JPH046374A - Mixed cooling and heating type refrigerating cycle device - Google Patents

Mixed cooling and heating type refrigerating cycle device

Info

Publication number
JPH046374A
JPH046374A JP10791590A JP10791590A JPH046374A JP H046374 A JPH046374 A JP H046374A JP 10791590 A JP10791590 A JP 10791590A JP 10791590 A JP10791590 A JP 10791590A JP H046374 A JPH046374 A JP H046374A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
pressure gas
outdoor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10791590A
Other languages
Japanese (ja)
Inventor
Jiro Okajima
次郎 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10791590A priority Critical patent/JPH046374A/en
Publication of JPH046374A publication Critical patent/JPH046374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make the transmission of information between indoor and outdoor machines unnecessary and keep a high pressure for heating and a low pressure for cooling at all times in constant by a method wherein the capacity of a compressor and the number of rotation of an outdoor fan are controlled based on a difference between the evaporating temperature and the set evaporating temperature of refrigerant as well as a difference between the condensing temperature and the set condensing temperature of the refrigerant. CONSTITUTION:Temperature sensors, detecting a refrigerant evaporating temperature ET and a refrigerant condensing temperature CT, are provided and the capacity changing amount of a compressor DELTAQcomp and the capacity changing amount of an outdoor heat exchanger DELTAAKe are obtained from a formula I by an evaporating temperature difference DELTAET between the detected refrigerant evaporating temperature ET and a set evaporating temperature ETo and a condensing temperature difference DELTACT between the detected refrigerant condensing temperature CT and a set condensing temperature CTo. The number of rotation of the compressor 3 and/or the number of rotation of a fan 4f for an outdoor heat exchanger, for example, are controlled based on the capacity changing amount of the compressor DELTAQcomp and the capacity changing amount of the outdoor heat exchanger DELTAAKe, which are obtained in such a manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は冷暖混在形冷凍サイクル装置に関するもので
あり、特に圧縮機能力と室外熱交換器の送風機の速度の
制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a mixed cooling/heating refrigeration cycle apparatus, and particularly to control of the compression function and the speed of the blower of an outdoor heat exchanger.

〔従来の技術〕[Conventional technology]

第3図は例えば特開平1−247967号公報に示され
た従来の多室型冷暖房装置を示す構成図であり、図にお
いて、(1)は室外ユニ9 +−、f3]は圧縮機、(
4a)  (4b)は室外機熱交換器、(2al 〜(
2c)は室内ユニット、(184)〜(18c)は室内
熱交換器、(21)は冷媒吐出管、(22)は冷媒吸入
管、(16a) (16b) (17i) (17b)
は切換弁、(11)は高圧ガス管、(13)は低圧ガス
管、(14)は液管、(16a)〜(16c) (17
a)〜(17c)は切換弁、(15a) 〜(15e)
、(23a) (23blは冷媒減圧器である。
FIG. 3 is a configuration diagram showing a conventional multi-room air conditioning system disclosed in, for example, Japanese Patent Application Laid-Open No. 1-247967. In the figure, (1) is an outdoor unit 9 +-, f3] is a compressor,
4a) (4b) is an outdoor unit heat exchanger, (2al ~ (
2c) is an indoor unit, (184) to (18c) are indoor heat exchangers, (21) is a refrigerant discharge pipe, (22) is a refrigerant suction pipe, (16a) (16b) (17i) (17b)
is a switching valve, (11) is a high pressure gas pipe, (13) is a low pressure gas pipe, (14) is a liquid pipe, (16a) to (16c) (17
a) to (17c) are switching valves, (15a) to (15e)
, (23a) (23bl is a refrigerant pressure reducer.

