JPH04165267A - Controller for heat pump - Google Patents

Controller for heat pump

Info

Publication number
JPH04165267A
JPH04165267A JP2292291A JP29229190A JPH04165267A JP H04165267 A JPH04165267 A JP H04165267A JP 2292291 A JP2292291 A JP 2292291A JP 29229190 A JP29229190 A JP 29229190A JP H04165267 A JPH04165267 A JP H04165267A
Authority
JP
Japan
Prior art keywords
degree
supercooling
threshold value
control
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2292291A
Other languages
Japanese (ja)
Other versions
JPH0833249B2 (en
Inventor
Yoshiro Tsuchiyama
吉朗 土山
Koji Ebisu
戎 晃司
Masataka Ozeki
正高 尾関
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2292291A priority Critical patent/JPH0833249B2/en
Publication of JPH04165267A publication Critical patent/JPH04165267A/en
Publication of JPH0833249B2 publication Critical patent/JPH0833249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To operate the control of room temperature and the control of the degree of supercooling rapidly by a method wherein the discharge pressure of a compressor is detected, a saturated steam temperature is calculated, the outlet of an indoor heat exchanger is provided with a temperature detecting means, the degree of supercooling is detected by the two temperatures, and supercooling is performed at every indoor machine when the degree of supercooling is insufficient and is excess. CONSTITUTION:A controller detects the room temperature of each room by room temperature sensors 3, 13, 23, and a refrigerant is distributed in response to the heat load of each room. The control of distribution is realized by adjusting the openings of expansion valves 2, 12, 22. Control corresponding to the whole load is realized by controlling the number of revolution of a compressor 10 by an inverter 9. The control of the room temperature of each room is realized fundamentally by said constitution. The temperatures of the outlets of the heat exchangers of each indoor machine 4, 14, 24 are measured by temperature sensors 6, 16, 26, the discharge pressure of the compressor is measured by a pressure sensor 8, and the degrees of supercooling at every indoor machine 4, 14, 24 are calculated. Pressure from discharge pressure to the expansion valves is kept approximately constant, thus computing a saturated steam temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明:よ 冷暖艮 給湯などに用いる蒸気圧縮式のヒ
ートポンプの制御装置に関するものであり、特に負荷側
が複数個ある装置に有効な方法を提供するものであも 従来の技術 第3図(よ 蒸気圧縮式のヒートポンプの構成例を示し
たものであり、装置はインバータ9により回転数制御さ
れる圧縮機10、室室内熱交換器1により構成される室
外ユニットと、複数の室内ユニット4、14、24で構
成されていも 室内ユニットは1つであってもかまわな
(〜 いま、暖房を行う場合を例にとる圧縮機10で高
圧に圧縮された冷媒は配管を通じて各室内熱交換器5、
15.25へ送られも 各室熱交換器5、15.25に
送られて液化した冷媒は各室膨張弁2、12、22を経
て気体液体の混在状態となり、配管を通じて室室内熱交
換器1へ送られも 室室内熱交換器1で冷媒(え 蒸発
