JP2616009B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2616009B2
JP2616009B2 JP1141866A JP14186689A JP2616009B2 JP 2616009 B2 JP2616009 B2 JP 2616009B2 JP 1141866 A JP1141866 A JP 1141866A JP 14186689 A JP14186689 A JP 14186689A JP 2616009 B2 JP2616009 B2 JP 2616009B2
Authority
JP
Japan
Prior art keywords
heat exchanger
source side
heat source
outdoor
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1141866A
Other languages
Japanese (ja)
Other versions
JPH037858A (en
Inventor
真理 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1141866A priority Critical patent/JP2616009B2/en
Publication of JPH037858A publication Critical patent/JPH037858A/en
Application granted granted Critical
Publication of JP2616009B2 publication Critical patent/JP2616009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数の熱源側熱交換器を配置した空気調和
装置に係り、特に冷暖房サイクルの切換性能の向上対策
に関する。
Description: TECHNICAL FIELD The present invention relates to an air conditioner in which a plurality of heat source side heat exchangers are arranged, and particularly to a measure for improving the switching performance of a cooling / heating cycle.

(従来の技術) 従来より、例えば特開昭61−110859号公報に開示され
る如く、冷暖房運転可能に構成された空気調和装置にお
いて、複数の熱源側熱交換器と該熱源側熱交換器用の開
度調節可能な減圧機構とを冷媒回路内で並列に配置して
おき、室内側の負荷に応じて各減圧機構の開度を調節す
ることにより、冷暖房運転時に、各熱源側熱交換器の能
力調節範囲の拡大を図ろうとするものは公知の技術であ
る。
(Prior Art) Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 61-110859, for example, in an air conditioner configured to be capable of cooling and heating operation, a plurality of heat source side heat exchangers and a plurality of heat source side heat exchangers are provided. A pressure-reducing mechanism capable of adjusting the opening degree is arranged in parallel in the refrigerant circuit, and by adjusting the opening degree of each pressure-reducing mechanism according to the load on the indoor side, during the cooling / heating operation, each heat source side heat exchanger It is a known technique to expand the capacity adjustment range.

すなわち、上記公報に開示されるごとく、室内側の冷
房負荷が大きいときには冷房サイクルで各減圧機構の開
度を大きくし、冷房負荷の減少に応じて開度を小さくす
る一方、室内側の負荷が暖房負荷に変化すると、暖房サ
イクル側に切換えて、負荷の増大に応じて減圧機構の開
度を大きくするように制御することにより、能力の小さ
い領域における能力制御を可能にしたものである。
That is, as disclosed in the above publication, when the cooling load on the indoor side is large, the opening degree of each pressure reducing mechanism is increased in the cooling cycle, and the opening degree is reduced in accordance with the decrease in the cooling load, while the load on the indoor side is reduced. When the load is changed to the heating load, the control is switched to the heating cycle side, and the opening degree of the pressure reducing mechanism is controlled to be increased in accordance with the increase in the load, thereby enabling the capacity control in a small capacity area.

(発明が解決しようとする課題) 上記従来のものを利用することにより、室内側の冷房
から暖房までの負荷の変化に対応して熱源側熱交換器の
能力を広い範囲に亘って調節することができる。
(Problems to be Solved by the Invention) By using the above-mentioned conventional one, the capability of the heat source side heat exchanger is adjusted over a wide range in response to a change in load from indoor cooling to heating. Can be.

しかしながら、上記のように冷暖房サイクルを切換え
る際、能力の小さな領域でつまり減圧機構の開度を絞り
冷媒循環量の小さな状態ですべての熱源側熱交換器を蒸
発器から凝縮器に切換えるために、冷媒状態が不安定と
なり切換時に大きな衝撃が生じるので、冷媒回路全体に
その影響が及んで、信頼性が損なわれる虞れがある。
However, when switching the cooling / heating cycle as described above, in order to switch all the heat source side heat exchangers from the evaporator to the condenser in a small capacity area, that is, by narrowing the opening of the pressure reducing mechanism and reducing the refrigerant circulation amount, Since the state of the refrigerant becomes unstable and a large impact is generated at the time of switching, the influence is exerted on the entire refrigerant circuit, and the reliability may be impaired.

本発明は斯かる点に鑑みてなされたものであり、その
主たる目的は、冷媒の物理状態の大きな変化を生じるこ
となく、室外側の能力を凝縮機能から蒸発機能に又はそ
の逆に変化させうる手段を講ずることにより、冷房サイ
クルから暖房サイクルへの切換性能の向上を図ることに
ある。
The present invention has been made in view of such a point, and a main object of the present invention is to change the outdoor capacity from the condensation function to the evaporation function or vice versa without causing a large change in the physical state of the refrigerant. It is an object of the present invention to improve the switching performance from the cooling cycle to the heating cycle by taking measures.

また、他の目的は、複数の熱源側熱交換器の熱交換特
性を改善することにより、運転効率の向上を図ることに
ある。
Another object is to improve the operation efficiency by improving the heat exchange characteristics of the plurality of heat source side heat exchangers.

(課題を解決するための手段) 上記目的を達成するため第1の解決手段は、同時に複
数の熱源側熱交換器のうちのいずれかを蒸発器とし他を
凝縮器とする逆モード運転を行うことにある。
(Means for Solving the Problems) In order to achieve the above object, a first solution is to perform a reverse mode operation in which one of a plurality of heat source side heat exchangers is used as an evaporator and the other is used as a condenser. It is in.

具体的には、第1図及び第2図に示すように、圧縮機
(1)と利用側熱交換器(8)と該利用側熱交換器
(8)用の利用側減圧機構(7)とを接続した主冷媒配
管(10)に対して、熱源側熱交換器(2)と該熱源側熱
交換器(2)用の熱源側減圧機構(3)とを接続した複
数の分岐管(12a),(12b)を互いに並列に接続してな
る冷媒回路(11)と、該冷媒回路(11)を冷房サイクル
と暖房サイクルとに切換えるサイクル切換手段(51)と
を備えた空気調和装置を対象とする。
Specifically, as shown in FIGS. 1 and 2, the compressor (1), the use side heat exchanger (8), and the use side pressure reducing mechanism (7) for the use side heat exchanger (8). And a plurality of branch pipes connecting a heat source side heat exchanger (2) and a heat source side pressure reducing mechanism (3) for the heat source side heat exchanger (2) to a main refrigerant pipe (10) connected to the main refrigerant pipe (10). An air conditioner comprising: a refrigerant circuit (11) formed by connecting 12a) and (12b) in parallel with each other; and a cycle switching means (51) for switching the refrigerant circuit (11) between a cooling cycle and a heating cycle. set to target.

そして、上記各分岐管(12a),(12b)のガスライン
(10b)との接続を、上記冷媒回路(11)の吐出ライン
(10b1)と吸入ライン(10b2)とに個別に切換える接続
切換機構(4a),(4b)と、上記利用側熱交換器(8)
の冷房若しくは暖房の空調要求が所定の要求量以下に低
減したとき、各熱源側熱交換器(2a),(2b)のうちい
ずれかを吐出ライン(10b1)に接続させて凝縮器とし、
他を吸入ライン(0b2)に接続させて蒸発器とするモー
ド運転を行うように接続切換機構(4a),(4b)を制御
し、且つこの逆モード運転時、利用側熱交換器(8)の
冷房要求量が所定量以下であるときには蒸発器となって
いる熱源側熱交換器(2a)の蒸発能力よりも凝縮器とな
っている熱源側熱交換器(2b)の凝縮能力を大きくする
一方、利用側熱交換器(8)の暖房要求量が所定量以下
であるときには凝縮器となっている熱源側熱交換器(2
b)の凝縮能力よりも蒸発器となっている熱源側熱交換
器(2a)の蒸発能力を大きくするように熱源側減圧機構
(3a),(3b)を制御すると共に、利用側熱交換器
(8)の空調要求が冷房要求と暖房要求との間で変化す
るときには、凝縮器となっている熱源側熱交換器(2b)
の凝縮能力と蒸発器となっている熱源側熱交換器(2a)
の蒸発能力とを等しくするように熱源側減圧機構(3
a),(3b)を制御する逆モード運転制御手段(52)と
を備えさせた構成としたものである。
A connection switching mechanism for individually switching the connection of the branch pipes (12a) and (12b) with the gas line (10b) to the discharge line (10b1) and the suction line (10b2) of the refrigerant circuit (11). (4a), (4b) and the above use side heat exchanger (8)
When the air conditioning demand for cooling or heating is reduced to a predetermined demand or less, one of the heat source side heat exchangers (2a) and (2b) is connected to the discharge line (10b1) to form a condenser,
The connection switching mechanisms (4a) and (4b) are controlled to perform a mode operation in which the other is connected to the suction line (0b2) and used as an evaporator, and during the reverse mode operation, the use side heat exchanger (8) When the cooling demand of the heat source side heat exchanger (2b), which is a condenser, is larger than the evaporation capacity of the heat source side heat exchanger (2a), which is an evaporator, when the required cooling amount is less than a predetermined amount. On the other hand, when the required heating amount of the use side heat exchanger (8) is equal to or less than the predetermined amount, the heat source side heat exchanger (2
The heat-source-side pressure reduction mechanisms (3a) and (3b) are controlled so that the evaporation capacity of the heat-source-side heat exchanger (2a), which is the evaporator, is greater than the condensation capacity of (b), and the use-side heat exchanger When the air conditioning request of (8) changes between the cooling request and the heating request, the heat source side heat exchanger serving as a condenser (2b)
Heat exchanger on the heat source side (2a), which is the condenser capacity and evaporator
So that the evaporation capacity of the heat source is equalized.
a) and (3b) for controlling the reverse mode operation control means (52).