次に動作について説明する。室内ユニッI−(2a)と
(2b)が暖房運転のモードで室内ユニット(2C)が
冷房運転のモードになった壜台を想定する。圧縮機(3
2)の能力は負荷の多い暖房モードの室内ユニッ1−(
2a)と(2b)に合わせて決定し、室外ユニット(1
)の熱交換器(4a) (4b)の容量は室内ユニット
(2&)(2b)の暖房負荷合計値から室内ユニット(
2c)の冷房負荷合計値を差し引いた量を室外熱交換器
(4a)のみがまかなうことになりしかも蒸発器として
機能させることになる。以上のことより、高圧ガス管(
11)につながる切換弁(16a) 、  (16b)
を開とし、低圧ガス管(13)とつながる切換弁(17
a) 、 (17b)は閉とする。液管(14)とつな
がる冷媒減圧器(15a)(15b)は全開としPrl
管(14)からの冷媒が、膨張弁として機能する冷媒減
圧器(15c) 、 (23a)を通り、蒸発器として
機能する熱交換器(18clと(4a)で蒸発ガス化す
る。その冷媒は切換弁(17c) (25alを開とす
ることによって低圧ガス管(13)を通って吸込管(2
2)に流入する。ここで切換弁(24a) (24b)
 (25b)は閉となっている。
Next, the operation will be explained. Assume a bottle stand in which indoor units I-(2a) and (2b) are in heating operation mode and indoor unit (2C) is in cooling operation mode. Compressor (3
The capacity of 2) is the indoor unit 1-(
2a) and (2b), and install the outdoor unit (1
) The capacity of the heat exchanger (4a) (4b) of the indoor unit (2&) (2b) is calculated from the total heating load of the indoor unit (2&) (2b)
Only the outdoor heat exchanger (4a) will cover the amount after subtracting the total cooling load in 2c), and will also function as an evaporator. From the above, high pressure gas pipe (
Switching valves (16a) and (16b) connected to 11)
the switching valve (17) connected to the low pressure gas pipe (13).
a) and (17b) are closed. The refrigerant pressure reducers (15a) (15b) connected to the liquid pipe (14) are fully open and Prl
The refrigerant from the pipe (14) passes through the refrigerant pressure reducers (15c) and (23a), which function as expansion valves, and is evaporated and gasified in the heat exchanger (18cl) and (4a), which function as evaporators.The refrigerant is By opening the switching valve (17c) (25al), the suction pipe (2) passes through the low pressure gas pipe (13).
2). Here, the switching valve (24a) (24b)
(25b) is closed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多室型冷暖房装置は、以上のように構成されてい
るので、圧縮機の能力と室外熱交換器の容量を決定する
ために、室内ユニットの情報を必要とし、室内−室外間
の情報伝送のために制御系が複雑になりイ=頼性が低下
するという問題点があった。
Conventional multi-room air conditioning systems are configured as described above, so in order to determine the capacity of the compressor and the capacity of the outdoor heat exchanger, information on the indoor unit is required, and information between indoor and outdoor units is required. There was a problem in that the control system became complicated due to the transmission, reducing reliability.

この発明は上記のような問題点を解消するためなされた
もので、室内−室外機間の情報伝送が不必要で常に暖房
用高圧圧力と冷房用低圧圧力が一定になるように制御で
きろ冷暖混在形マルチ冷凍サイクルを得ることを目的と
する。
This invention was made to solve the above-mentioned problems, and it is possible to control the high pressure for heating and the low pressure for cooling to always be constant without the need for information transmission between the indoor and outdoor units. The purpose is to obtain a mixed type multi-refrigeration cycle.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る冷暖混在形マルチ冷凍サイクルは、冷媒
蒸発温度ETと凝縮温度CTを検出する温度セッサを設
け、その2つの検出温度とあらかじめ設定された設定蒸
発温度EToおよび設定凝縮温度CToとの2つの偏差
ΔET、ΔCTに応じて、圧縮機能力と室外熱交換器の
運転モード及び送風機の回転数を制御するようにしたも
のである。
The cooling/heating mixed type multi-refrigeration cycle according to the present invention is provided with a temperature sensor that detects a refrigerant evaporation temperature ET and a condensation temperature CT, and a temperature sensor that detects a refrigerant evaporation temperature ET and a condensation temperature CT. The compression function, the operation mode of the outdoor heat exchanger, and the rotation speed of the blower are controlled according to the two deviations ΔET and ΔCT.

また、冷媒蒸発温度ET、凝縮温度CTからその予測値
を求め、これに基づいて室外機を制御するようにしたも
のである。
Further, a predicted value is obtained from the refrigerant evaporation temperature ET and condensation temperature CT, and the outdoor unit is controlled based on this.

〔作用〕[Effect]

この発明においては、蒸発温度偏差ΔETと凝縮温度偏
差△CTとから、圧縮機能力変更量ΔQcoapと室外
熱交換器能力変更量ΔAKeを次式から求め、 −(A、B、C,Dは定数) これにより圧縮機、室外熱交換器能力が制御される。
In this invention, the compression function power change amount ΔQcoap and the outdoor heat exchanger capacity change amount ΔAKe are calculated from the following equations from the evaporation temperature deviation ΔET and the condensation temperature deviation ΔCT, where −(A, B, C, and D are constants) ) This controls the compressor and outdoor heat exchanger capacity.