し気体となり再び圧縮機10に送られ圧縮されも 周知
の冷凍サイクルにおいて冷媒を分配するものであム 通常は室温センサ3、13、23により検出される室温
が目標値になるように圧縮器10回転数および膨張弁2
、12、22の開度が制御される制御ループが構成され
 例えばPID (比゛例積分微分)制御などの制御器
が用いられて室温制御モードを実現していも しかしながら周知のようJQ  冷媒がすべて室内の熱
交換器で凝縮する必要があり、気体の混じったままで膨
張弁2、12、22へ流入すると、冷媒の流量制御が不
確実になム 流体はある体積を有しており、液体と気体
との比が同じであって耘膨張弁へ流入するところで液体
が多い場合もあり、逆の場合もあり、流量制御が弁開度
に対応しな(℃このた八 なんらかの検出手段を用いて
室内熱交換器内で冷媒がすべて蒸気に変わるように制御
しておく必要があa すなわち室内熱交換器5、15、
25の出口での温度が飽和蒸気温度より少し低くなるよ
うに制御を行う。この温度差を過冷却度という。過冷却
度が負になると気体の冷媒が膨張弁2、12、22に入
るた敢 流量制御が不確実になっていま((適正な冷媒
の分流が困難になり、望み通りの室温に制御することが
困難になムこのた八 従来では 各室過冷却度を圧縮機
lOの吐出圧力(圧力センサ8にて検出)および温度セ
ンサ6、16.26をもちいて検出していもそして、過
冷却度が下がってくると、圧縮機10の回転数を下げて
、暖房能力を下げて、仮想的に室内側の負荷が過大であ
るようにして、過冷却度を調節していも このようにし
て適正な冷媒分流制御を行うために過冷却度制御モード
を併用していも 逆1 過冷却度が大きすぎると 暖房効率が低下するこ
とはよく知られていることであり、結果として過冷却度
は適正な値であることが必要であ也 発明が解決しようとする課題 しかしなが叙 圧縮機lOの回転数を下げて暖房能力を
下げてしまうと、室温に対する十分な制御が行えなくな
4 また 過冷却度制御モードから室温制御モードへ切
り替わると叡 もしくは室温制御モードから過冷却度制
御モードへ切り替わるときには 制御系として考えると
、その時の状態変数の値によりうまく切り替わるときと
、そうでない場合があ4 また 過冷却度の不足が全て
の室内機で起こっているとも限らないので、 システム
としての効率からも好ましい状態ではな賎また 各室の
膨張弁は冷媒流量の分配制御を行っているのて 同時に
過冷却度も制御する方法は知られていなli〜 課題を解決するための手段 本発明でjL  課題を解決するためく 室温制御モー
ドと過冷却度モードとをあいまい論理により切り換え 
また 圧縮機の吐出圧力を検出し 検出した圧力から飽
和蒸気温度を算出し 各室内機の室内熱交換器の出口に
温度検出手段を設6す、 2つの温度より、各室内熱交
換器出口の過冷却度を検出し 過冷却度が不足する場合
および過冷却度が過度である場合には、 各室内機毎に
過冷却度を行わせることを特徴とすも 作用 室温制御モードと過冷却度制御モードとをあいまい論理
により切り換えることにより、過冷却度が少し不足気味
の時には室温制御と過冷却度制御の両方が作動すること
になり、制御モードの切り換えが速やかに行われ 切り
替わり時の初期状態の影響を受けなくなも また 圧縮
機吐出圧力から飽和蒸気温度を求へ 室内熱交換器出口
の温度との差を求めれば 各室内機毎の過冷却度を知る
ことができも そして、過冷却度の不足する室内機があ
れば その室内機の膨張弁の開度を絞ることにより、各
室内毎に冷媒循環量を調整でき、過冷却度を確保できる
ようになも このとき、他の室内機で沫 過冷却度が不
足していないの見 室温が目標値となる制御を行うこと
ができるQ 同様に過冷却度が過大である場合には該当
する膨張弁の開度を上げる方向に操作すム このように
して、各室内機が常に最適な過冷却度で運転することが
可能になム 実施例 以下本発明の実施例を図面に基づき説明すも第1図は2
種類の制御目標をファジィ論理的に切り替える方法を示
すものであり、第2図は制御用のコンピュータ(図示せ
ず)のフローチャートを示すものであり、第3図は実施
例の冷凍サイクル構成を示すものであ4 第3図において、圧縮機10により圧縮された冷媒は配
管分岐して各室内ユニット4、14、24に送られ4 
室内ユニットは1台であってもかまわな11〜 各室内
ユニット4、14、24において室内熱交換器5、15
、25により外気に熱を与えて液化すも 液化した冷媒
は膨張弁2、12.22に送られて気体液体混合状態と
なり、配管を通して、室室内熱交換器1に送られも 室
室内熱交換器1で熱を奪って気化した冷媒は圧縮機10
に送られも ここで、制御器(図示せず)は各室の室温
を室温センサ3、13、23により検出し 各室の熱負
荷に応じて冷媒を分配すム 分配制御は膨張弁2、12
、22の開度を調節することにより実現すも また全体
の負荷に対応する制御ζ友圧縮機IOの回転数をインバ
ータ9により制御することにより実現す4 基本的には
、 以上の構成で各室の室温制御が実現すも また 各
室内機4.14、24の熱交換器出口の温度を温度セン
サ6.16、26で測定し かつ圧縮機の吐出圧力を圧
力センサ8で測定して、各室内機4、14、24毎の過
冷却度を算出すも (吐出圧力から膨張弁までの圧力は
ほぼ一定であり、これにより飽和蒸気温度を算出するこ
とができも )第1図は第3図における制御用コンピュ
ータ(図示せず)の制御論理をあいまい論理(FUZZ
Y論理)を用いて行なう場合の方法を示すものであム 
すなわ板 最適である過冷却度を’f deslから’
l’ des2.、過冷却度増加制御を行なう必要があ
る過冷却度をTrefl、とするとき、各室内機(i)
の過冷却度SC(i)がTdeslより大きくて’l’
deS2より小さいときには室温制御100%となり、
過冷却度SC(i)がTreflのときには過冷却度増
加制御と室温制御が5150となり、過冷却度SC(i
)がTreflより小さくなって行くにしたがって、過
冷却度制御の比重が大きくなるようにするものであも 
そして、過冷却度SC(i)が’l’ ff1iniよ
り小さくなると完全に過冷却度増加制御のみとなム ま