第2の解決手段は、第2図に示すように、上記第1の
解決手段において、各分岐管(12a),(12b)のガス側
に、逆モード運転制御手段による逆モード運転時に相互
の熱交換可能に近接配置された吸入管熱交換器(13
a),(13b)を設けたものである。
As shown in FIG. 2, the second solution is the same as the first solution described above, except that the gas side of each of the branch pipes (12a) and (12b) is connected to each other during the reverse mode operation by the reverse mode operation control means. Suction pipe heat exchanger (13
a) and (13b) are provided.

第3の解決手段は、上記第1又は第2の解決手段にお
ける運転制御手段(52)を、各熱源側減圧機構(3a),
(3b)の開度を一定期間全閉状態に保持した後、各熱源
側熱交換器(2a),(2b)を凝縮器と蒸発器との間で切
換えるよう接続切換機構(4a),(4b)を制御するもの
としている。
A third solution is to replace the operation control means (52) in the first or second solution with each heat source side pressure reducing mechanism (3a),
After keeping the opening of (3b) in the fully closed state for a certain period of time, the connection switching mechanism (4a), (4a), (4a) switches each heat source side heat exchanger (2a), (2b) between the condenser and the evaporator. 4b) shall be controlled.

第4の解決手段は、上記第1,第2又は第3の解決手段
における各熱源側減圧機構(3a),(3b)を電動膨張弁
で構成したものである。
According to a fourth solution, each of the heat source side pressure reducing mechanisms (3a) and (3b) in the first, second or third solution is constituted by an electric expansion valve.

第5の解決手段は、第2図に示すように、上記第1,第
2,第3又は第4の解決手段における各熱源側熱交換器
(2a),(2b)をファン(14)による共通の空気通路に
配置して、逆モード運転制御手段(52)を、風上側の熱
源側熱交換器(2a)が凝縮器となり、風下側の熱源側熱
交換器(2b)が蒸発器となるよう各接続切換機構(4
a),(4b)を制御するものとしている。
The fifth solution is, as shown in FIG.
2, the heat source side heat exchangers (2a) and (2b) in the third or fourth solution are arranged in a common air passage by a fan (14), and the reverse mode operation control means (52) is Each of the connection switching mechanisms (4) so that the upper heat source side heat exchanger (2a) becomes a condenser and the leeward heat source side heat exchanger (2b) becomes an evaporator.
a) and (4b) are controlled.

(作用) 以上の構成により、請求項(1)の発明では、装置の
運転時、サイクル切換手段(51)により、室内の冷暖房
要求の変化に応じて、冷媒回路(11)が冷房サイクルと
暖房サイクルとに切換えられ、所定の空調が行われる。
(Operation) With the above configuration, according to the invention of claim (1), when the apparatus is operated, the refrigerant switching circuit (11) causes the refrigerant circuit (11) to switch between the cooling cycle and the heating in accordance with a change in the indoor cooling / heating request by the cycle switching means (51). The cycle is switched to a cycle, and predetermined air conditioning is performed.

その際、利用側熱交換器(8)の冷房若しくは暖房の
空調要求が低減するときには、逆モード運転制御手段
(52)により、各分岐管(12a),(12b)のうちいずれ
かが吐出ライン(10b1)に接続され、他が吸入ライン
(10b2)に接続されるように接続切換機構(4a),(4
b)が制御される。つまり、各熱源側熱交換器(2a),
(2b)のいずれかが蒸発器となる一方、他が凝縮器とな
るので、要求能力が小さいときにも所定の冷媒循環量を
維持した状態で室外側の能力が小さくなるよう制御され
る。また、このような空調要求低減時において、利用側
熱交換器(8)の空調要求が冷房要求と暖房要求との間
で変化するときには、逆モード運転制御手段(52)によ
り、凝縮器となっている熱源側熱交換器(2b)の凝縮能
力と蒸発器となっている熱源側熱交換器(2a)の蒸発能
力とが等しくなるように、熱源側減圧機構(3a),(3
b)が制御される。したがって、従来のような冷房サイ
クルから暖房サイクルへの切換時における冷媒循環量の
極度の減少による冷媒の不安定状態やショックを生じる
ことなく、室外側全体の凝縮能力から蒸発能力への変化
又はその逆の変化が円滑に行われることになり、能力変
化時に伴なう冷暖房サイクルの切換時における信頼性が
向上する。
At this time, when the demand for air conditioning for cooling or heating of the use side heat exchanger (8) is reduced, one of the branch pipes (12a) and (12b) is controlled by the reverse mode operation control means (52). (4a), (4a) and (4b) so that the other is connected to the suction line (10b2).
b) is controlled. In other words, each heat source side heat exchanger (2a),
Since any one of (2b) serves as an evaporator and the other serves as a condenser, even when the required capacity is small, the outdoor capacity is controlled to be reduced while maintaining a predetermined refrigerant circulation amount. In addition, when the air conditioning request of the use side heat exchanger (8) changes between the cooling request and the heating request at the time of such air conditioning request reduction, the reverse mode operation control means (52) operates as a condenser. Heat source side heat exchanger (2b) and the heat source side pressure reducing mechanism (3a), (3) so that the evaporation capacity of the heat source side heat exchanger (2a), which is the evaporator, is equal to the evaporation capacity of the heat source side heat exchanger (2a).
b) is controlled. Therefore, without causing an unstable state or shock of the refrigerant due to the extremely reduced amount of the refrigerant circulating at the time of switching from the cooling cycle to the heating cycle as in the related art, the change from the condensation capacity of the entire outdoor to the evaporation capacity or the change thereof. The reverse change is performed smoothly, and the reliability at the time of switching between the cooling and heating cycles accompanying the change in capacity is improved.

請求項(2)の発明では、上記請求項(1)の発明に
おいて、逆モード運転時に、各分岐管(12a),(12b)
のガス側に設けられた吸入管熱交換器(13a),(13b)
相互の熱交換が行われ、蒸発器となる熱源側熱交換器
(2a)における冷媒の過熱度が吸入管熱交換器(13a)
でとられるので、蒸発温度が可及的に上昇することにな
り、運転効率が向上する。
According to the invention of claim (2), in the invention of claim (1), each of the branch pipes (12a) and (12b) is operated during reverse mode operation.
Pipe heat exchangers (13a) and (13b) installed on the gas side of
The mutual heat exchange is performed, and the degree of superheat of the refrigerant in the heat source side heat exchanger (2a) that becomes the evaporator is determined by the suction pipe heat exchanger (13a).
Therefore, the evaporation temperature rises as much as possible, and the operation efficiency is improved.

請求項(3)の発明では、上記請求項(1)又は
(2)の発明において、逆モード運転制御手段(52)に
より、熱源側減圧機構(3a),(3b)の開度を一定期間
全閉状態に保持し、冷媒状態が安定してから各熱源側熱
交換器(2a),(2b)を凝縮器と蒸発器との間で切換え
るように接続切換機構(4a),(4b)が制御されるの
で、冷媒状態の安定性が増大することになる。
According to the invention of claim (3), in the invention of claim (1) or (2), the opening degree of the heat source side pressure reducing mechanisms (3a) and (3b) is set for a certain period by the reverse mode operation control means (52). A connection switching mechanism (4a), (4b) for maintaining the fully closed state and switching each heat source side heat exchanger (2a), (2b) between the condenser and the evaporator after the refrigerant state is stabilized. Is controlled, the stability of the refrigerant state is increased.

請求項(4)の発明では、上記請求項(1),(2)
又は(3)の発明において、熱源側減圧機構たる電動膨
張弁(3a),(3b)の連続的な開度調節により各熱源側
熱交換器(2a),(2b)の能力が微細に調節され、室外
側全体の蒸発能力と凝縮能力が広い範囲に亘って円滑に
調節されることになる。
In the invention of claim (4), the above-mentioned claims (1) and (2)
Or, in the invention of (3), the capability of each heat source side heat exchanger (2a), (2b) is finely adjusted by continuously adjusting the opening degree of the electric expansion valves (3a), (3b) as the heat source side pressure reducing mechanism. As a result, the evaporation capacity and the condensation capacity of the entire outdoor area are smoothly adjusted over a wide range.

請求項(5)の発明では、上記請求項(1),
(2),(3)又は(4)の発明において、各熱源側熱
交換器(2a),(2b)がファン(14)による共通の空気
通路に配置され、逆モード運転制御手段(52)による逆
モード運転時に、風上側の熱源側熱交換器(2b)が凝縮
器として機能し、風下側の熱源側熱交換器(2a)が蒸発
器として機能するように制御されるので、蒸発器となる
風下側の熱源側熱交換器(2a)では、風上側の熱源側熱
交換器(2b)で暖められた空気との熱交換により、高い
蒸発温度が得られ、運転効率が向上することになる。
In the invention of claim (5), the above-mentioned claim (1),
In the invention of (2), (3) or (4), the heat source side heat exchangers (2a) and (2b) are arranged in a common air passage by the fan (14), and the reverse mode operation control means (52) During reverse mode operation, the evaporator is controlled so that the heat source side heat exchanger (2b) on the leeward side functions as a condenser and the heat source side heat exchanger (2a) on the leeward side functions as an evaporator. In the leeward heat source side heat exchanger (2a), heat exchange with the air warmed by the leeward heat source side heat exchanger (2b) provides a high evaporation temperature and improves operating efficiency. become.

(実施例) 以下、本発明の実施例について、第2図以下の図面に
基づき説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. 2 and subsequent drawings.

第2図は本発明の実施例に係る空気調和装置の構成示
し、一台の室外ユニット(X)に対して複数の室内ユニ
ット(A)〜(C)が並列に接続されたいわゆるマルチ
タイプのものである。
FIG. 2 shows a configuration of an air conditioner according to an embodiment of the present invention, which is a so-called multi-type in which a plurality of indoor units (A) to (C) are connected in parallel to one outdoor unit (X). Things.