また過去の蒸発温度ETと凝縮温度CTからそれらの予
測値が求められ、それら予測値と各設定値との偏差から
△Qcomp、ΔAKeが求められ、これに基づいて圧
縮機、室外熱交換器が制御される。
In addition, predicted values are obtained from the past evaporation temperature ET and condensation temperature CT, and △Qcomp and ΔAKe are obtained from the deviations between these predicted values and each setting value, and based on this, the compressor and outdoor heat exchanger are controlled.

〔発明の実施例〕[Embodiments of the invention]

以下、乙の発明の一実施例を図について説明する。第1
図において(1)は室外ユニット、(2)は室内ユニッ
ト、(31は能力可変の圧縮機、(4)は室外熱交換器
、(4f)は室外熱交換器用送風機、(5)は蒸発温度
検知器、(6)は凝縮温度検知器、(7)は制訂器、(
8)は圧縮機能力可変手段、(9)は室外送風機回転数
可変手段、(10)は高低圧間熱交換アキュームレータ
、(11)は高圧ガス配管、(12)は高圧液配管、(
13)は低圧ガス配管、(14)は高圧液配管(12)
のうち、高低圧熱交換アキュームし−りθ0)でサブク
ールした高圧サブクーノL管、(18) (191(2
0)は各室内熱交換器、(15al (15b) (1
5c)は各室内熱交換器(18) (191(20)と
高圧液配管(12)との間に連結された電子膨張弁、(
16a) (16b) (16c)は各熱交換器(18
1(191(20)と高圧ガス配管(11)との間に連
結された電磁開閉弁、(17al 、 (17b) 、
 (17c)は各熱交換器と低圧ガス配管(13)との
間に連結された電磁開閉弁である。
Hereinafter, one embodiment of the invention of B will be described with reference to the drawings. 1st
In the figure, (1) is the outdoor unit, (2) is the indoor unit, (31 is the variable capacity compressor, (4) is the outdoor heat exchanger, (4f) is the outdoor heat exchanger blower, and (5) is the evaporation temperature. Detector, (6) is a condensing temperature detector, (7) is a regulator, (
8) is a compression function force variable means, (9) is an outdoor blower rotation speed variable means, (10) is a high-low pressure heat exchange accumulator, (11) is a high-pressure gas pipe, (12) is a high-pressure liquid pipe, (
13) is a low pressure gas pipe, (14) is a high pressure liquid pipe (12)
Among them, high-pressure sub-cooled L tube, (18) (191 (2
0) is each indoor heat exchanger, (15al (15b) (1
5c) is an electronic expansion valve connected between each indoor heat exchanger (18) (191 (20) and the high pressure liquid pipe (12),
16a) (16b) (16c) each heat exchanger (18
1 (191 (20) and the electromagnetic on-off valve connected between the high pressure gas pipe (11), (17al, (17b),
(17c) is an electromagnetic on-off valve connected between each heat exchanger and the low pressure gas pipe (13).

なお、(15d)は電子膨張弁、(16d)、 (17
dlは電磁開閉弁である。
In addition, (15d) is an electronic expansion valve, (16d), (17
dl is an electromagnetic on-off valve.

上記のように構成された冷凍サイクルにおいて、室内熱
交換器(18) (19)が暖房運転で室内熱交換器(
20)が冷房運転の場合について詳述する。
In the refrigeration cycle configured as described above, the indoor heat exchangers (18) and (19) are operated during heating operation.
The case where 20) is in cooling operation will be explained in detail.

圧縮機(8)を出た高圧ガス冷媒は、高圧ガス配管(1
1)を通り、電磁開閉弁(16alと(16blより室
内熱交換器(18)と(19)とて各々凝縮液化し、全
開とされた電子膨張弁(15a)と(15b)より高圧
液配管(12)に流入する。高圧液冷媒は高圧液配管(
12)より、電子膨張弁(15c)で減圧膨張されて室
内熱交換器(20)に流入し、蒸発ガス化し電磁開閉弁
(17c)を経て低圧ガス配管(13)に流入室外ユニ
ット(1)に運ばれアキュームし・−夕00)を経由し
て再び圧縮機(3)に帰り循環路が形成される。
The high pressure gas refrigerant leaving the compressor (8) is transferred to the high pressure gas pipe (1
1), the electromagnetic on-off valves (16al and (16bl) are condensed and liquefied in the indoor heat exchangers (18) and (19), respectively, and the electronic expansion valves (15a) and (15b) which are fully open are connected to high-pressure liquid pipes. (12).The high pressure liquid refrigerant flows into the high pressure liquid pipe (
12), the gas is expanded under reduced pressure by the electronic expansion valve (15c), flows into the indoor heat exchanger (20), evaporates into gas, passes through the electromagnetic shut-off valve (17c), and flows into the low-pressure gas pipe (13) from the outdoor unit (1). It is carried to the compressor (3), where it is accumulated, and returned to the compressor (3) again to form a circulation path.