た 過冷却度減少制御を行なう必要がある過冷却度をT
ref2.、とし 各室内機(i)の過冷却度SC(i
)が’f ref2のときには過冷却度減少制御と室温
制御が50:50となり、過冷却度SC(i)がTre
f2より大きくなって行くにしたがって、過冷却度制御
の比重が大きくなるようにするものであ4 そして、過
冷却度5C(i)がTl1laxより小さくなると完全
に過冷却度減少制御のみとなム 第2図は第1図で示したあいまい論理を適用した場合の
制御処理手順を示したフローチャートであム 以下、処
理手順を説明すも まず処理40において各室内機(i
)の現在の過冷却度5C(i)を調べ4 次圏 処理4
1へ進へ 室温制御のための演算を行(\ 操作量ul
(i)を算出すa室温制御のための演算処理としては例
えばPID(比例積分微分)制御などを用いも ただし
ここで求めた操作量番上  まだ出力しなし〜 引続き
、処理42で過冷却度制御のための演算を行賎 操作量
u2(i)を算出すム 次に処理43へ進へ 2つの操
作量ul(i)、 u2(i)に対するメンバシップ量
を算出すム 次に処理44に進へ 算出したメンバシッ
プ量を用いて、 2つの操作量ul(i)、u2(i)
の値を重みつき加算平均すも次に処理45へ進へ 加算
平均結果u (i)を操作量として出力すム この出力
u(i)は各膨張弁の開度制御やインバータによる圧縮
機10の回転周波数制御に用いられも そして処理46
で制御対象を1つずらして、すなわちiをi+1に置き
換えて再び処理40へ戻も なお室内機が1台の場合に
は処理46は素通りとなム 最初の実施例は一つの冷凍サイクルで冷媒を分流する場
合で説明したバ 第4図に示すようく室室内熱交換器5
1、圧縮機50、膨張機構59、中間熱交換器55より
構成される1次側の冷凍サイクルと、前記中間熱交換器
55で熱交換される2次側熱交換器61と冷媒搬送用ポ
ンプ60、各室内熱交換器65、75、85、各室内で
の冷媒流量を制御する弁62、72、82により構成さ
れた2次側冷凍サイクルで構成された系においても同じ
ように適用することができも この構成は冷媒をポンプ
で循環させることができるので、配管が長い場合も 高
低差がある場合にも展開することができるものであ、k
1次側のサイクルでCヨ暖房の時には中間熱交換器55
が凝縮器として作動L 2次側熱交換器に熱を与えも 
2次側熱交換器61では冷媒が気化して、流量弁62、
72.82を経て各室室内熱交換器65、75、85に
送られも 各室熱交換器65.75.85でζよ冷媒は
室内空気に熱を供給して、液化すも 液化した冷媒はポ
ンプ60に送られて、 2次側中間熱交換器61に戻っ
てくa このような場合に耘適正な過冷却度が得られる
ようにすることができも 過冷却度が不足すると、ポン
プに気体が混入してポンプを損傷することがあも また
過冷却度が過大であれば 効率が低下ナム したがって
同様に第2図に示したような制御を行うことにより適正
なサイクル制御を行うことができも 第4図の場合で1
よ 冷媒搬送用ポンプ60の手前に圧力センサ68を設
けて、検出した圧力から飽和蒸気温度を求へ 室内熱交
換器出口温度(検出手段は図示せず)との差を求めるこ
とにより過冷却度を検出すも 発明の詳細 な説明したよう艮 本発明(よ 過冷却度制御モードと
室温制御モードとをファジィ論理を用いて切り替えるこ
とにより各室において室温制御と過冷却度制御が速やか
に動作させることが可能にな4 また 各室内機毎の過
冷却度を制御することと室温制御が可能であるのT、 
 1つの室の過冷却度制御を行なってk そのほかの室
では室温を維持することができも
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a control device for a vapor compression type heat pump used for hot water supply, etc., and provides an effective method particularly for devices having multiple load sides. However, the conventional technology shown in Fig. 3 shows an example of the configuration of a vapor compression type heat pump. It may be composed of an outdoor unit and multiple indoor units 4, 14, 24, or there may be only one indoor unit. The refrigerant passes through the pipes to each indoor heat exchanger 5,
The liquefied refrigerant is sent to each indoor heat exchanger 5 and 15.25, passes through each chamber expansion valve 2, 12, and 22, becomes a mixture of gas and liquid, and passes through piping to the indoor heat exchanger. In the indoor heat exchanger 1, the refrigerant is evaporated, becomes a gas, and is sent to the compressor 10 again for compression.The refrigerant is distributed in the well-known refrigeration cycle. The rotation speed of the compressor 10 and the expansion valve 2 are adjusted so that the room temperature detected by 23 becomes the target value.