上記室外ユニット(X)において、(1)は圧縮機、
(2a),(2b)は冷媒の流れ方向に応じて凝縮器又は蒸
発器として機能する熱源側熱交換器としての室外熱交換
器、(3a),(3b)は上記室外熱交換器(2a),(2b)
が凝縮器となるときには流量制御弁として機能し、蒸発
器となるときには減圧機構として機能する熱源側減圧機
構としての室外電動膨張弁、(5)は液冷媒を貯溜する
ためのレシーバ、(6)は吸入冷媒中の液冷媒を除去す
るためのアキュムレータである。
In the outdoor unit (X), (1) is a compressor,
(2a) and (2b) are outdoor heat exchangers as heat source side heat exchangers that function as condensers or evaporators according to the flow direction of the refrigerant, and (3a) and (3b) are the outdoor heat exchangers (2a ), (2b)
An outdoor electric expansion valve as a heat source side pressure reducing mechanism that functions as a flow rate control valve when the device becomes a condenser and functions as a pressure reducing mechanism when it becomes an evaporator, (5) a receiver for storing liquid refrigerant, (6) Is an accumulator for removing liquid refrigerant in the suction refrigerant.

また、各室内ユニット(A)〜(C)は同一構成であ
り、(7A)〜(7C)は各室内ユニット(A)〜(C)の
冷房運転時には減圧機構として、暖房運転時には流量制
御弁として機能する室内電動膨張弁、(8A)〜(8C)は
利用側熱交換器としての室内熱交換器である。
Each of the indoor units (A) to (C) has the same configuration, and (7A) to (7C) function as a pressure reducing mechanism during the cooling operation of each of the indoor units (A) to (C), and a flow control valve during the heating operation. (8A) to (8C) are indoor heat exchangers as use side heat exchangers.

そして、上記各機器は冷媒配管(10)により冷媒の流
通可能に接続されており、室外側で室外空気との熱交換
により得た熱を室内に放出する冷媒回路(11)が構成さ
れている。
And each said apparatus is connected so that a refrigerant | coolant can distribute | circulate by the refrigerant | coolant piping (10), and the refrigerant | coolant circuit (11) which discharge | releases the heat | fever obtained by the heat exchange with outdoor air in an outdoor side is comprised in a room. .

ここで、室外ユニット(X)において、上記一方の室
外熱交換器(2a)と室外電動膨張弁(3a)とは冷媒配管
(10)の分岐管(12a)により互いに直列に接続され、
他方の室外熱交換器(2b)と室外電動膨張弁(3b)とは
分岐管(12b)により互いに直列に接続されているとと
もに、上記各分岐管(12a),(12b)は冷媒回路(11)
の液ライン(10a)とガスライン(10b)との間で互いに
並列に接続されている。
Here, in the outdoor unit (X), the one outdoor heat exchanger (2a) and the outdoor electric expansion valve (3a) are connected in series to each other by a branch pipe (12a) of a refrigerant pipe (10).
The other outdoor heat exchanger (2b) and the outdoor electric expansion valve (3b) are connected in series by a branch pipe (12b), and the branch pipes (12a) and (12b) are connected to a refrigerant circuit (11). )
Are connected in parallel between the liquid line (10a) and the gas line (10b).

そして、各分岐管(12a),(12b)のガスライン(10
b)側は、吐出ライン(10b1)と吸入ライン(10b2)と
に、第1室外開閉弁(4a1),(4b2)と第2室外開閉弁
(4a2),(4b2)とを介してそれぞれ分岐接続されてお
り、該第1,第2室外開閉弁(4a1),(4a2)及び(4b
1),(4b2)により、各室外熱交換器(2a),(2b)の
ガスライン(10b)側への接続を吐出ライン(10b1)と
吸入ライン(10b2)とに個別に切換える接続切換機構
(4a),(4b)が構成されている。すなわち、第1室外
開閉弁(4a1),(4b1)が開いて第2室外開閉弁(4a
2)(4b2)が閉じると、室外熱交換器(2a),(2b)が
吐出ライン(10b1)に連通して、室外熱交換器(2a),
(2b)が凝縮器として機能する一方、第1室外開閉弁
(4a1),(4b1)が閉じ、第2室外開閉弁(4a2),(4
b2)が開くと、室外熱交換器(2a),(2b)が吸入ライ
ン(10b2)に連通して、室外熱交換器(2a),(2b)が
蒸発器として機能するようになされている。
Then, the gas line (10) of each branch pipe (12a) and (12b)
The b) side branches to the discharge line (10b1) and the suction line (10b2) via the first outdoor on-off valves (4a1) and (4b2) and the second outdoor on-off valves (4a2) and (4b2), respectively. And the first and second outdoor on-off valves (4a1), (4a2) and (4b
1) and (4b2), a connection switching mechanism that individually switches the connection of each outdoor heat exchanger (2a) and (2b) to the gas line (10b) between the discharge line (10b1) and the suction line (10b2) (4a) and (4b) are configured. That is, the first outdoor on-off valves (4a1) and (4b1) are opened to open the second outdoor on-off valve (4a1).
2) When (4b2) is closed, the outdoor heat exchangers (2a) and (2b) communicate with the discharge line (10b1), and the outdoor heat exchangers (2a) and
While (2b) functions as a condenser, the first outdoor on-off valves (4a1) and (4b1) close, and the second outdoor on-off valves (4a2) and (4a)
When b2) opens, the outdoor heat exchangers (2a) and (2b) communicate with the suction line (10b2), and the outdoor heat exchangers (2a) and (2b) function as evaporators. .

ここで、各室外熱交換器(2a),(2b)は、室外ファ
ン(14)により形成される共通の空気通路に配置されて
いて、一方の室外熱交換器(2a)は風下側に、他方の室
外熱交換器(2b)は風上側になるように配置されてい
る。以下、上記一方の室外熱交換器(2a)を風下側室外
熱交換器、他方の室外熱交換器(2b)を風上側室外熱交
換器とする。
Here, each of the outdoor heat exchangers (2a) and (2b) is disposed in a common air passage formed by the outdoor fan (14), and one of the outdoor heat exchangers (2a) is located on the leeward side, The other outdoor heat exchanger (2b) is arranged on the windward side. Hereinafter, the one outdoor heat exchanger (2a) is referred to as a leeward outdoor heat exchanger, and the other outdoor heat exchanger (2b) is referred to as a leeward outdoor heat exchanger.

一方、各室内ユニット(A)〜(C)において、各室
内熱交換器(8A)〜(8C)のガスライン(10b)側は、
吐出ライン(10b1)と吸入ライン(10b2)とに、それぞ
れ第1室内開閉弁(9A1)〜(9C1)と第2室内開閉弁
(9A2)〜(9C2)とを介して分岐接続されていて、上記
室外ユニット(X)の場合と同様に、上記第1,第2室内
開閉弁(9A1)〜(9C2)の開閉により、室内熱交換器
(8A)〜(8C)が蒸発器又は凝縮器として機能するよう
になされている。すなわち、上記第1、第2室内開閉弁
(9A1)〜(9C2)及び室外ユニット(X)の上記各室外
開閉弁(4a1)〜(4b2)により、冷媒回路(11)を冷房
サイクルと暖房サイクルとに切換えるサイクル切換手段
(51)が構成されている。
On the other hand, in each of the indoor units (A) to (C), the gas line (10b) side of each of the indoor heat exchangers (8A) to (8C)
The discharge line (10b1) and the suction line (10b2) are branched and connected via the first indoor on-off valves (9A1) to (9C1) and the second indoor on-off valves (9A2) to (9C2), respectively. As in the case of the outdoor unit (X), the indoor heat exchangers (8A) to (8C) are turned into evaporators or condensers by opening and closing the first and second indoor opening / closing valves (9A1) to (9C2). It has been made to work. That is, the first and second indoor on-off valves (9A1) to (9C2) and the outdoor on-off valves (4a1) to (4b2) of the outdoor unit (X) divide the refrigerant circuit (11) into a cooling cycle and a heating cycle. And a cycle switching means (51) for switching between (1) and (2).

なお、上記のように、各室内ユニット(A)〜(C)
は個別に冷房運転と暖房運転とを行うよになされてい
て、各室内の要求に応じて冷暖房を切換えながら、室内
で回収した冷熱と暖熱とを互いに交換し合うことにより
省エネ運転を行ういわゆる熱回収運転可能になされてい
る。
As described above, each of the indoor units (A) to (C)
The cooling operation and the heating operation are individually performed, and the energy-saving operation is performed by exchanging the cooling heat and the heating heat collected in the room with each other while switching the cooling and heating according to the request in each room. Heat recovery operation is enabled.