上記のように冷房負荷1台に対し暖房負荷2台の時には
、設定された目標蒸発温度EToと目標凝縮温度CTo
に対し蒸発温度ETも凝縮温度CTも低い状態となる。
As mentioned above, when there is one cooling load and two heating loads, the set target evaporation temperature ETo and target condensation temperature CTo
In contrast, both the evaporation temperature ET and the condensation temperature CT are low.

この偏差△ET=ETo−ET、ΔCT = CT o
 −CTに基づき、次式により圧縮機能力変更i△Q 
eompと室外熱交換器の熱交換能力変更量ΔAKeと
を求める。
This deviation △ET=ETo-ET, ΔCT = CT o
- Based on CT, compression function power change i△Q by the following formula
eomp and the heat exchange capacity change amount ΔAKe of the outdoor heat exchanger are determined.

本式の基本は、圧m機能力を△Qcompだけアップす
ると凝縮温度がaだけ増加し、蒸発温度が−bだけ減少
することと、熱交換器を蒸発器として△AKe能カアツ
カアップ凝縮温度がCだけ上昇し、蒸発温度もdだけ上
昇することにある。っまり 、 △CT= a△Q comp+ c△AKe△ET=−
bムQ comp+ d△AKeが成立する。
The basics of this formula are that when the pressure m function is increased by △Qcomp, the condensing temperature increases by a, and the evaporation temperature decreases by -b. , and the evaporation temperature also rises by d. Completely, △CT= a△Q comp+ c△AKe△ET=-
bmuQcomp+dΔAKe holds true.

よって 本式の逆行列をとれば TとETo、CToとの偏差として求めろかわりに、E
T、CTよりその予測値を求め、その予測値とETo、
CToとの偏差とし、これに基づいて△Q comp、
△AKeを求めろようにしてもよい。
Therefore, if we take the inverse matrix of this equation, we can find it as the deviation between T, ETo, and CTo.Instead, E
The predicted value is obtained from T and CT, and the predicted value and ETo,
Based on the deviation from CTo, △Q comp,
It is also possible to calculate ΔAKe.

すなわち、現在および過去の蒸発温度、凝縮ンH度の過
渡データから蒸発温度予測値ETAと凝縮温度予測値C
T^を算出する。
That is, the predicted evaporation temperature value ETA and the predicted condensation temperature value C are calculated from the current and past transient data of the evaporation temperature and the condensation temperature.
Calculate T^.

となる。第2図にこのような制御の制御ブロック線図を
示す。
becomes. FIG. 2 shows a control block diagram of such control.

このように求められたΔQ comp、ΔAKeに基づ
き例えば圧縮機(3)の回転数や、室外熱交換器用送風
機(4[)のファン回転数を制御すれば、常に暖房用高
圧圧力と冷房用低圧圧力が一定となる定常運転状態を室
外−室内間の情報伝送を複雑にすることなく実現できる
If, for example, the rotation speed of the compressor (3) or the fan rotation speed of the outdoor heat exchanger blower (4) is controlled based on ΔQ comp and ΔAKe obtained in this way, the high pressure for heating and the low pressure for cooling can always be controlled. A steady operating state in which the pressure is constant can be achieved without complicating information transmission between the outdoors and indoors.

また、上記のようにムET  ΔCTをET、にこで 
E T r 、 E T z 、E T 3は蒸発温度
過渡データ CT工、CT2.CT3は凝縮温度過渡データ これらの予測値ETa、CTaと各設定目標値との偏差
ΔET、△CTとを求めろ。
In addition, as mentioned above, ET ΔCT is ET, Niko
E T r , E T z , E T 3 are evaporation temperature transient data CT engineering, CT2. CT3 is condensing temperature transient data. Find deviations ΔET and ΔCT between these predicted values ETa and CTa and each set target value.