, 12, and 22 are configured, and a controller such as PID (comparative integral derivative) control is used to realize room temperature control mode. However, as is well known, JQ refrigerant is It needs to be condensed in an indoor heat exchanger, and if the mixture of gases flows into the expansion valves 2, 12, and 22, the flow rate control of the refrigerant will become uncertain. There are cases where the ratio with gas is the same and there is more liquid flowing into the expansion valve, and vice versa, and the flow rate control does not correspond to the valve opening (℃). It is necessary to control the indoor heat exchanger so that all the refrigerant changes to steam. That is, the indoor heat exchanger 5, 15,
Control is performed so that the temperature at the outlet of No. 25 is slightly lower than the saturated steam temperature. This temperature difference is called the degree of supercooling. When the degree of supercooling becomes negative, gaseous refrigerant enters the expansion valves 2, 12, and 22, and flow rate control becomes uncertain ((It becomes difficult to properly divide the refrigerant flow and control the room temperature to the desired temperature. Conventionally, the degree of subcooling in each chamber was detected using the discharge pressure of the compressor lO (detected by pressure sensor 8) and temperature sensors 6 and 16.26. When the temperature drops, the rotation speed of the compressor 10 is lowered, the heating capacity is lowered, and the load on the indoor side is virtually excessive, and the degree of supercooling is adjusted. It is well known that even if the supercooling degree control mode is used in conjunction with the subcooling degree control mode to perform appropriate refrigerant distribution control, the heating efficiency will decrease if the degree of supercooling is too large, and as a result, the degree of supercooling will be However, if the rotation speed of the compressor IO is lowered and the heating capacity is lowered, the room temperature cannot be adequately controlled. When switching from supercooling degree control mode to room temperature control mode, or when switching from room temperature control mode to supercooling degree control mode, when considering it as a control system, there are times when the switching is successful and times when it is not, depending on the value of the state variable at that time. In addition, the lack of subcooling does not necessarily occur in all indoor units, so this is not a desirable condition from the efficiency of the system.Also, since the expansion valves in each room control the distribution of refrigerant flow rate, There is no known method for controlling the degree of supercooling.Means for solving the problem The present invention is used to solve the problem.Switching between the room temperature control mode and the degree of supercooling mode using ambiguous logic.
In addition, the discharge pressure of the compressor is detected, the saturated steam temperature is calculated from the detected pressure, and a temperature detection means is installed at the outlet of the indoor heat exchanger of each indoor unit. It detects the degree of supercooling, and when the degree of supercooling is insufficient or excessive, the degree of supercooling is performed for each indoor unit. By switching the control mode using ambiguous logic, both room temperature control and supercooling control are activated when the degree of supercooling is slightly insufficient, and the control mode is quickly switched.The initial state at the time of switching is In addition, by finding the saturated steam temperature from the compressor discharge pressure and finding the difference between the temperature at the indoor heat exchanger outlet and the temperature at the outlet of the indoor heat exchanger, you can find out the degree of supercooling for each indoor unit. If there is an indoor unit that is insufficiently cooled, by reducing the opening of the expansion valve of that indoor unit, the amount of refrigerant circulation can be adjusted for each room, and the degree of supercooling can be ensured. If the degree of supercooling is not insufficient, the room temperature can be controlled to the target value.Similarly, if the degree of supercooling is excessive, operate the corresponding expansion valve to increase the opening degree. In this way, it is possible for each indoor unit to always operate at the optimal degree of subcooling.Embodiments The embodiments of the present invention will be explained below based on the drawings, but FIG.
Fig. 2 shows a flowchart of a control computer (not shown), and Fig. 3 shows a refrigeration cycle configuration of an embodiment. 4 In Fig. 3, the refrigerant compressed by the compressor 10 is sent to each indoor unit 4, 14, 24 through branched pipes.
There may be only one indoor unit 11 - Indoor heat exchanger 5, 15 in each indoor unit 4, 14, 24
, 25 gives heat to the outside air and liquefies it.The liquefied refrigerant is sent to the expansion valve 2, 12.22 to form a gas-liquid mixture state, and is sent to the indoor heat exchanger 1 through the piping. The refrigerant that has been vaporized by removing heat in the container 1 is transferred to the compressor 10.