また、装置には多くのセンサ類が設けられていて、
(Th0)は吐出管に設けられ、吐出管温度を検出するた
めの吐出管センサ、(Th1)は室外ユニット(X)の一
部に配置され、外気温度T1を検出するための外気温セン
サ、(Th2a)及び(Th2b)は室外ユニット(X)の吸入
ライン(10b2)側の分岐管(12a),(12b)に配置さ
れ、各室外熱交換器(2a),(2b)のガス側温度を検出
する室外ガス管センサ、(Th3a)及び(Th3b)は室外ユ
ニット(X)の液側の分岐管(12a),(12b)に配置さ
れ、各室外熱交換器(2a),(2b)の液側温度を検出す
る室外液管センサ、(Hp)は吐出ライン(10b1)に配置
され、系の凝縮圧力相当飽和温度Tc(以下、単に凝縮温
度とする)を検出するための高圧センサ、(Lp)は吸入
ライン(10b2)に配置され、系の蒸発圧力相当飽和温度
Te(以下、単に蒸発温度とする)を検出するための低圧
センサであって、上記各センサの信号は、室外ユニット
(X)の運転を制御するための室外コントローラ(15)
に入力可能になされている。そして、上記室外コントロ
ーラ(15)は上記インバータ(16)、室外ファン(1
4)、各室外開閉弁(4a1),(4a2),(4b1),(4b
2)及び各室外電動膨張弁(3a),(3b)に信号の出力
が可能になされていて、室外コントローラ(15)によ
り、上記各センサで検出される温度、圧力等の信号に応
じて各機器の運転を制御するようになされている。
Also, the device is equipped with many sensors,
(Th0) is provided in the discharge pipe, the discharge pipe sensor for detecting the discharge pipe temperature, (Th1) is disposed on a portion of the outdoor unit (X), an outside air temperature sensor for detecting the outside air temperature T 1 of , (Th2a) and (Th2b) are arranged in the branch pipes (12a) and (12b) on the suction line (10b2) side of the outdoor unit (X), and the gas side of each outdoor heat exchanger (2a) and (2b) The outdoor gas pipe sensors (Th3a) and (Th3b) for detecting the temperature are arranged in the liquid side branch pipes (12a) and (12b) of the outdoor unit (X), and the outdoor heat exchangers (2a) and (2b) (Hp) is located in the discharge line (10b1) and is a high-pressure sensor that detects the saturation temperature Tc (hereinafter simply referred to as condensation temperature) corresponding to the condensing pressure of the system. , (Lp) is located in the suction line (10b2), and the saturation temperature corresponding to the evaporation pressure of the system
A low-pressure sensor for detecting Te (hereinafter simply referred to as an evaporation temperature), and a signal from each of the sensors is used as an outdoor controller (15) for controlling the operation of the outdoor unit (X).
Can be entered. The outdoor controller (15) is connected to the inverter (16) and the outdoor fan (1
4), each open / close valve (4a1), (4a2), (4b1), (4b
2) and output of signals to the outdoor electric expansion valves (3a) and (3b) can be performed. The outdoor controller (15) can output signals according to signals such as temperature and pressure detected by the above sensors. The operation of the device is controlled.

一方、各室内ユニット(A)〜(C)において、(Th
4A)〜(Th4C)は各室内ユニット(A)〜(C)の空気
吸込口に配置され、室温を検出するための室温センサ、
(Th5A)〜(Th5C)は各室内ユニット(A)〜(C)の
ガス管側に配置され、各室内熱交換器(8A)〜(8C)の
ガス管側温度を検出するための室内ガス管センサ、(Th
6A)〜(Th6C)は各室内ユニット(A)〜(C)の液管
側に配置され、各室内熱交換器(8A)〜(8C)の液管側
温度を検出するための室内液管センサであって、上記各
センサの信号は各室内ユニット(A)〜(C)の運転を
制御するための室内コントローラ(20A)〜(20C)に入
力可能になされており、さらに室内コントローラ(20
A)〜(20C)を介して上記室外コントローラ(15)にも
入力可能になされている。そして、上記各室内コントロ
ーラ(20A)〜(20C)は、各室内ユニット(A)〜
(C)の室内ファン(17A)〜(17C)、各室内開閉弁
(9A1)〜(9C2)及び各室内電動膨張弁(7A)〜(7C)
に信号の出力可能になされていて、室内コントローラ
(20A)〜(20C)により、上記各センサで検出される空
調負荷、冷媒の過熱度、過冷却度等に応じて、各室内開
閉弁(9A1)〜(9C2)の切換、室内電動膨張弁(7A)〜
(7C)の開度、室内ファン(17A)〜(17C)の風量等を
制御するようになされている。
On the other hand, in each of the indoor units (A) to (C), (Th
4A) to (Th4C) are arranged at the air inlets of the indoor units (A) to (C), and a room temperature sensor for detecting room temperature,
(Th5A) to (Th5C) are disposed on the gas pipe side of each of the indoor units (A) to (C), and are used to detect the temperature of the gas pipe side of each of the indoor heat exchangers (8A) to (8C). Tube sensor, (Th
6A) to (Th6C) are disposed on the liquid pipe side of each of the indoor units (A) to (C), and detect the liquid pipe side temperature of each of the indoor heat exchangers (8A) to (8C). Sensors, and the signals of the sensors can be input to indoor controllers (20A) to (20C) for controlling the operation of the indoor units (A) to (C).
Data can be input to the outdoor controller (15) via A) to (20C). And each said indoor controller (20A)-(20C) is each indoor unit (A)-
(C) Indoor fans (17A) to (17C), indoor open / close valves (9A1) to (9C2), and indoor electric expansion valves (7A) to (7C)
The indoor controllers (20A) to (20C) can output signals according to the air-conditioning load, the degree of superheat of the refrigerant, the degree of supercooling of the refrigerant, etc., by the indoor controllers (20A) to (20C). )-(9C2) switching, indoor electric expansion valve (7A)-
The opening degree of (7C), the air volume of the indoor fans (17A) to (17C), and the like are controlled.

ここで、上記室外ユニット(X)における各機器の制
御内容について、第3図〜第5図に基づき説明する。
Here, the control content of each device in the outdoor unit (X) will be described with reference to FIGS.

第3図は室外コントローラ(15)の制御内容を示すフ
ローチャートであって、ステップS1で、上記低圧センサ
(Lp)、高圧センサ(Hp)、外気温センサ(Th1)及び
インバータ(16)の信号から蒸発温度Te、凝縮温度Tc、
外気温度T1及び圧縮機(1)の運転容量FTを入力し、
ステップS2で、外気温T1、インバータ(16)周波数FT
等に基づき、配管長による圧力損失を考慮した高低圧一
定制御を行うための目標蒸発温度Tes及び目標凝縮温度T
csを演算する。そして、ステップS3で、上記目標蒸発温
度Tesと現在の蒸発温度Teとの温度偏差ΔTe(=Tes−T
e)及び目標凝縮温度Tcsと現在の凝縮温度Tcとの温度偏
差ΔTc(=Tcs−Tc)とを演算し、ステップS4で、上記
で演算した各温度偏差ΔTe及びΔTcから、下記式 EF=K1ΔTe+K2ΔTc EX=K3ΔTe+K4ΔTc (ただし、K1,K2,K3,K4はそれぞれ定数)に基づき、圧
職機(1)の運転容量の不足分(以下、容量偏差とす
る)EFと、室外熱交換器(2a),(2b)の蒸発方向又
は凝縮方向へのずれEX(以下、蒸発方向を正として蒸
発度偏差という)を演算する。
FIG. 3 is a flowchart showing the control contents of the outdoor controller (15). In step S1, the control is performed based on the signals of the low pressure sensor (Lp), high pressure sensor (Hp), outside air temperature sensor (Th1) and inverter (16). Evaporation temperature Te, condensation temperature Tc,
Input the outside air temperature T 1 and the operating capacity FT of the compressor (1),
In step S2, the outside air temperature T 1 , the inverter (16) frequency FT
Target evaporation temperature Tes and target condensing temperature T for performing high / low pressure constant control in consideration of pressure loss due to pipe length
Calculate cs. Then, in step S3, a temperature deviation ΔTe (= Tes−T) between the target evaporation temperature Tes and the current evaporation temperature Te.
e) and the temperature deviation ΔTc (= Tcs−Tc) between the target condensing temperature Tcs and the current condensing temperature Tc is calculated. In step S4, the following equation EF = K is obtained from the temperature deviations ΔTe and ΔTc calculated above. 1 ΔTe + K 2 ΔTc EX = K 3 ΔTe + K 4 ΔTc (where K 1 , K 2 , K 3 , and K 4 are constants) based on the shortage of the operating capacity of the press machine (1) (hereinafter, capacity deviation and EF) and the deviation EX of the outdoor heat exchangers (2a) and (2b) in the evaporation direction or the condensation direction (hereinafter, referred to as evaporation degree deviation with the evaporation direction being positive) are calculated.

さらに、ステップS5で、上記で求めた容量偏差EF及
び蒸発度偏差EXに応じて、下記式 ΔFk=Kc{EF−EFo+(Δt/2Tic)・(EF+EFo)} ΔCER=Kp{EX−EXo+(Δt/2Tip)・(EX+EXo)} (ただし、Kc,Kpはそれぞれ容量ゲイン及び蒸発度ゲイ
ンとしての定数、Δtはサンプリングタイム、Tic、Tip
はそれぞれ積分時間、EEO,EXoはそれぞれ前回のサンプ
リングで算出した容量偏差及び蒸発度偏差である)に基
づき、容量増分ΔFk及び蒸発度増分ΔCERをPI演算によ
り算出する。ここで、CERは、2つの室外熱交換器(2
a),(2b)がいずれも蒸発器となり、かつその能力が
最大のときを100、いずれもが凝縮器となり、かつその
能力が最大のときを−100として、蒸発器及び凝縮器と
しての機能が釣り合った状態を「0」とする指標であっ
て、室外全体の能力を蒸発機能という観点から見た数値
で現したものである。以下、このCERを蒸発度指数とい
う。したがって、上述のごとく、ΔCERは蒸発度増分で
ある。
Further, in step S5, according to the capacity deviation EF and the evaporation deviation EX obtained above, the following equation ΔFk = Kc {EF−EFo + (Δt / 2Tic) · (EF + EFo)} ΔCER = Kp {EX−EXo + (Δt / 2Tip) · (EX + EXo)} (where Kc and Kp are constants as capacity gain and evaporation gain, respectively, Δt is sampling time, Tic, Tip
Are the integration time, and EEO and EXo are the capacity deviation and the evaporation degree deviation calculated in the previous sampling, respectively), and calculate the capacity increment ΔFk and the evaporation degree increment CER by PI calculation. Here, CER is two outdoor heat exchangers (2
a) and (2b) are both evaporators and their capacity is maximum, 100, both are condensers and their capacity is maximum, -100, and function as evaporator and condenser Is an index that sets the balanced state to “0”, and expresses the performance of the entire outdoor as a numerical value from the viewpoint of the evaporation function. Hereinafter, this CER is referred to as an evaporation index. Thus, as described above, ΔCER is the evaporation increment.