△E T = E T o  E TA −ΔCT=C
To−CT^ これらの偏差から同様に次式により圧mm能力変更量△
Q compと室外熱交換器の熱交換能力変更旦ΔAK
eとを求めろ。
△E T = E T o E T A −ΔCT=C
To-CT^ From these deviations, the pressure mm capacity change amount △ can be calculated using the following formula.
Change in heat exchange capacity of Q comp and outdoor heat exchanger ΔAK
Find e.

そしてこれらΔQ comp、ΔAKeに基づいて圧縮
機(3)、室外熱交換器(4)の熱交換能力を制御すれ
ば、安定した運転が実現されるものである。
Stable operation can be achieved by controlling the heat exchange capabilities of the compressor (3) and outdoor heat exchanger (4) based on these ΔQ comp and ΔAKe.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、高圧ガス配管と高圧
液配管と低圧ガス配管の3配管を有する冷暖同時運転可
能な冷凍サイクルにおいて、冷媒蒸発温度と凝縮温度を
検出し、その温度あるいはそれから求められる予測温度
とあらかしめ設定した目標蒸発温度、凝縮温度との偏差
に基づいて、圧縮機能力を室外熱交換器の熱交換能力を
可変としたので制御情報の伝送が容易になす<g顆性が
増すという効果がある。
As described above, according to the present invention, in a refrigeration cycle capable of simultaneous cooling and heating operations that has three pipes: a high-pressure gas pipe, a high-pressure liquid pipe, and a low-pressure gas pipe, the refrigerant evaporation temperature and condensation temperature are detected, and the refrigerant evaporation temperature and condensation temperature are Based on the deviation between the predicted temperature required and the preset target evaporation temperature and condensation temperature, the compression function power and the heat exchange capacity of the outdoor heat exchanger are made variable, making it easy to transmit control information. It has the effect of increasing sex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による冷凍サイクル装置の
構成図、第2図は開園ブロック線図、第3図(よ従来の
多室型冷暖房装置の構成図を示す。 図において(1)は室外ユニッI−、(2+は室内ユニ
ッ1− 、(31は圧縮機、(4)は室外熱交換器、(
5] f61は温度検知器、(7)は制御器、(8)は
圧縮機能力制卸手段、(9)は室外送風開園手段、α0
)は高低圧熱交換アキュームし、−タ、(1])は高圧
ガス配管、(12)は高圧液配管、(]3)は低圧ガス
配管である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram of a refrigeration cycle device according to an embodiment of the present invention, Fig. 2 is an opening block diagram, and Fig. 3 is a block diagram of a conventional multi-room air conditioning system. is the outdoor unit I-, (2+ is the indoor unit 1-, (31 is the compressor, (4) is the outdoor heat exchanger, (
5] f61 is a temperature sensor, (7) is a controller, (8) is a compression function force control means, (9) is an outdoor ventilation opening means, α0
) is a high-low pressure heat exchange accumulation, -ta, (1) is a high-pressure gas pipe, (12) is a high-pressure liquid pipe, and (]3 is a low-pressure gas pipe. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)室外機に容量制御可変圧縮機と送風機と室外熱交
換器とを有し、室外機−室内機間に高圧ガス配管と高圧
液配管と低圧ガス配管の三連絡配管を有し、複数の室内
熱交換器には各々に前記高圧ガス配管と低圧ガス配管と
の流路のどちらか一方を選択可能とする電磁開閉弁を有
し、更に上記室内熱交換器の他端から電子膨張弁を介し
て上記高圧液配管に連結した冷暖混在形マルチ冷凍サイ
クルにおいて、冷媒の蒸発温度と凝縮温度とを検出する
手段と、その検出された蒸発温度および凝縮温度と設定
蒸発温度および設定凝縮温度との偏差を演算する手段と
、この蒸発温度および凝縮温度の偏差に基づいて上記圧
縮機の能力と上記室外送風機の回転数を制御する制御手
段とを備えたことを特徴とする冷暖混在形冷凍サイクル
装置。
(1) The outdoor unit has a variable capacity compressor, a blower, and an outdoor heat exchanger, and has three connecting pipes between the outdoor unit and the indoor unit: a high-pressure gas pipe, a high-pressure liquid pipe, and a low-pressure gas pipe, and multiple Each of the indoor heat exchangers has an electromagnetic on-off valve that allows selection of either the high-pressure gas piping or the low-pressure gas piping, and an electronic expansion valve from the other end of the indoor heat exchanger. In the mixed cooling/heating multi-refrigeration cycle connected to the high-pressure liquid piping via a means for detecting the evaporation temperature and condensation temperature of the refrigerant, and the detected evaporation temperature and condensation temperature and the set evaporation temperature and set condensation temperature. and control means for controlling the capacity of the compressor and the rotational speed of the outdoor blower based on the deviation between the evaporation temperature and the condensation temperature. Device.
(2)室外機に容量制御可変圧縮機と送風機と室外熱交
換器とを有し、室外機−室内機間に高圧ガス配管と高圧
液配管と低圧ガス配管の三連絡配管を有し、複数の室内
熱交換器には各々に前記高圧ガス配管と低圧ガス配管と
の流路のどちらか一方を選択可能とする電磁開閉弁を有
し、更に上記室内熱交換器の他端から電子膨張弁を介し
て上記高圧液配管に連結した冷暖混在形マルチ冷凍サイ
クルにおいて、冷媒の蒸発温度と凝縮温度とを検出する
手段と、その検出された蒸発温度、凝縮温度からその予
測値を演算する手段と、この予測された蒸発温度、凝縮
温度と設定蒸発温度、設定凝縮温度との偏差を演算する
手段と、この蒸発温度および凝縮温度の偏差に基づいて
上記圧縮機の能力と上記室外送風機の回転数を制御する
制御手段とを備えたことを特徴とする冷暖混在形冷凍サ
イクル装置。
(2) The outdoor unit has a variable capacity compressor, a blower, and an outdoor heat exchanger, and has three connecting pipes between the outdoor unit and the indoor unit: a high-pressure gas pipe, a high-pressure liquid pipe, and a low-pressure gas pipe, and multiple Each of the indoor heat exchangers has an electromagnetic opening/closing valve that allows selection of either the high-pressure gas piping or the low-pressure gas piping, and an electronic expansion valve from the other end of the indoor heat exchanger. means for detecting the evaporation temperature and condensation temperature of the refrigerant, and means for calculating the predicted value from the detected evaporation temperature and condensation temperature in the cooling/heating mixed multi-refrigeration cycle connected to the high-pressure liquid pipe through the , a means for calculating the deviation between the predicted evaporation temperature and condensation temperature and the set evaporation temperature and the set condensation temperature, and the capacity of the compressor and the rotation speed of the outdoor blower based on the deviation of the evaporation temperature and the condensation temperature. A mixed cooling/heating refrigeration cycle device comprising: a control means for controlling.
JP10791590A 1990-04-23 1990-04-23 Mixed cooling and heating type refrigerating cycle device Pending JPH046374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10791590A JPH046374A (en) 1990-04-23 1990-04-23 Mixed cooling and heating type refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10791590A JPH046374A (en) 1990-04-23 1990-04-23 Mixed cooling and heating type refrigerating cycle device