Here, a controller (not shown) detects the room temperature of each room using room temperature sensors 3, 13, and 23, and distributes the refrigerant according to the heat load of each room. 12
, 22.It is also realized by controlling the rotation speed of the compressor IO, which corresponds to the overall load, using the inverter 9.4Basically, the above configuration allows each Room temperature control is realized by measuring the temperature at the heat exchanger outlet of each indoor unit 4.14, 24 with temperature sensors 6.16, 26, and measuring the discharge pressure of the compressor with pressure sensor 8. Although the degree of subcooling for each indoor unit 4, 14, and 24 is calculated, (the pressure from the discharge pressure to the expansion valve is almost constant, and the saturated steam temperature can be calculated from this), Figure 1 shows The control logic of the control computer (not shown) in FIG.
This shows the method when using Y logic).
In other words, the optimal degree of supercooling is 'f desl'
l'des2. , when the degree of supercooling that requires control to increase the degree of supercooling is Trefl, each indoor unit (i)
The degree of supercooling SC(i) is greater than Tdesl and 'l'
When it is smaller than deS2, room temperature control becomes 100%,
When the degree of supercooling SC(i) is Trefl, the degree of supercooling increase control and room temperature control are 5150, and the degree of supercooling SC(i) is 5150.
) becomes smaller than Trefl, the specific gravity of supercooling degree control becomes larger.
Then, when the degree of supercooling SC(i) becomes smaller than 'l'ff1ini, only the control to increase the degree of supercooling is performed. Also, the degree of supercooling that requires the control to decrease the degree of supercooling is set to T.
ref2. , and the degree of supercooling SC(i
) is 'f ref2, the supercooling degree reduction control and room temperature control are 50:50, and the supercooling degree SC(i) is Tre
As the degree of supercooling becomes larger than f2, the specific gravity of the degree of supercooling control increases. 4 When the degree of supercooling 5C(i) becomes smaller than Tl1lax, only the degree of supercooling control is completely performed. FIG. 2 is a flowchart showing the control processing procedure when the fuzzy logic shown in FIG.
) Find out the current degree of supercooling 5C(i) of 4th-order category Processing 4
Proceed to 1 Perform calculations for room temperature control (\ manipulated variable ul
For example, PID (proportional-integral-derivative) control may be used as the arithmetic processing for room temperature control to calculate (i). However, the operation amount obtained here is not output yet ~ Subsequently, in process 42, the degree of supercooling Perform calculations for control Calculate the manipulated variable u2(i) Next, proceed to process 43 Calculate the membership amount for the two manipulated variables ul(i) and u2(i) Next, process 44 Proceed to Using the calculated membership amount, calculate the two manipulated variables ul(i) and u2(i)
The value of is weighted and averaged.Next, the process goes to process 45.The average result u(i) is outputted as the manipulated variable.This output u(i) is used to control the opening of each expansion valve and to the compressor 10 using an inverter. It is also used to control the rotational frequency of and processing 46
You can also shift the controlled object by one, that is, replace i with i+1, and return to process 40. Note that if there is only one indoor unit, process 46 can be skipped.In the first embodiment, the refrigerant is used in one refrigeration cycle. As shown in Figure 4, the indoor heat exchanger 5
1. A primary side refrigeration cycle composed of a compressor 50, an expansion mechanism 59, and an intermediate heat exchanger 55, a secondary side heat exchanger 61 that exchanges heat with the intermediate heat exchanger 55, and a refrigerant conveying pump. 60. The same applies to a system composed of a secondary refrigeration cycle composed of indoor heat exchangers 65, 75, 85 and valves 62, 72, 82 that control the flow rate of refrigerant in each room. However, since this configuration allows the refrigerant to be circulated using a pump, it can be deployed even when the piping is long or there are differences in height.
During C heating in the primary cycle, intermediate heat exchanger 55 is used.
L acts as a condenser and gives heat to the secondary heat exchanger.
In the secondary heat exchanger 61, the refrigerant is vaporized, and the flow valve 62,
The refrigerant is sent to each indoor heat exchanger 65, 75, 85 through 72.82.In each indoor heat exchanger 65.75.85, the refrigerant supplies heat to the indoor air and becomes liquefied. is sent to the pump 60 and returned to the secondary intermediate heat exchanger 61a.In such cases, it is possible to obtain an appropriate degree of supercooling. If the degree of supercooling is too high, the pump may be damaged due to gas getting mixed in.If the degree of supercooling is too high, the efficiency will decrease.Therefore, it is possible to perform appropriate cycle control by similarly performing the control shown in Figure 2. In the case of Figure 4, 1
A pressure sensor 68 is provided in front of the refrigerant conveying pump 60, and the saturated steam temperature is determined from the detected pressure.The degree of supercooling is determined by determining the difference from the indoor heat exchanger outlet temperature (detection means not shown). As described above, the present invention provides a detailed explanation of the present invention.By switching between the supercooling degree control mode and the room temperature control mode using fuzzy logic, room temperature control and supercooling degree control are quickly operated in each room. 4 It is also possible to control the degree of supercooling of each indoor unit and control the room temperature.