その後、ステップS5で、上記で求めた蒸発度増分ΔC
ERから求まる変更蒸発度指数CERに応じた各室外電動膨
張弁(3a),(3c)の開度Eva,Evbの変更量を演算し、
ステップS6で、インバータ(16)及び各室外電動膨張弁
(3a),(3b)を駆動した後、ステップS7でサンプリン
グタイムが経過するまで待って、上記フローを繰り返
す。
Then, in step S5, the evaporation degree increment ΔC determined above
Calculate the change amounts of the opening degrees Eva and Evb of the outdoor electric expansion valves (3a) and (3c) according to the change evaporation index CER obtained from ER,
After driving the inverter (16) and the outdoor electric expansion valves (3a) and (3b) in step S6, the flow waits until the sampling time has elapsed in step S7, and the above flow is repeated.

ここで、以上の制御の具体例について、第4図及び第
5図に基づき説明する。第4図(a)及び(c)は、そ
れぞれ蒸発度指数CERの変化に対する各室外電動膨張弁
(3a),(3b)の開度Eva,Evbの変化、同図(b)及び
(d)はそれぞれ風下側及び風上側室外熱交換器(2
a),(2b)の凝縮器と蒸発器との間の切換えつまり各
第1,第2室外開閉弁(4a1),(4a2)及び(4b1),(4
b1)の切換わりを示す。また、第5図(a)〜(i)
は、それぞれ両室外熱交換器(2a),(2b)の最大凝縮
能力時から最大蒸発能力時までに亘る内部状態の変化を
示す。
Here, a specific example of the above control will be described with reference to FIG. 4 and FIG. FIGS. 4 (a) and (c) show changes in the opening degrees Eva and Evb of the outdoor electric expansion valves (3a) and (3b) with respect to changes in the evaporation index CER, respectively, and FIGS. 4 (b) and 4 (d). Are the leeward and leeward outdoor heat exchangers (2
Switching between the condenser and evaporator in a) and (2b), that is, the first and second outdoor on-off valves (4a1), (4a2) and (4b1), (4
Indicates the switching of b1). Also, FIGS. 5 (a) to 5 (i)
Indicates a change in the internal state of each of the outdoor heat exchangers (2a) and (2b) from the maximum condensing capacity to the maximum evaporating capacity.

例えば室内側の冷房要求が最大のときには、蒸発度C
ERが−100付近であり、各第1室外開閉弁(4a1),(4b
1)が開き、各第2室外開閉弁(4a2),(4b2)が閉じ
て、いずれの室外熱交換器(2a),(2b)も凝縮器とし
て機能しており、第4図(a)及び(c)に示すよう
に、各室外電動膨張弁(3a),(3b)は略全開状態であ
る。そして、室内側の冷房要求が小さくなるにつれて、
風下側室外電動膨張弁(3a)の開度Evaが減少する方向
に制御される(第4図(a)参照)一方、風上側室外電
動膨張弁(3b)の開度Evbは全開状態に保持されている
(第4図(b)のCER=CER1まで)。したがって、第
5図(a)及び(b)に示すように、風上側室外熱交換
器(2b)は最大凝縮能力を保持する一方、風下側室外熱
交換器(2a)は徐々に凝縮機能を低減して行き、最終的
に室外電動膨張弁(3a)が全閉状態となる(第4図
(a)のCER=CERの点)と、熱交換器として機能し
ない。一方、風上側室外電動膨張弁(3b)も次第に開度
Evbを減少していき、風上側室外熱交換器(2b)の凝縮
能力が低下する(第5図(c)参照)。
For example, when the cooling demand on the indoor side is the maximum, the evaporation degree C
ER is around -100, and each of the first outdoor on-off valves (4a1), (4b
1) is opened, each of the second outdoor on-off valves (4a2) and (4b2) is closed, and both outdoor heat exchangers (2a) and (2b) function as condensers, and FIG. 4 (a) As shown in (c) and (c), the outdoor electric expansion valves (3a) and (3b) are substantially fully open. And, as the demand for cooling on the indoor side decreases,
The opening degree Eva of the leeward outdoor electric expansion valve (3a) is controlled to decrease (see FIG. 4 (a)), while the opening degree Evb of the leeward outdoor electric expansion valve (3b) is maintained in a fully open state. (CER = CER1 in FIG. 4 (b)). Therefore, as shown in FIGS. 5 (a) and 5 (b), the leeward outdoor heat exchanger (2b) maintains the maximum condensing capacity, while the leeward outdoor heat exchanger (2a) gradually has the condensing function. reduced gradually, finally outdoor electric expansion valve (3a) is fully closed (FIG. 4 (a) point CER = CER 1 of), does not function as a heat exchanger. On the other hand, the windward outdoor electric expansion valve (3b) also gradually opens
As the Evb decreases, the condensation capacity of the windward outdoor heat exchanger (2b) decreases (see FIG. 5 (c)).

その後、室内ユニット(A)〜(C)側の冷房要求の
減少又は暖房要求の増大に応じて、風下側室外熱交換器
(2a)では、第1室外開閉弁(4a1)が閉じ、第2室外
開閉弁(4a2)が開いて、吸入ランイン(10b2)に接続
されて風下側室外熱交換器(2a)が凝縮器から蒸発器に
切換わる(第4図(b)のCER=CERの点)。
Thereafter, in response to a decrease in the cooling requirement or an increase in the heating requirement on the indoor units (A) to (C) side, in the leeward outdoor heat exchanger (2a), the first outdoor on-off valve (4a1) closes and the second outdoor on-off valve (4a1) closes. the outdoor-off valve (4a2) is opened, the intake run-of CER = CER 2 of which is connected to (10b2) to leeward outdoor heat exchanger (2a) is switched to the evaporator from the condenser (FIG. 4 (b) point).

その場合、風上側室外電動膨張弁(3b)は既に全開状
態から開度を減少しつつあるが、風上側室外熱交換器
(2b)は凝縮能力を有しており(第5図(d)参照)、
風下側室外電動膨張弁(3a)の開度が開くと(第4図
(b)のCERの点)、2つの室外熱交換器(2a),
(2b)のうち一方が凝縮器、他方が蒸発器として機能し
ている。このとき、室内の要求能力の減少又は冷房要求
と暖房要求との均衡に対応して、室外全体としての蒸発
度指数CERは「0」に近い状態であり、冷媒回路(11)
全体として、冷房サイクルから暖房サイクルへと自然に
切換わっている。そして、このようなサイクル切換え時
にも、上記のような逆モード運転を行うことにより、冷
媒回路(11)内には所定量の冷媒循環量が確保されてい
る。
In this case, the windward outdoor electric expansion valve (3b) has already decreased its opening degree from the fully open state, but the windward outdoor heat exchanger (2b) has a condensing capacity (FIG. 5 (d)). reference),
When the degree of opening of the leeward outdoor electric expansion valve (3a) is increased (point CER 3 in FIG. 4 (b)), the two outdoor heat exchangers (2a),
One of (2b) functions as a condenser and the other functions as an evaporator. At this time, in response to the decrease in the required indoor capacity or the balance between the cooling demand and the heating demand, the evaporation index CER of the whole outdoor is close to “0”, and the refrigerant circuit (11)
As a whole, there is a natural switch from the cooling cycle to the heating cycle. Also, at the time of such cycle switching, a predetermined amount of refrigerant circulation is ensured in the refrigerant circuit (11) by performing the above-described reverse mode operation.

そして、室内側の要求変化に応じて、室外側能力が次
第に蒸発方向に移行して行き(第5図(e)参照)、風
上側室外電動膨張弁(3b)の開度が全閉状態になると
(第4図(c)のCERの点)、室外全体として、蒸発
能力だけがある状態となる(第5図(f)参照)。
The outdoor capacity gradually shifts in the evaporation direction in accordance with the change in the demand on the indoor side (see FIG. 5 (e)), and the degree of opening of the windward outdoor electric expansion valve (3b) becomes fully closed. It happens when (FIG. 4 (CER point 4 c)), the entire outdoor, a state where only the evaporating ability is (FIG. 5 (f) refer).

さらに、室内側の暖房要求が高まると、この状態で風
下側室外電動膨張弁(3a)の開度が増大して(第4図
(a)のCER=CER〜CERの範囲)、風下側室外熱
交換器(2a)の蒸発能力が増大して行く(第5図(g)
参照)。次に、風上側分岐管(12b)の第1室外開閉弁
(4b1)が閉じ、第2室外開閉弁(4b2)が開くと、風上
側室外熱交換器(2b)が吸入ライン(10b2)に接続さ
れ、凝縮器から蒸発器に切換わって(第4図(d)のC
ER=CERの点)、いずれの室外熱交換器(2a),(2
b)も蒸発器になる(第5図(h)参照)。なお、本例
では、このとき風下側室外電動膨張弁(3a)の開度は、
圧力損失を考慮して算出される過熱度が所定値以下にな
らない範囲での最大開度値Evamaxに保持されている。
Further, when the indoor side of the heating demand increases, (range of CER = CER 4 ~CER 5 of FIG. 4 (a)) opening is increased leeward outdoor electric expansion valve in this condition (3a), downwind The evaporation capacity of the side outdoor heat exchanger (2a) increases (Fig. 5 (g)).
reference). Next, when the first outdoor on-off valve (4b1) of the windward branch pipe (12b) is closed and the second outdoor on-off valve (4b2) is opened, the windward outdoor heat exchanger (2b) is connected to the suction line (10b2). Connected and switched from the condenser to the evaporator (C in FIG. 4 (d)).
ER = CER 5 ), any of the outdoor heat exchangers (2a), (2
b) also becomes an evaporator (see FIG. 5 (h)). In this example, at this time, the opening degree of the leeward outdoor electric expansion valve (3a) is
The maximum opening degree value Evamax is maintained within a range in which the degree of superheat calculated in consideration of the pressure loss does not fall below a predetermined value.