Publications (1)

Publication Number Publication Date
JPH046374A true JPH046374A (en) 1992-01-10

Family

ID=14471280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10791590A Pending JPH046374A (en) 1990-04-23 1990-04-23 Mixed cooling and heating type refrigerating cycle device

Country Status (1)

Country Link
JP (1) JPH046374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102953A1 (en) 2012-01-05 2013-07-11 三菱電機株式会社 Air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102953A1 (en) 2012-01-05 2013-07-11 三菱電機株式会社 Air-conditioning device
US9719691B2 (en) 2012-01-05 2017-08-01 Mitsubishi Electric Corporation Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
EP0509619B1 (en) Air conditioning system
JP3861294B2 (en) Refrigeration equipment
EP2940395B1 (en) Air conditioner
EP3587948B1 (en) Air conditioner
KR950003124B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JP2002349938A (en) Refrigeration unit and control method for its oil return
JP3729552B2 (en) Air conditioner
JP6762422B2 (en) Refrigeration cycle equipment
JPH046374A (en) Mixed cooling and heating type refrigerating cycle device
JPH06137691A (en) Controlling equipment for refrigerant circuit
JP2893844B2 (en) Air conditioner
JPS63290354A (en) Heat pump type air conditioner
JP2000018685A (en) Multi-room type air conditioner
JP2904354B2 (en) Air conditioner
JPH01212870A (en) Multichamber type air conditioner
JP2616009B2 (en) Air conditioner
JP7397286B2 (en) Refrigeration cycle equipment
JPH046371A (en) Multi-room type air-conditioning machine
JP3179180B2 (en) Air conditioner
JPH1151505A (en) Multiroom type air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPH06147558A (en) Radiation air conditioning device
JP2515862B2 (en) Multi-room air conditioner
JPH0599526A (en) Multi-chamber type air conditioner
JPH04165267A (en) Controller for heat pump