By controlling the degree of supercooling in one room, it is possible to maintain room temperature in other rooms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の制御装置における2つの制
御モードの切替論理を示すは 第2図は第1図における
2つの制御モードのフローチ+ −ト、第3図は本発明
の一実施例の制御装置の構成ダ 匁 第3図は本発明の異なる実施例の制御装置の構成図
であム 1、51・・室室内熱交換器 2、12、22、59・
・膨張弁、 3、13、23・・室温センサ、 4.1
4、24・・室内ユニット、 5、15、25、65、
75、85・・室内熱交換器 6、7、16.17、2
6、27・・温度センサ、 10、50・・圧縮機、 
55・・室外側中間熱交換器 60・・冷媒搬送用ボン
2.61・・室内側中間熱交換器62.72.82・・
流量調整九 代理人の氏名 弁理士 小鍜治 明 ほか2名Kl  
図 (dey〕 !G2  図
FIG. 1 shows the logic for switching between two control modes in a control device according to an embodiment of the present invention. FIG. 2 is a flow chart of two control modes in FIG. 1, and FIG. Figure 3 is a configuration diagram of a control device according to a different embodiment of the present invention.Indoor heat exchanger 2, 12, 22, 59
・Expansion valve, 3, 13, 23...Room temperature sensor, 4.1
4, 24...indoor unit, 5, 15, 25, 65,
75, 85...Indoor heat exchanger 6, 7, 16.17, 2
6, 27... Temperature sensor, 10, 50... Compressor,
55...Outdoor intermediate heat exchanger 60...Refrigerant conveying bong 2.61...Indoor intermediate heat exchanger 62.72.82...
Name of Flow Adjustment 9 Agent Patent Attorney Akira Okaji and 2 other Kl
Figure (dey) !G2 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、膨張弁、蒸発器を具備する冷凍
サイクルにより構成される蒸気圧縮式ヒートポンプにお
いて、室内の温度を検出する手段、前記凝縮器の飽和蒸
気温度と前記凝縮器出口温度との差を過冷却度として検
出する手段を有し、検出した前記過冷却度が第1のしき
い値より大きくて、第1のしきい値よりも大きい第3の
しきい値より小さい場合には、第1の制御目的として、
前記検出した室内の温度が設定値に等しくなるように前
記圧縮機の能力および前記膨張弁の開度を制御し、前記
過冷却度が前記第1のしきい値より小さい第2のしきい
値より小さい場合には、第2の制御目的として前記過冷
却度が小さくならないように前記圧縮機の能力および前
記膨張弁の開度を制御し、前記過冷却度が前記第3のし
きい値より大きい第4のしきい値より大きい場合には、
第3の制御目的として前記過冷却度が大きくならないよ
うに前記圧縮機の能力もしくは前記膨張弁の開度を制御
し、前記過冷却度が第1のしきい値と第2のしきい値と
の間にある場合には、前記第1の制御目的に対する操作
量と、前記第2の制御目的に対する操作量とをあいまい
論理により切り換えて実際の操作量を得、前記過冷却度
が前記第3のしきい値と第4のしきい値との間にある場
合には、前記第1の制御目的に対する操作量と、前記第
3の制御目的に対する操作量とをあいまい論理により切
り換えて実際の操作量を得ることを特徴とするヒートポ
ンプ制御装置。
(1) In a vapor compression heat pump consisting of a refrigeration cycle equipped with a compressor, a condenser, an expansion valve, and an evaporator, means for detecting indoor temperature, the saturated vapor temperature of the condenser, and the condenser outlet temperature. and means for detecting the difference between the two as a degree of supercooling, and when the detected degree of supercooling is greater than a first threshold value and less than a third threshold value that is greater than the first threshold value; As the first control objective,
a second threshold for controlling the capacity of the compressor and the opening degree of the expansion valve so that the detected indoor temperature is equal to a set value, and the degree of supercooling is smaller than the first threshold; If the degree of supercooling is smaller than the third threshold value, the capacity of the compressor and the opening degree of the expansion valve are controlled so that the degree of supercooling does not become smaller, and the degree of supercooling is lower than the third threshold value. If it is larger than the fourth larger threshold,
As a third control purpose, the capacity of the compressor or the opening degree of the expansion valve is controlled so that the degree of supercooling does not become large, and the degree of supercooling is set to a first threshold value and a second threshold value. If the degree of supercooling is within the range, the actual manipulated variable is obtained by switching the manipulated variable for the first control objective and the manipulated variable for the second control objective using ambiguous logic, and the degree of supercooling is determined by the third control objective. and the fourth threshold, the operation amount for the first control objective and the operation amount for the third control objective are switched using ambiguous logic to perform the actual operation. A heat pump control device characterized by obtaining the amount.