そして、室内の暖房要求の増大に応じて、風上側室外
電動膨張弁(3b)の開度が増大して、最大開度値Evbmax
に到達すると、最終的に最大の蒸発能力を発揮するCER
=100の状態になる(第5図(i)参照)。
The opening of the windward outdoor electric expansion valve (3b) increases in accordance with an increase in the indoor heating demand, and the maximum opening value Evbmax
, The CER ultimately demonstrates the maximum evaporation capacity
= 100 (see FIG. 5 (i)).

以下、室内の要求が最大冷房要求から最大暖房要求に
変化するまでの作動について説明したが、室内の要求が
暖房から冷房に変化する過程は上記と逆になる。ただ
し、各室外熱交換器(2a),(2b)の蒸発器から凝縮器
への切換点につては、凝縮器から蒸発器への切換点とは
所定のディファレンシャルを持つようになされている
(第4図(b)及び(d)参照)。
Hereinafter, the operation until the indoor request changes from the maximum cooling request to the maximum heating request has been described. However, the process of changing the indoor request from heating to cooling is the reverse of the above. However, the switching point from the evaporator to the condenser in each of the outdoor heat exchangers (2a) and (2b) has a predetermined differential from the switching point from the condenser to the evaporator ( (See FIGS. 4 (b) and (d)).

すなわち、上記の作用からわかるように、上記第3図
のフローにおいて、ステップS5〜S7により、各室外熱交
換器(2a),(2b)のうちいずれかが蒸発器となり他の
室外熱交換器(2b)が凝縮器となる逆モード運転を行う
よう上記接続切換機構(4a),(4b)を制御する逆モー
ド運転制御手段(52)が構成されている。
That is, as seen from the operation of the above, in the flow of the FIG. 3, in step S 5 to S 7, the outdoor heat exchanger (2a), the other outdoor heat becomes either evaporator of (2b) Reverse mode operation control means (52) for controlling the connection switching mechanisms (4a) and (4b) so that the exchanger (2b) performs reverse mode operation as a condenser.

したがって、請求項(1)の発明では、装置の運転
時、サイクル切換手段(51)により、室内の冷暖房要求
の変化に応じて、例媒回路(11)が冷房サイクルと暖房
サイクルとに切換えられ、所定の空調が行われる。
Therefore, in the invention of claim (1), during operation of the apparatus, the example medium circuit (11) is switched between the cooling cycle and the heating cycle by the cycle switching means (51) in accordance with a change in the indoor cooling / heating request. , Predetermined air conditioning is performed.

その際、接続切換機構(4a),(4b)により、各分岐
管(12a),(12b)の吐出ライン(10b1)と吸入ライン
(10b2)への接続が個別に切換えられ、逆モード運転制
御手段(52)により、各室外熱交換器(熱源側熱交換
器)(2a),(2b)のうちいずれかが蒸発器となり、他
が凝縮器となるよう上記接続切換機構(4a),(4b)が
制御されるので、室内側の要求が冷房要求と暖房要求と
の間で変化するときに、室外側全体の能力の凝縮機能か
ら蒸発機能への変化又はその逆の変化が円滑に行われ
る。すなわち、従来のように、室内側の要求変化に応じ
て室外側の能力が最小の状態で凝縮器から蒸発器又はそ
の逆に切換わるものでは、いったん冷媒の循環量が非常
に減少することになり、圧縮機(1)の容量制御や電動
膨張弁の開度制御等が不安定になるため、切換時のショ
ックが大きく、信頼性を損ねる虞れがあった。
At that time, the connection switching mechanism (4a), (4b) switches the connection of each branch pipe (12a), (12b) to the discharge line (10b1) and the suction line (10b2) individually, and controls the reverse mode operation. By means (52), one of the outdoor heat exchangers (heat source side heat exchangers) (2a) and (2b) becomes an evaporator and the other becomes a condenser so that the connection switching mechanisms (4a) and (4a) 4b) is controlled, so that when the demand on the indoor side changes between the cooling demand and the heating demand, the change of the overall outdoor capacity from the condensing function to the evaporating function or vice versa. Will be In other words, as in the prior art, when the capacity of the outdoor side is switched from the condenser to the evaporator or vice versa in a state where the capacity of the outdoor side is minimized in response to a change in demand on the indoor side, once the circulation amount of the refrigerant is greatly reduced. As a result, the control of the capacity of the compressor (1), the control of the opening of the electric expansion valve, and the like become unstable, so that the shock at the time of switching is large and the reliability may be impaired.

しかし、本発明では、例えば室内側冷房要求と暖房要
求とがほぼ釣り合うような状態(第4図のCER=CER
〜CERの範囲)では、室外側で逆モード運転が行わ
れ、各室外熱交換器(2a),(2b)のうちのいずれかが
蒸発器として機能する一方、他が凝縮器として機能する
ので、室内側の要求能力が小さくても所定の冷媒循環量
が確保されて、室内側の冷房要求から暖房要求への変化
又はその逆の変化に伴なう冷暖房サイクル切換え時に、
冷媒の不安定状態を有効に解消することができ、よっ
て、信頼性の向上を図ることができるのである。
However, in the present invention, for example, a state in which the indoor-side cooling request and the heating request are substantially balanced (CER = CER 3 in FIG. 4).
In (CER 4 range), the reverse mode operation is performed on the outdoor side, and one of the outdoor heat exchangers (2a) and (2b) functions as an evaporator, while the other functions as a condenser. Therefore, even when the required capacity on the indoor side is small, a predetermined refrigerant circulation amount is ensured, and at the time of cooling / heating cycle switching accompanying a change from a cooling request on the indoor side to a heating request or vice versa,
This makes it possible to effectively eliminate the unstable state of the refrigerant, thereby improving the reliability.

請求項(2)の発明では、上記請求項(1)の発明に
おいて、逆モード運転時に、各分岐管(12),(12b)
のガス側に設けられた吸入管熱交換器(13a),(13b)
相互の熱交換が行われ、蒸発器となる風下側室外熱交換
器(2a)における冷媒の過熱度を吸入管熱交換器(13
a)でとることができるので、蒸発温度を可及的に上昇
させることができ、よって、運転効率の向上を図ること
ができる。
According to the invention of claim (2), in the invention of claim (1), each of the branch pipes (12), (12b) is operated during reverse mode operation.
Pipe heat exchangers (13a) and (13b) installed on the gas side of
Mutual heat exchange is performed, and the degree of superheat of the refrigerant in the leeward outdoor heat exchanger (2a), which becomes the evaporator, is determined by the suction pipe heat exchanger (13).
Since it can be taken in a), the evaporation temperature can be raised as much as possible, and therefore, the operation efficiency can be improved.

請求項(3)の発明では、上記請求項(1)又は
(2)の発明において、例えば上記実施例における第4
図(b)のCER=CER〜CERの範囲、同図(d)の
CER=CER〜CERの範囲に示すように、逆モード運
転制御手段(52)により、室外電動膨張弁(3a),(3
b)の開度が一定期間全閉状態に保持されて冷媒状態が
安定してから、各室外熱交換器(2a),(2b)が凝縮器
から蒸発器又はその逆に切換えられるので、切換え時に
おける冷媒状態の安定性が増大するという著効が得られ
ることになる。
According to the invention of claim (3), in the invention of claim (1) or (2), for example,
CER = the CER 1 ~CER 2 range in FIG. (B), as shown in the range of CER = CER 4 ~CER 5 in FIG (d), the reverse mode operation control means (52), the outdoor electric expansion valve ( 3a), (3
After the opening degree of b) is maintained in the fully closed state for a certain period and the refrigerant state is stabilized, the outdoor heat exchangers (2a) and (2b) are switched from the condenser to the evaporator or vice versa. This has the significant effect of increasing the stability of the refrigerant state at the time.

なお、上記室外電動膨張弁(3a),(3b)を全閉状態
に保持する一定期間の設定方法については、例えばタイ
マによる設定の他、制御目標たる蒸発指数CERの増分を
積算していき、この値が所定値以上に達すると凝縮器と
蒸発器との間で切換えるように積算設定値を設けるよう
にしてもよい。
The method of setting the fixed period for keeping the outdoor electric expansion valves (3a) and (3b) in the fully closed state is, for example, by setting a timer and integrating the increment of the evaporation index CER as a control target. An integration set value may be provided so that when this value reaches a predetermined value or more, the operation is switched between the condenser and the evaporator.

すなわち、蒸発指数CERの変化が小さいときには、一
定時間を経たときにに切換える一方、例えば大容量の室
内ユニットが冷房から暖房に切換わる等、制御目標の変
化分が大きいときには、その冷房の切換わりによる変化
の方がサイクルの切換によるショックよりも大きいの
で、値ぐにサイクルを切換えることにより、運転状態の
変化に即応させることができる。
That is, when the change of the evaporation index CER is small, the change is made after a certain period of time. On the other hand, when the change of the control target is large, for example, when the large-capacity indoor unit is changed from cooling to heating, the cooling is changed. Is greater than the shock caused by the cycle switching, and therefore, by immediately switching the cycle, it is possible to immediately respond to the change in the operating state.

請求項(4)の発明では、上記請求項(1),(2)
又は(3)の発明において、熱源側減圧機構として室外
電動膨張弁(3a),(3b)が配置されているので、その
連続的な開度調節により、上記実施例のごとく、室外側
能力の凝縮能力から蒸発能力への変化又はその逆の変化
が円滑に行われ、よって、上記各発明の実効を図ること
ができる。
In the invention of claim (4), the above-mentioned claims (1) and (2)
Or, in the invention of (3), since the outdoor electric expansion valves (3a) and (3b) are arranged as the heat source side pressure reducing mechanism, the outdoor opening capacity can be adjusted by the continuous opening adjustment as in the above embodiment. The change from the condensing ability to the evaporating ability or vice versa is carried out smoothly, so that the effects of the above inventions can be achieved.

