferential surface is fitted into the groove so as to be able to move in and out of the cylinder, and the outer circumferential surface is in contact with the inner circumferential surface of the cylinder. and a drive means for relatively rotating the rotary body and the cylinder, the blade flowing into the working chamber from the suction end side of the cylinder when the rotary body and the cylinder rotate relative to each other. In a fluid compressor that sequentially compresses and transfers fluid to a working chamber on the discharge end side and discharges it to the outside, the relationship between the bearing member and the bearing member when the clearance C_m_c between the cylinder and the bearing member and the clearance C_m_p between the rotating body and the bearing member are zero. For the theoretical eccentricity e_0 of the rotating body, the clearances C_m_c, C
The actual eccentricity e of the rotating body with respect to the bearing member when _m_p exists is e_0≦e≦e_0+C_m_c+C_m
A fluid compressor characterized in that the condition is _p.
JP17133890A 1990-06-30 1990-06-30 Fluid compressor Pending JPH0463978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17133890A JPH0463978A (en) 1990-06-30 1990-06-30 Fluid compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17133890A JPH0463978A (en) 1990-06-30 1990-06-30 Fluid compressor

Publications (1)

Publication Number Publication Date
JPH0463978A true JPH0463978A (en) 1992-02-28

Family

ID=15921372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17133890A Pending JPH0463978A (en) 1990-06-30 1990-06-30 Fluid compressor

Country Status (1)

Country Link
JP (1) JPH0463978A (en)

Similar Documents

Publication Publication Date Title
JPH0458086A (en) Fluid compressor
US4997352A (en) Rotary fluid compressor having a spiral blade with an enlarging section
JPH0463978A (en) Fluid compressor
KR0121938B1 (en) Fluid compressor
US5141423A (en) Axial flow fluid compressor with oil supply passage through rotor
JPH0219685A (en) Fluid compressor
JPH0219684A (en) Fluid compressor
JP2804060B2 (en) Fluid compressor
US5368456A (en) Fluid compressor with bearing means disposed inside a rotary rod
JP3487612B2 (en) Fluid compressor
JPH0219682A (en) Fluid compressor
JP3078269B2 (en) Fluid compressor
JP2779814B2 (en) Displacement compressor
JP2758182B2 (en) Fluid compressor
JPH07107391B2 (en) Fluid compressor
JPH11173286A (en) Fluid compressor
JPH05272476A (en) Fluid compressor
JP2839563B2 (en) compressor
JP2880771B2 (en) Fluid compressor
KR940007759B1 (en) Fluid compressor
JPH09137784A (en) Refrigerant compressor
JP2898710B2 (en) Fluid compressor
JP3058332B2 (en) Fluid compressor
JPH04314987A (en) Fluid compressor
JPH062672A (en) Scroll type fluid machine