(2)圧縮機、凝縮器、膨張弁、蒸発器を具備する冷凍
サイクルにより構成され 前記膨張弁および前記凝縮器
より構成される複数の室内ユニットに前記圧縮機より配
管分配し、冷媒を供給し、前記複数のユニットを経由し
た冷媒は、再び配管結合により1つの蒸発器に送られる
よう構成された蒸気圧縮式ヒートポンプにおいて、前記
各凝縮器冷媒の飽和蒸気温度と前記凝縮器出口温度の差
を各ユニットの過冷却度として検出する手段、室内の温
度を検出する手段を有し、各ユニットにおいて、検出し
た過冷却度が第1のしきい値と第1のしきい値より大き
い第2のしきい値との間の値であるときには、室温が設
定値に等しくなるように前記膨張弁の開度を操作し、検
出した過冷却度が第1のしきい値より小さい場合には、
前記過冷却度が小さくならないように制御し、過冷却度
が前記第2のしきい値より大きい場合には、過冷却度が
小さくなるように前記膨張弁の開度を制御することを特
徴とするヒートポンプ制御装置。
(2) It is composed of a refrigeration cycle equipped with a compressor, a condenser, an expansion valve, and an evaporator, and the compressor is distributed through piping to a plurality of indoor units each composed of the expansion valve and the condenser to supply refrigerant. In a vapor compression heat pump configured such that the refrigerant that has passed through the plurality of units is sent to one evaporator by connecting pipes again, the difference between the saturated vapor temperature of each condenser refrigerant and the condenser outlet temperature is calculated. It has a means for detecting the degree of supercooling of each unit and a means for detecting the indoor temperature, and in each unit, the detected degree of supercooling is a first threshold value and a second threshold value larger than the first threshold value. When the value is between the threshold value, the opening degree of the expansion valve is operated so that the room temperature becomes equal to the set value, and when the detected degree of supercooling is smaller than the first threshold value,
The degree of supercooling is controlled so as not to become small, and when the degree of supercooling is greater than the second threshold value, the degree of opening of the expansion valve is controlled so that the degree of supercooling is reduced. Heat pump control device.
(3) 圧縮機、室外熱交換器、膨張機構、室外側中間
熱交換器を具備する室外冷凍サイクルと、前記室外側中
間熱交換器により熱交換される前記室内側中間熱交換器
、冷媒搬送手段、配管分岐により複数の流量調整機構と
前記室内熱交換器を接続した室内冷凍サイクルにより構
成された蒸気圧縮式ヒートポンプにおいて、前記各室室
内熱交換器出口の過冷却度を検出する手段を有し、各室
内熱交換器において、検出した前記過冷却度が第1のし
きい値より大きくて、第1のしきい値よりも大きい第3
のしきい値より小さい場合には、第1の制御目的として
、前記検出した室内の温度が設定値に等しくなるように
前記流量調整機構を操作し、前記過冷却度が前記第1の
しきい値より小さい第2のしきい値より小さい場合には
、第2の制御目的として前記過冷却度が小さくならない
ように前記流量調整機構を操作し、前記過冷却度が前記
第3のしきい値より大きい第4のしきい値より大きい場
合には、第3の制御目的として前記過冷却度が大きくな
らないように前記流量調整機構を操作し、前記過冷却度
が第1のしきい値と第2のしきい値との間にある場合に
は、前記第1の制御目的に対する操作量と、前記第2の
制御目的に対する操作量とをあいまい論理により切り換
えて実際の操作量を得、前記過冷却度が前記第3のしき
い値と第4のしきい値との間にある場合には、前記第1
の制御目的に対する操作量と、前記第3の制御目的に対
する操作量とをあいまい論理により切り換えて実際の操
作量を得ることを特徴とするヒートポンプ制御装置。
(3) An outdoor refrigeration cycle including a compressor, an outdoor heat exchanger, an expansion mechanism, and an outdoor intermediate heat exchanger, the indoor intermediate heat exchanger that exchanges heat with the outdoor intermediate heat exchanger, and refrigerant transport. means, in a vapor compression heat pump constituted by an indoor refrigeration cycle in which a plurality of flow rate adjustment mechanisms and the indoor heat exchanger are connected through piping branches, the heat pump has means for detecting the degree of subcooling at the outlet of each indoor heat exchanger; In each indoor heat exchanger, the detected degree of supercooling is greater than a first threshold value, and a third degree of supercooling is greater than the first threshold value.