請求項(5)の発明では、上記請求項(1),
(2),(3)又は(4)の発明において、各室外熱交
換器(2a),(2b)が共通の室外ファン(14)による空
気通路に配置され、逆モード運転制御手段(52)による
逆モード運転時に、風上側室外熱交換器(2b)が凝縮器
として機能し、風下側室外熱交換器(2a)が蒸発器とし
て機能するように制御されるので、蒸発器となる風下側
室外熱交換器(2a)では、風上側室外熱交換器(2b)で
暖められた空気との熱交換により、高い蒸発温度を得る
ことができ、よって運転効率の向上を図ることができ
る。
In the invention of claim (5), the above-mentioned claim (1),
In the invention of (2), (3) or (4), the outdoor heat exchangers (2a) and (2b) are arranged in an air passage by a common outdoor fan (14), and the reverse mode operation control means (52) During reverse mode operation, the leeward outdoor heat exchanger (2b) is controlled to function as a condenser and the leeward outdoor heat exchanger (2a) is controlled to function as an evaporator. In the outdoor heat exchanger (2a), a high evaporation temperature can be obtained by heat exchange with the air warmed by the windward outdoor heat exchanger (2b), and thus the operation efficiency can be improved.

なお、上記実施例では、各接続切換機構(4a),(4
b)をそれぞれ2つの室外開閉弁(4a1),(4a2)及び
(4b1),(4b2)で構成したが、本発明の接続切換機構
(51)はかかる実施例に限定されるものではなく、例え
ば各分岐管(12a),(12b)のガスラインとの接続を三
方切換弁や四路切換弁で吐出ライン(10b1)と吸入ライ
ン(10b2)とに個別に切換えるようにしてもよいことは
いうまでもない。
In the above embodiment, each connection switching mechanism (4a), (4
b) is composed of two outdoor on-off valves (4a1), (4a2) and (4b1), (4b2), respectively. However, the connection switching mechanism (51) of the present invention is not limited to this embodiment. For example, the connection of each of the branch pipes (12a) and (12b) to the gas line may be individually switched to the discharge line (10b1) and the suction line (10b2) by a three-way switching valve or a four-way switching valve. Needless to say.

また、上記実施例では複数の室内ユニット(A)〜
(C)を有するマルチ形空気調和装置に適用した例を説
明したが、本発明は、一台の室内熱交換器を有するもの
にも適用でき、上記実施例と同様に、冷暖房サイクル切
換時における冷媒状態の安定性を向上させることができ
る。ただし、上記のようないわゆる熱回収形空気調和装
置に適用した場合には、特に室内側の空調要求の多様な
変化があった場合にも、常に安定した冷媒状態を維持す
ることができ、著効を発揮するものである。
In the above embodiment, the plurality of indoor units (A) to
Although an example in which the present invention is applied to a multi-type air conditioner having (C) has been described, the present invention can also be applied to an apparatus having one indoor heat exchanger. The stability of the refrigerant state can be improved. However, when applied to a so-called heat recovery type air conditioner as described above, a stable refrigerant state can be maintained at all times, even when there are various changes in the air conditioning requirements on the indoor side, in particular. It is effective.

さらに、上記実施例では熱源側熱交換器として二台の
室外熱交換器(2a),(2b)を配置したが、本発明の熱
源側熱交換器は二台に限定されるものではなく、三台以
上の熱源側熱交換器を設けても同様の効果を発揮するこ
とができる。
Further, in the above embodiment, two outdoor heat exchangers (2a) and (2b) are arranged as heat source side heat exchangers, but the heat source side heat exchanger of the present invention is not limited to two. Even if three or more heat source side heat exchangers are provided, the same effect can be exhibited.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、
冷暖房のサイクルの切換可能に構成された冷媒回路に、
複数の熱源側熱交換器を並列に接続し、各熱源側熱交換
器のガスラインとの接続を吐出ラインと吸入ラインとに
個別に切換えられるようにしておき、室内の冷暖房要求
の変化に応じて、冷房サイクルと暖房サイクルとに切換
える際、各熱源側熱交換器のうちいずれかが蒸発器とな
り他が凝縮器となる逆モード運転を行い、且つ利用側熱
交換器の空調要求が冷房要求と暖房要求との間で変化す
るときには、凝縮器となっている熱源側熱交換器の凝縮
能力と蒸発器となっている熱源側熱交換器の蒸発能力と
を等しくするようにし、室外側全体としての能力を凝縮
能力と蒸発能力との間で変化させるようにしたので、冷
暖房サイクル切換に伴なう冷媒の不安定状態を解消する
ことができ、よって、信頼性の向上を図ることができ
る。
(Effect of the Invention) As described above, according to the invention of claim (1),
In the refrigerant circuit configured to be able to switch the cooling and heating cycle,
A plurality of heat source-side heat exchangers are connected in parallel, and the connection of each heat source-side heat exchanger to the gas line can be switched individually to the discharge line and the suction line. Therefore, when switching between the cooling cycle and the heating cycle, a reverse mode operation is performed in which one of the heat source side heat exchangers becomes an evaporator and the other becomes a condenser, and the air conditioning requirement of the use side heat exchanger is a cooling requirement. When it changes between the heating demand and the heating demand, the condensing capacity of the heat source side heat exchanger as the condenser and the evaporating capacity of the heat source side heat exchanger as the evaporator are made equal, Is changed between the condensing capacity and the evaporating capacity, so that the unstable state of the refrigerant accompanying the switching of the cooling and heating cycle can be eliminated, and the reliability can be improved. .

請求項(2)発明によれば、上記請求項(1)の発明
において、各分岐管のガスラインに相互の熱交換を行う
吸入熱交換器を設けたので、逆モード運転時に蒸発器と
なる側の熱源側熱交換器における冷媒の過熱度をとるこ
とにより、蒸発温度を可及的に上昇させることができ、
よって、運転効率の向上を図ることができる。
According to the invention of claim (2), in the invention of claim (1), the gas line of each branch pipe is provided with a suction heat exchanger for performing mutual heat exchange. By taking the degree of superheating of the refrigerant in the side heat source side heat exchanger, the evaporation temperature can be raised as much as possible,
Therefore, the operation efficiency can be improved.

請求項(3)の発明によれば、上記請求項(1)又は
(2)の発明において、各熱源側熱交換器の蒸発器と凝
縮器との間の切換時、一定時間熱源側減圧機構を全閉に
保持してから切換えるようにしたので、切換時における
冷媒状態の安定化効果をより顕著に発揮することができ
る。
According to the invention of claim (3), in the invention of claim (1) or (2), when switching between the evaporator and the condenser of each heat source side heat exchanger, the heat source side pressure reducing mechanism for a certain time. Is switched after fully closed, the effect of stabilizing the refrigerant state at the time of switching can be more remarkably exhibited.

請求項(4)の発明によれば、上記請求項(1),
(2)又は(3)の発明において、減圧機構を電動膨張
弁で構成したので、電動膨張弁の連続的な開度調節によ
り、室外側全体の最大凝縮能力から最大蒸発能力に亘る
広い範囲で微細な能力調節を行うことができ、よって、
上記各発明の実効を図ることができる。
According to the invention of claim (4), the above-mentioned claim (1),
In the invention of (2) or (3), since the pressure reducing mechanism is constituted by the electric expansion valve, continuous adjustment of the opening degree of the electric expansion valve allows a wide range from the maximum condensing ability to the maximum evaporating ability of the entire outdoor side. Fine-tuned ability adjustments,
Each of the above inventions can be made effective.

請求項(5)の発明によれば、上記請求項(1),
(2),(3)又は(4)の発明において、各熱源側熱
交換器をファンによる共通の空気通路に配置し、逆モー
ド運転時に、風上側の熱源側熱交換器が凝縮器となり、
風下側の熱源側熱交換器が蒸発器となるよう制御するよ
うにしたので、蒸発器となる熱源側熱交換器における冷
媒の蒸発温度の上昇により運転効率の向上を図ることが
できる。
According to the invention of claim (5), the above-mentioned claim (1),
In the invention of (2), (3) or (4), each heat source side heat exchanger is arranged in a common air passage by a fan, and in a reverse mode operation, the heat source side heat exchanger on the windward side becomes a condenser,
Since the heat source side heat exchanger on the leeward side is controlled to be an evaporator, the operation efficiency can be improved by increasing the evaporation temperature of the refrigerant in the heat source side heat exchanger that is the evaporator.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の構成を示すブロック図である。第2図
以下は本発明の実施例を示し、第2図は空気調和装置の
全体構成を示す冷媒配管系統図、第3図は制御内容を示
すフローチャート図、第4図及び第5図は制御の具体例
を示し、第4図(a)〜(d)は、順に、蒸発度指数の
変化に対する風下側室外電動膨張弁の開度変化、風下側
室外熱交換器の凝縮器又は蒸発器の変化、風上側室外電
動膨張弁の開度変化及び風上側室外熱交換器の凝縮器又
は蒸発器の変化を示す特性図、第5図(a)〜(i)
は、室外側の最大凝縮能力時から最大蒸発能力時に亘る
各室外熱交換器及び冷媒循環方向の変化過程を順に示す
説明図である。 1……圧縮機 2……室外熱交換器(熱源側熱交換器) 3……室外電動膨張弁(熱源側減圧機構) 4a,4b……接続切換機構 7……室内電動膨張弁(利用側減圧機構) 8……室内熱交換器(利用側熱交換器) 10b……ガスライン 10b1……吐出ライン 10b2……吸入ライン 11……冷媒回路 12……分岐管 13……吸入管熱交換器 14……室外ファン 51……サイクル切換手段 52……逆モード運転制御手段
FIG. 1 is a block diagram showing the configuration of the present invention. Fig. 2 and subsequent figures show an embodiment of the present invention, Fig. 2 is a refrigerant piping system diagram showing the overall configuration of the air conditioner, Fig. 3 is a flow chart diagram showing control contents, Figs. 4 and 5 are control diagrams. 4 (a) to 4 (d) show, in order, the change in the opening degree of the leeward outdoor electric expansion valve with respect to the change in the evaporative index, the change in the condenser or evaporator of the leeward outdoor heat exchanger. FIG. 5 (a) to FIG. 5 (i) showing a change, a change in an opening of a windward outdoor electric expansion valve, and a change in a condenser or an evaporator of a windward outdoor heat exchanger.
FIG. 5 is an explanatory diagram sequentially showing the change process of each outdoor heat exchanger and the refrigerant circulation direction from the time of the maximum condensation capacity to the time of the maximum evaporation capacity on the outdoor side. DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Outdoor heat exchanger (heat source side heat exchanger) 3 ... Outdoor electric expansion valve (heat source side decompression mechanism) 4a, 4b ... Connection switching mechanism 7 ... Indoor electric expansion valve (use side) 8) Indoor heat exchanger (use side heat exchanger) 10b Gas line 10b1 Discharge line 10b2 Suction line 11 Refrigerant circuit 12 Branch pipe 13 Suction pipe heat exchanger 14 Outdoor fan 51 Cycle switching means 52 Reverse mode operation control means

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機(1)と利用側熱交換器(8)と該
利用側熱交換器(8)用の利用側減圧機構(7)とを接
続した主冷媒配管(10)に対して、熱源側熱交換器
(2)と該熱源側熱交換器(2)用の熱源側減圧機構
(3)とを接続した複数の分岐管(12a),(12b)を互
いに並列に接続してなる冷媒回路(11)と、該冷媒回路
(11)を冷房サイクルと暖房サイクルとに切換えるサイ
クル切換手段(51)とを備えた空気調和装置において、 上記各分岐管(12a),(12b)のガスライン(10b)と
の接続を、上記冷媒回路(11)の吐出ライン(10b1)と
吸入ライン(10b2)とに個別に切換える接続切換機構
(4a),(4b)と、 上記利用側熱交換器(8)の冷房若しくは暖房の空調要
求が所定の要求量以下に低減したとき、各熱源側熱交換
器(2a),(2b)のうちいずれかを吐出ライン(10b1)
に接続させて凝縮器とし、他を吸入ライン(0b2)に接
続させて蒸発器とする逆モード運転を行うように接続切
換機構(4a),(4b)を制御し、且つこの逆モード運転
時、利用側熱交換器(8)の冷房要求量が所定量以下で
あるときには蒸発器となっている熱源側熱交換器(2a)
の蒸発能力よりも凝縮器となっている熱源側熱交換器
(2b)の凝縮能力を大きくする一方、利用側熱交換器
(8)の暖房要求量が所定量以下であるときには凝縮器
となっている熱源側熱交換器(2b)の凝縮能力よりも蒸
発器となっている熱源側熱交換器(2a)の蒸発能力を大
きくするように熱源側減圧機構(3a),(3b)を制御す
ると共に、利用側熱交換器(8)の空調要求が冷房要求
と暖房要求との間で変化するときには、凝縮器となって
いる熱源側熱交換器(2b)の凝縮能力と蒸発器となって
いる熱源側熱交換器(2a)の蒸発能力とを等しくするよ
うに熱源側減圧機構(3a),(3b)を制御する逆モード
運転制御手段(52)とを備えたことを特徴とする空気調
和装置。
A main refrigerant pipe (10) connecting a compressor (1), a use side heat exchanger (8), and a use side pressure reducing mechanism (7) for the use side heat exchanger (8). A plurality of branch pipes (12a) and (12b) connecting the heat source side heat exchanger (2) and the heat source side pressure reducing mechanism (3) for the heat source side heat exchanger (2) are connected in parallel with each other. An air conditioner comprising a refrigerant circuit (11) comprising: a refrigerant circuit (11); and a cycle switching means (51) for switching the refrigerant circuit (11) between a cooling cycle and a heating cycle. Connection switching mechanisms (4a) and (4b) for individually switching the connection with the gas line (10b) to the discharge line (10b1) and the suction line (10b2) of the refrigerant circuit (11); When the air conditioning requirement for cooling or heating of the exchanger (8) is reduced below a predetermined requirement, each of the heat source side heat exchangers (2a) and (2b) Either one of the discharge lines (10b1)
The connection switching mechanisms (4a) and (4b) are controlled so as to perform a reverse mode operation in which the condenser is connected to the condenser and the other is connected to the suction line (0b2) and the evaporator is connected. When the required cooling amount of the use side heat exchanger (8) is less than a predetermined amount, the heat source side heat exchanger (2a) serving as an evaporator
While the condensation capacity of the heat source side heat exchanger (2b), which is a condenser, is larger than the evaporation capacity of the condenser, when the heating demand of the use side heat exchanger (8) is less than a predetermined amount, the condenser becomes a condenser. The heat-source-side pressure reduction mechanisms (3a) and (3b) are controlled so that the evaporation capacity of the heat-source-side heat exchanger (2a), which is the evaporator, is greater than the condensation capacity of the heat-source-side heat exchanger (2b) At the same time, when the air conditioning requirement of the use side heat exchanger (8) changes between the cooling requirement and the heating requirement, the condensing capacity of the heat source side heat exchanger (2b) which is a condenser and the evaporator are required. Reverse mode operation control means (52) for controlling the heat source side pressure reducing mechanisms (3a) and (3b) so that the evaporation capacity of the heat source side heat exchanger (2a) is equalized. Air conditioner.
【請求項2】各分岐管(12a),(12b)のガス側には、
逆モード運転制御手段(52)による逆モード運転時に相
互の熱交換可能に近接配置された吸入管熱交換器(13
a),(13b)が設けられていることを特徴とする請求項
(1)記載の空気調和装置。
2. The gas side of each branch pipe (12a), (12b)
During the reverse mode operation by the reverse mode operation control means (52), the suction pipe heat exchangers (13
The air conditioner according to claim 1, wherein a) and (13b) are provided.
【請求項3】逆モード運転制御手段(52)は、各熱源側
減圧機構(3a),(3b)の開度を一定期間全閉状態に保
持した後、各熱源側熱交換器(2a),(2b)を凝縮器と
蒸発器との間で切換えるよう接続切換機構(4a),(4
b)を制御することを特徴とする請求項(1)又は
(2)記載の空気調和装置。
3. The reverse mode operation control means (52) keeps the degree of opening of each of the heat source side pressure reducing mechanisms (3a) and (3b) in a fully closed state for a certain period of time, and then releases each of the heat source side heat exchangers (2a). , (2b) to switch between the condenser and the evaporator.
The air conditioner according to claim 1 or 2, wherein b) is controlled.
【請求項4】各熱源側減圧機構(3a),(3b)は電動膨
張弁であることを特徴とする請求項(1),(2)又は
(3)記載の空気調和装置。
4. The air conditioner according to claim 1, wherein each of the heat source side pressure reducing mechanisms (3a), (3b) is an electric expansion valve.
【請求項5】各熱源側熱交換器(2a),(2b)はファン
(14)による共通の空気通路に配置されていて、逆モー
ド運転制御手段(52)は、逆モード運転時、風上側の熱
源側熱交換器(2a)が凝縮器となり、風下側の熱源側熱
交換器(2b)が蒸発器となるよう各接続切換機構(4
a),(4b)を制御するものであることを特徴とする請
求項(1),(2),(3)又は(4)記載の空気調和
装置。
5. The heat source side heat exchangers (2a) and (2b) are arranged in a common air passage by a fan (14), and the reverse mode operation control means (52) controls the wind in the reverse mode operation. Each of the connection switching mechanisms (4) so that the upper heat source side heat exchanger (2a) becomes a condenser and the leeward heat source side heat exchanger (2b) becomes an evaporator.
The air conditioner according to claim 1, wherein (a) and (4b) are controlled.
JP1141866A 1989-06-02 1989-06-02 Air conditioner Expired - Lifetime JP2616009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141866A JP2616009B2 (en) 1989-06-02 1989-06-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141866A JP2616009B2 (en) 1989-06-02 1989-06-02 Air conditioner

Publications (2)

Publication Number Publication Date
JPH037858A JPH037858A (en) 1991-01-16
JP2616009B2 true JP2616009B2 (en) 1997-06-04

Family

ID=15301988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141866A Expired - Lifetime JP2616009B2 (en) 1989-06-02 1989-06-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP2616009B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095343A (en) 2008-10-16 2010-04-30 Murata Machinery Ltd Copier, and automatic document conveyor and image reader used for the copier
JP5428381B2 (en) * 2009-02-24 2014-02-26 ダイキン工業株式会社 Heat pump system
JP7406124B2 (en) * 2021-05-07 2023-12-27 ダイキン工業株式会社 air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153074U (en) * 1987-03-27 1988-10-07
JPS63279063A (en) * 1987-05-08 1988-11-16 日本エ−・シ−・イ−株式会社 Simultaneous air-conditioning method at plurality of position

Also Published As

Publication number Publication date
JPH037858A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
JP3137114B1 (en) Multi-room air conditioner
JP2974179B2 (en) Multi-room air conditioner
JPH0762569B2 (en) Operation control device for air conditioner
CN113457752A (en) Control method of alternating damp-heat test chamber and alternating damp-heat test chamber
JP2616009B2 (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JPH0239179Y2 (en)
JP2893844B2 (en) Air conditioner
JP4391188B2 (en) Air conditioner
JP3232755B2 (en) Air conditioner
JP2698117B2 (en) Air conditioner
JPH04214153A (en) Refrigerating cycle device
JP2508306B2 (en) Operation control device for air conditioner
JPH0285656A (en) Airconditioner
JP2755040B2 (en) Heat pump system
JPH0328672A (en) Thermal accumulation type air conditioner
JP2001201198A (en) Method for controlling air conditioner
JP2854098B2 (en) Air conditioner
JP2541173B2 (en) Air conditioner
JP2689025B2 (en) Multi-room air conditioner
JPS62299660A (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JP2522360B2 (en) Air conditioner
JPH0225103Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13