If the degree of supercooling is less than the first threshold, the flow rate adjustment mechanism is operated so that the detected indoor temperature becomes equal to the set value, and the degree of supercooling is lower than the first threshold. If the value is smaller than the second threshold value, the second control purpose is to operate the flow rate adjustment mechanism so that the degree of supercooling does not become smaller, and the degree of supercooling is set to the third threshold value. If it is larger than the fourth threshold, the third control purpose is to operate the flow rate adjustment mechanism so that the degree of supercooling does not become large, so that the degree of supercooling is equal to the first threshold and the fourth threshold. 2, the actual manipulated variable is obtained by switching the manipulated variable for the first control objective and the manipulated variable for the second control objective using fuzzy logic, and the When the degree of cooling is between the third threshold and the fourth threshold, the first
A heat pump control device, characterized in that the actual manipulated variable is obtained by switching between the manipulated variable for the control objective and the manipulated variable for the third control objective using ambiguous logic.
JP2292291A 1990-10-29 1990-10-29 Heat pump controller Expired - Fee Related JPH0833249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292291A JPH0833249B2 (en) 1990-10-29 1990-10-29 Heat pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292291A JPH0833249B2 (en) 1990-10-29 1990-10-29 Heat pump controller

Publications (2)

Publication Number Publication Date
JPH04165267A true JPH04165267A (en) 1992-06-11
JPH0833249B2 JPH0833249B2 (en) 1996-03-29

Family

ID=17779857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292291A Expired - Fee Related JPH0833249B2 (en) 1990-10-29 1990-10-29 Heat pump controller

Country Status (1)

Country Link
JP (1) JPH0833249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751356A2 (en) * 1995-06-26 1997-01-02 Nippondenso Co., Ltd. Air conditioning apparatus
JP2011158118A (en) * 2010-01-29 2011-08-18 Mitsubishi Heavy Ind Ltd Multi-type air conditioner
WO2016158938A1 (en) * 2015-04-03 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764570B (en) * 2018-12-29 2020-08-18 西安交通大学 Control method for exhaust pressure of transcritical carbon dioxide heat pump system based on neural network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498050A (en) * 1990-08-10 1992-03-30 Daikin Ind Ltd Operation control device of refrigerating plant device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498050A (en) * 1990-08-10 1992-03-30 Daikin Ind Ltd Operation control device of refrigerating plant device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751356A2 (en) * 1995-06-26 1997-01-02 Nippondenso Co., Ltd. Air conditioning apparatus
EP0751356A3 (en) * 1995-06-26 1998-01-07 Denso Corporation Air conditioning apparatus
JP2011158118A (en) * 2010-01-29 2011-08-18 Mitsubishi Heavy Ind Ltd Multi-type air conditioner
WO2016158938A1 (en) * 2015-04-03 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
KR20170126941A (en) * 2015-04-03 2017-11-20 존슨 컨트롤즈-히타치 에어 컨디셔닝 테크놀러지 (홍콩) 리미티드 Air conditioner
EP3279583A4 (en) * 2015-04-03 2018-12-05 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner

Also Published As

Publication number Publication date
JPH0833249B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
EP0676595B1 (en) Air conditioning apparatus
CN109855281B (en) Air conditioner heat exchange device and air conditioner
EP0496505B1 (en) Air-conditioning system
US9683768B2 (en) Air-conditioning apparatus
CN106196495A (en) Control device, control method and the multi-gang air-conditioner of a kind of multi-gang air-conditioner
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
JPH11142010A (en) Refrigeration air conditioner
US11156391B2 (en) Refrigeration cycle apparatus
US20240151441A1 (en) Air conditioning system and control method thereof
US20210048216A1 (en) Air-conditioning apparatus
JPH04165267A (en) Controller for heat pump
JP2016145687A (en) Cooling device
KR102226194B1 (en) Hybrid free-cooling thermosiphon multi-chiller type constant temperature and dehumidification air conditioning system
JPH07198235A (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2712835B2 (en) Control method of multi-room air conditioner
JPH04214153A (en) Refrigerating cycle device
JPH046355A (en) Multiple-room type air-conditioner
JP7243300B2 (en) heat pump system
JPH03204568A (en) Controlling method for heat pump
US20240133597A1 (en) Refrigeration cycle apparatus
JPH1089742A (en) Refrigerating system
JPH0510618A (en) Multi-chamber air conditioner
JP2723380B2 (en) Air conditioner
JPH06147671A (en) Cooling control device for multi-chamber type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees