JPH0461298B2 - - Google Patents

Info

Publication number
JPH0461298B2
JPH0461298B2 JP57045114A JP4511482A JPH0461298B2 JP H0461298 B2 JPH0461298 B2 JP H0461298B2 JP 57045114 A JP57045114 A JP 57045114A JP 4511482 A JP4511482 A JP 4511482A JP H0461298 B2 JPH0461298 B2 JP H0461298B2
Authority
JP
Japan
Prior art keywords
lens
optical axis
image
mounting
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57045114A
Other languages
Japanese (ja)
Other versions
JPS58161839A (en
Inventor
Toshikatsu Daimon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4511482A priority Critical patent/JPS58161839A/en
Publication of JPS58161839A publication Critical patent/JPS58161839A/en
Publication of JPH0461298B2 publication Critical patent/JPH0461298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 本発明はレンズ検査装置に関し、特に単体レン
ズ又はレンズ系の性能、例えば結像状態、あるい
はその焦点の寸法、形状さらには焦点距離、その
他の性能を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lens inspection apparatus, and more particularly to an apparatus for measuring the performance of a single lens or a lens system, such as the imaging state, the size and shape of its focal point, the focal length, and other performances.

レンズ焦点の直径は2ミクロン程度であり、こ
の寸法形状を正確に測定記録することは生産レン
ズの母型決定の際等に極めて重要である。しか
し、これに使用するためには焦点像を高倍率顕微
鏡で拡大する必要があるが現在使用されている各
種器材の組合せでは焦点位置の探索が著しく困難
であり、実用性のある検査装置として使用可能の
レンズ性能測定装置は開発されていない。
The diameter of the lens focal point is approximately 2 microns, and it is extremely important to accurately measure and record this size and shape when determining the matrix for production lenses. However, in order to use this, it is necessary to magnify the focal image with a high-magnification microscope, but it is extremely difficult to search for the focal position with the combination of various equipment currently in use, so it is used as a practical inspection device. A possible lens performance measurement device has not been developed.

本発明の目的は上述の要求に応じられるレンズ
性能測定装置を提供するにある。
An object of the present invention is to provide a lens performance measuring device that can meet the above requirements.

本発明の実施例によつて、レーザ発振器から供
給される赤外線を測定装置光軸に供給し、測定す
べきレンズを支持するレンズ取付装置をX、Y、
Z方向にマイクロメータ調整装置によつて移動さ
せてレンズ中心を装置光軸上の所定点に一致さ
せ、レンズを角度方向に回動させてレンズ光軸の
方向を装置光軸に一致させる。顕微鏡装置には調
整段階で使用するための広い視野の低倍率対物レ
ンズと、測定段階で使用するための高倍率対物レ
ンズとを有し、焦点像を拡大する。拡大された焦
点像は螢光板にあてて赤外線を可視光に変換して
可視監視装置として調整段階でのモニター用とす
ると共に半透過プリズムによつて一部を反射して
テレビカメラに送り、焦点像の寸法形状をテレビ
ジヨンに表示し、デイジタル化して記憶、演算、
表示を行なう。
According to an embodiment of the present invention, the infrared rays supplied from the laser oscillator are supplied to the optical axis of the measuring device, and the lens mounting device supporting the lens to be measured is installed in the X, Y,
The lens is moved in the Z direction by a micrometer adjusting device to align the center of the lens with a predetermined point on the optical axis of the device, and the lens is rotated in an angular direction to align the direction of the lens optical axis with the optical axis of the device. The microscope apparatus has a wide field of view, low magnification objective lens for use in the adjustment stage and a high magnification objective lens for use in the measurement stage to magnify the focal image. The magnified focal image is applied to a fluorescent plate to convert the infrared rays into visible light, which is used as a visible monitoring device for monitoring during the adjustment stage, and a portion is reflected by a semi-transparent prism and sent to a television camera, where it is sent to the focal point. Display the size and shape of the image on a television, digitize it, store it, calculate it,
Perform display.

測定すべきレンズが透明板を透過した後に焦点
を結ぶ構成である時は、透明板と同質の材料の透
明部材を測定すべきレンズと対物レンズとの間に
介挿する。
When the lens to be measured is configured to focus after passing through a transparent plate, a transparent member made of the same material as the transparent plate is inserted between the lens to be measured and the objective lens.

上述によつて、比較的簡単な装置の組合せによ
る実用性の高いレンズ性能測定装置が得られ、測
定過程は容易に行ない得る。
As described above, a highly practical lens performance measurement device can be obtained by combining relatively simple devices, and the measurement process can be easily performed.

本発明を例示とした実施例並びに図面について
説明する。
Embodiments and drawings illustrating the present invention will be described.

第1図は本発明によるレンズ性能測定装置を示
し、レーザ装置1、直線調整装置2、角度調整装
置3、レンズ取付装置4、光学装置5、プリズム
装置6、テレビカメラ装置7、目視装置8の全部
又は一部を使用し、レーザによつて放射された赤
外線を測定すべき1個のレンズ又はレンズ系10
にあて、レンズ10の形成する焦点を拡大してテ
レビカメラ等によつて測定記録する。
FIG. 1 shows a lens performance measuring device according to the present invention, which includes a laser device 1, a linear adjustment device 2, an angle adjustment device 3, a lens mounting device 4, an optical device 5, a prism device 6, a television camera device 7, and a viewing device 8. one lens or lens system 10 to be used in whole or in part to measure the infrared radiation emitted by the laser;
The focal point formed by the lens 10 is then magnified and measured and recorded using a television camera or the like.

測定装置本体は防振装置付きのフレーム11上
に載せ、外界の振動を遮断して測定する。上述の
すべての機器は図示しない制御、演算、増巾等の
回路装置、電源装置を除いてフレーム11上に取
付ける。
The main body of the measuring device is placed on a frame 11 equipped with a vibration isolator, and measurements are taken while blocking external vibrations. All of the above-mentioned equipment is mounted on the frame 11, except for control, arithmetic, circuit devices such as amplifiers, and power supplies (not shown).

レーザ装置1はレーザ発振器12、光学系1
3、プリズム装置14から成り、所要波長範囲の
光束を光軸15に供給する。
The laser device 1 includes a laser oscillator 12 and an optical system 1
3. It consists of a prism device 14, which supplies a light beam in a required wavelength range to an optical axis 15.

直線調整装置2はフレーム11上に固定した架
台20上に図の左右方向に可動のZ可動台21を
支持し、Z調整マイクロメータ22によつてレン
ズ10のピント位置調整を行なう。Z可動台21
に図に直角方向に可動としてX可動台23を支持
し、X調整マイクロメータ24によつて図に直角
方向の調整を行なう。X可動台23に図の上下方
向に可動としてY可動台25を支持し、Y調整マ
イクロメータ26によつて上下方向の調整を行な
う。XY可動台23,25を動かすことによつ
て、レンズ10の光軸を光軸15に一致させる。
The linear adjustment device 2 supports a Z movable table 21 movable in the horizontal direction in the figure on a pedestal 20 fixed on the frame 11, and adjusts the focus position of the lens 10 using a Z adjustment micrometer 22. Z movable base 21
An X movable table 23 is supported so as to be movable in a direction perpendicular to the figure, and adjustment in the direction perpendicular to the figure is performed by an X adjustment micrometer 24. A Y movable base 25 is supported on the X movable base 23 so as to be movable in the vertical direction in the figure, and vertical adjustment is performed using a Y adjustment micrometer 26. By moving the XY movable tables 23 and 25, the optical axis of the lens 10 is made to coincide with the optical axis 15.

角度調整装置3とレンズ取付装置4とはレンズ
10の光軸の方向を装置光軸15に一致させる装
置であり、第2,3図によつて後述する通り、角
度調整装置3は方向一致の調整が容易に行えるよ
うに俯仰角調整のみを行なう。即ち、レンズ10
の光軸の方向が測定装置の光軸15方向に対して
偏差している場合に、この偏差方向を俯仰方向に
定め、この一方向のみの調整で偏差を修正するも
のである。このためレンズ取付装置4を回転調整
自在としてレンズ10の光軸の方向が測定装置の
光軸に対して最大となる角度偏差を垂直面に一致
させて角度調整装置3によつて俯仰角調整を行な
うことによつて光軸の方向の修正を行なう。
The angle adjusting device 3 and the lens mounting device 4 are devices that align the direction of the optical axis of the lens 10 with the optical axis 15 of the device, and as will be described later with reference to FIGS. Only the elevation and elevation angle adjustments are made so that adjustments can be made easily. That is, the lens 10
When the direction of the optical axis of the measuring device deviates from the direction of the optical axis 15 of the measuring device, the direction of the deviation is determined as the elevation direction, and the deviation is corrected by adjusting only this one direction. For this reason, the lens mounting device 4 is rotatably adjustable so that the direction of the optical axis of the lens 10 matches the vertical plane with the maximum angular deviation from the optical axis of the measuring device, and the elevation angle is adjusted by the angle adjustment device 3. By doing this, the direction of the optical axis is corrected.

光学装置5はレンズ10の結ぶ焦点を拡大する
ための装置であり、対物レンズとして少なくとも
2個使用し、低倍率対物レンズ30と高倍率対物
レンズ31とを有する。低倍率レンズ30はモニ
ター用として直線調整装置2、角度調整装置3の
調整間に使用する。このレンズ30は比較的広い
範囲をカバーするため、焦点像を認識するのは著
しく容易であり、モニター用として好適である。
この後に高倍率レンズ31に切換えて所要の計測
を行なう。ピント、角度の微調整段階で使用する
ための中間倍率の対物レンズを使用することもで
きる。
The optical device 5 is a device for enlarging the focal point formed by the lens 10, and uses at least two objective lenses, including a low magnification objective lens 30 and a high magnification objective lens 31. The low magnification lens 30 is used for monitoring during adjustment of the linear adjustment device 2 and the angle adjustment device 3. Since this lens 30 covers a relatively wide range, it is extremely easy to recognize the focal image, and it is suitable for use as a monitor.
Thereafter, the lens is switched to the high magnification lens 31 and necessary measurements are performed. It is also possible to use an intermediate magnification objective lens for use in the focus and angle fine adjustment stage.

プリズム装置6は図示の例では対物レンズから
テレビカメラまでの光学系の中間に介挿した半透
過プリズムとし、透過赤外線は図示しない螢光板
に投射されて螢光を生じ、目視装置8によつて目
視可能となる。反射赤外線は更に拡大されてテレ
ビカメラ7に供給されて図示しないテレビジヨン
及び又は演算処理装置にデータを供給して測定、
記録、表示する。
In the illustrated example, the prism device 6 is a semi-transparent prism inserted in the middle of the optical system from the objective lens to the television camera, and the transmitted infrared rays are projected onto a fluorescent plate (not shown) to generate fluorescence, which is then detected by the viewing device 8. It becomes visible. The reflected infrared rays are further magnified and supplied to the television camera 7 to supply data to a television and/or arithmetic processing unit (not shown) for measurement.
Record and display.

本発明によつて、レンズ10の焦点を所要の合
成樹脂板あるいはガラス板等、例えば透明アクリ
ル板を透過させて結ばせる場合は同じ光学的特性
の透明部材32を光学装置5の対物レンズ31の
前に着脱自在に取付ける。
According to the present invention, when the focal point of the lens 10 is to be focused by passing through a required synthetic resin plate or glass plate, for example, a transparent acrylic plate, a transparent member 32 having the same optical characteristics is attached to the objective lens 31 of the optical device 5. It is removably attached to the front.

例えばこの透明部材32を対物レンズ31に着
脱自在に螺着することのできる鏡筒体(図示しな
い)に装着し、この鏡筒体を対物レンズ31に螺
着して取付けることにより構成する。しかして、
必要に応じた特性の透明部材32を予め用意して
おくことにより、レンズ10の性能測定に応じた
透明部材32と交換しつつ実施することができ
る。
For example, the transparent member 32 is attached to a lens barrel (not shown) that can be removably screwed onto the objective lens 31, and this lens barrel is screwed and attached to the objective lens 31. However,
By preparing in advance the transparent member 32 with the characteristics required, it is possible to carry out the measurement while replacing the transparent member 32 with a transparent member 32 corresponding to the performance measurement of the lens 10.

赤外線テレビカメラ装置自体は既知であり、赤
外線ビジコンの使用によつて波長2μmまでの赤
外線に対して測定可能感度を有し、顕微鏡テレビ
装置に組合せてテレビジヨンによる表示を行なう
と共に信号を中央演算処理装置、記憶処理装置に
供給して所要のデータとして処理する。赤外線は
発熱効果があるため、自動感度制御回路等の保護
回路を使用して撮像管の焼付防止を行なう。
The infrared television camera device itself is known, and has a measurable sensitivity to infrared rays with a wavelength of up to 2 μm by using an infrared vidicon, and when combined with a microscope television device, displays on the television and centrally processes the signal. The data is supplied to the device and storage processing device and processed as required data. Since infrared rays have a heat generating effect, a protection circuit such as an automatic sensitivity control circuit is used to prevent burn-in of the image pickup tube.

第2,3図は第1図に示した角度調整装置3と
レンズ取付装置4との詳細を示す。この装置3の
基板41は前述のY調整可動台25の附属係止具
によつて可動台25の端面に軸線42をほぼ光軸
15に一致させて取付ける。
2 and 3 show details of the angle adjustment device 3 and lens mounting device 4 shown in FIG. 1. The substrate 41 of this device 3 is attached to the end surface of the movable base 25 by the above-mentioned locking tool attached to the movable base 25 for Y adjustment, with the axis 42 substantially aligned with the optical axis 15.

基板41に形成したジヤーナル43,44に精
密軸受45,46を介して軸47を回転自在に支
持し、軸47を固着した腕48に一体とした傾動
板49に取付ねじ50を設ける。傾動板49の腕
48とは反対側に突出部51を設け、マイクロメ
ータ52をねじこむ。マイクロメータ52の端部
53は板49の孔54を通つて突出し、基板41
の凹み55内のボール56に接触する。マイクロ
メータ52のゼロ位置では基板41と傾動板49
の間が図に示す通り離間し、所要の俯仰角調整を
行なうことが可能である。
A shaft 47 is rotatably supported by journals 43 and 44 formed on a substrate 41 via precision bearings 45 and 46, and a mounting screw 50 is provided on a tilting plate 49 integrated with an arm 48 to which the shaft 47 is fixed. A protrusion 51 is provided on the opposite side of the tilting plate 49 from the arm 48, into which a micrometer 52 is screwed. The end 53 of the micrometer 52 protrudes through the hole 54 in the plate 49 and
The ball 56 in the recess 55 is contacted. At the zero position of the micrometer 52, the substrate 41 and the tilting plate 49
As shown in the figure, the space between the two is spaced apart from each other as shown in the figure, and it is possible to adjust the angle of elevation as required.

レンズ取付装置4を傾動板49の孔50にねじ
こむ。レンズ取付装置4の支持部材61の取付部
62に外ねじを有し、孔50の内ねじに係合す
る。支持部材61の開口63と回動部材64の軸
65との間は精密軸受装置66によつてほぼ遊び
のない相対回動可能に支承する。回動部材64の
支持部67にレンズ保持部材68を止めねじ69
等によつて取外可能に取付ける。レンズ保持部材
68は各種型式に応じた夫々のレンズマウントと
し、内ねじ70に単体レンズ保持具又はレンズ系
の外ねじを取付ける。
The lens attachment device 4 is screwed into the hole 50 of the tilting plate 49. The mounting portion 62 of the support member 61 of the lens mounting device 4 has an external thread, which engages with the internal thread of the hole 50 . The opening 63 of the support member 61 and the shaft 65 of the rotating member 64 are supported by a precision bearing device 66 for relative rotation with almost no play. A set screw 69 attaches the lens holding member 68 to the support portion 67 of the rotating member 64.
It is removably attached by means such as. The lens holding member 68 is a lens mount corresponding to various types, and a single lens holder or an external thread of a lens system is attached to the internal thread 70.

使用に際して、マイクロメータ52によつて基
板41と傾動板49との相対角度をゼロとし、図
示しないレンズ又はレンズ系をレンズ保持部材6
8の内ねじ70に取付ける。基板41を第1図の
Y調整可動台5の前面に取付ける。X、Y、Z調
整を行なつた後に支持部材61と回動部材64と
を相対回動させて、目視装置8とテレビカメラ装
置7で観察しながら、測定装置の光軸に対してレ
ンズ10の光軸の方向が最大に角度偏差する方向
を、測定装置の光軸を含む垂直面に一致させる。
ここでマイクロメータ52によつて俯仰角調整を
行なつて測定光軸15にレンズ光軸を一致させ
る。この方法によつて、一方向の角度調整だけで
測定すべきレンズ系の光軸角度誤差を修正するこ
とが出来る。尚、支持部材61と回動部材64と
の間の相対回動は機械的又はステツプモータ等に
よつて制御する事も出来る。
In use, the relative angle between the substrate 41 and the tilting plate 49 is set to zero using the micrometer 52, and a lens or lens system (not shown) is attached to the lens holding member 6.
Attach to the internal screw 70 of No.8. The board 41 is attached to the front of the Y adjustment movable base 5 shown in FIG. After performing the X, Y, and Z adjustments, the support member 61 and the rotating member 64 are relatively rotated, and while observing with the visual device 8 and the television camera device 7, the lens 10 is aligned with respect to the optical axis of the measuring device. The direction of maximum angular deviation of the direction of the optical axis of the measuring device is made to coincide with the vertical plane containing the optical axis of the measuring device.
Here, the elevation angle is adjusted using the micrometer 52 to align the lens optical axis with the measurement optical axis 15. With this method, it is possible to correct the optical axis angle error of the lens system to be measured by adjusting the angle in only one direction. Incidentally, the relative rotation between the support member 61 and the rotation member 64 can also be controlled mechanically or by a step motor or the like.

作動について説明する。 The operation will be explained.

第1にレンズ10を取付けない状態で各機器の
心出し、調整を行ない、レーザ発振器12からの
赤外線がレンズ系13、プリズム14を経て正確
に光軸15に沿つて進行するようにする。これを
例えば目視装置8の螢光板上に確認する。
First, each device is centered and adjusted without the lens 10 attached, so that the infrared rays from the laser oscillator 12 pass through the lens system 13 and the prism 14 and travel accurately along the optical axis 15. This is confirmed, for example, on a fluorescent plate of the viewing device 8.

次にレンズ取付装置4を角度調整装置3のマウ
ントに取付け、レンズ10をレンズ取付装置4に
支持させる。マウントに対する締付力等はトルク
レンチによつて所定締付力とし、弛み又は歪みに
よる誤差を防ぐ。
Next, the lens attachment device 4 is attached to the mount of the angle adjustment device 3, and the lens 10 is supported by the lens attachment device 4. The tightening force for the mount is set to a predetermined level using a torque wrench to prevent errors due to loosening or distortion.

次に、光学装置5の対物レンズを低倍率レンズ
30、例えば5倍とし、レーザ装置1又は図示し
ないパイロツト光装置を使用してXYZ調整マイ
クロメータ24,26,22の粗調整を行ない、
更に角度調整装置3の俯仰各調整の粗調整を行な
う。
Next, the objective lens of the optical device 5 is a low magnification lens 30, for example, 5 times, and the XYZ adjustment micrometers 24, 26, 22 are roughly adjusted using the laser device 1 or a pilot light device (not shown).
Furthermore, rough adjustment of the elevation and elevation of the angle adjustment device 3 is performed.

次にレーザ装置1を使用し、直線調整装置の
XYZ調整マイクロメータ及び角度調整装置の微
調整を行なつて、測定すべきレンズ10の光軸を
装置の光軸15に一致させる。この時は所要に応
じて低倍率対物レンズ30又は中間倍率対物レン
ズを使用し、最後に高倍率対物レンズを使用して
確認する。
Next, use laser device 1 and adjust the linear adjustment device.
The XYZ adjustment micrometer and the angle adjustment device are finely adjusted to align the optical axis of the lens 10 to be measured with the optical axis 15 of the device. At this time, a low magnification objective lens 30 or an intermediate magnification objective lens is used as required, and finally a high magnification objective lens is used for confirmation.

ここで調整を終了し、テレビカメラ7を作動し
て測定を行なう。レーザ発振器12からの赤外線
はレンズ系13を通り、反射鏡又はプリズム14
で反射されて光軸15に沿つて進行する。赤外線
はレンズ10を通つて、測定すべきレンズの表面
仕上等に基く偏差に応じた形状と直径とを有する
焦点を結ぶ。レンズ10の光軸は直線調整装置
2、角度調整装置3の各マイクロメータによつて
微調整され、Z調整マイクロメータ22によつて
焦点位置を合せるため、焦点の寸法形状は純粋に
レンズ自体の固有の偏差に基くものが得られる。
焦点直径の最小は約1ミクロンである。尚、X、
Y調整マイクロメータ24,26による最小調整
寸法は約0.05ミクロンとすることが可能である。
At this point, the adjustment is completed, and the television camera 7 is operated to perform measurement. Infrared rays from the laser oscillator 12 pass through a lens system 13 and pass through a reflecting mirror or prism 14.
The light is reflected by the beam and travels along the optical axis 15. The infrared radiation passes through the lens 10 to a focal point whose shape and diameter depend on deviations based on the surface finish of the lens to be measured, etc. The optical axis of the lens 10 is finely adjusted by the micrometers in the linear adjustment device 2 and the angle adjustment device 3, and the focal point is adjusted by the Z adjustment micrometer 22, so the size and shape of the focal point are determined purely by the lens itself. The one based on the inherent deviation is obtained.
The minimum focal diameter is about 1 micron. Furthermore, X,
The minimum adjustment dimension by the Y adjustment micrometers 24, 26 can be about 0.05 microns.

レンズ10によつて集光された焦点は光学装置
5を通つて拡大され、半透過プリズム6で反射さ
れ更に光学装置によつて拡大されてテレビカメラ
装置7によつて撮影される。
The focal point focused by the lens 10 is magnified through the optical device 5, reflected by the semi-transparent prism 6, further magnified by the optical device, and photographed by the television camera device 7.

レンズ10の焦点を所要の合成樹脂板例えばア
クリル板等を経て結ばせる構造である場合には、
上述の微調整段階で透明部材32を装着して焦点
確認を行なう。透明部材32の材質と厚さとは実
際に使用するアクリル板等と同等のものを使用す
る。これによつて実用間の像が得られる。
If the structure is such that the focal point of the lens 10 is connected via a required synthetic resin plate, such as an acrylic plate,
At the above-mentioned fine adjustment stage, the transparent member 32 is attached to check the focus. The material and thickness of the transparent member 32 are the same as those of an acrylic plate or the like that is actually used. This provides a practical image.

尚測定装置の光軸に供給する光束としてはレー
ダー光線に限られず、測定するレンズ性能におけ
る測定の目的に対応した光源からの光束を選択し
つつ実施する等、可視光その他の光線により実施
することができる。
The light flux supplied to the optical axis of the measurement device is not limited to radar light, but it may be carried out using visible light or other light, such as selecting a light flux from a light source that corresponds to the purpose of the measurement in terms of lens performance to be measured. I can do it.

第4図は他の実施例により性能測定装置を示
し、第1図と同じ符号によつて同様の部品又は部
分を示す。
FIG. 4 shows a performance measuring device according to another embodiment, in which similar parts or parts are designated by the same reference numerals as in FIG.

第4図の装置は光源装置を内蔵するレンズ装置
70のレンズ系10の焦点測定装置であり、第1
図のレーザ装置1は使用しない。
The device shown in FIG. 4 is a focus measuring device for a lens system 10 of a lens device 70 incorporating a light source device.
The laser device 1 shown in the figure is not used.

第4図の場合は第5,6図に示す角度調整装置
71を使用して俯仰角と左右偏角の調整を行な
い、 第7図に示す取付装置72にレンズ装置70を
取付ける。
In the case of FIG. 4, the angle of elevation and left/right declination are adjusted using the angle adjusting device 71 shown in FIGS. 5 and 6, and the lens device 70 is attached to the mounting device 72 shown in FIG.

第5,6図に示す角度調整装置71自体は既知
の構造であり、可動台25に対する取付面73を
有し、上面の円筒面74を形成した第1の部材7
5と、下面に円筒面76を有し上面に取付面77
を有する第2の部材78との組合せを互に直角方
向に2組取付けて第1の回動装置79と第2の回
動装置80を形成し、調整ノブ81,82によつ
て所要角度位置を調整固定する。これによつて最
上の取付面83は任意の方向とすることができ
る。
The angle adjusting device 71 itself shown in FIGS. 5 and 6 has a known structure, and includes a first member 7 having a mounting surface 73 for the movable base 25 and a cylindrical surface 74 on the upper surface.
5 and a cylindrical surface 76 on the bottom surface and a mounting surface 77 on the top surface.
A first rotation device 79 and a second rotation device 80 are formed by attaching two sets of combinations with a second member 78 at right angles to each other, and adjust the desired angular position using adjustment knobs 81 and 82. Adjust and fix. This allows the uppermost mounting surface 83 to be oriented in any direction.

第7図は第4図の取付装置72に光源付きレン
ズ装置70を取付けた状態を示す。
FIG. 7 shows a state in which the lens device 70 with a light source is attached to the attachment device 72 of FIG. 4.

取付装置72の基板85は第5,6図の角度調
整装置71の取付面83に取付可能とする。基板
85上に2個の支持部材86を離隔して取付け、
各支持部材86に配設されてレンズ装置70を4
方向から押圧挾持するように作用する推力支持ボ
ール87を介してレンズ装置70のハウジング8
8の隅部に接触させてレンズ装置70を支持す
る。下方の支持部材86のほぼ中央部に埋設した
心出しボール89によつてハウジング88の中心
位置を定め、前記支持部材86の向きと直交する
ように基板85上に取付けた一対の当て板90,
91によつてハウジング88の側方位置を定め
る。これによつてレンズ装置70を取付装置72
の基板85の面に取付ける。光源に対して電気を
供給するための端子92を示す。
The base plate 85 of the attachment device 72 can be attached to the attachment surface 83 of the angle adjustment device 71 shown in FIGS. 5 and 6. Two supporting members 86 are mounted spaced apart on the substrate 85,
Four lens devices 70 are disposed on each support member 86.
The housing 8 of the lens device 70 is connected to the housing 8 of the lens device 70 via a thrust support ball 87 that acts to press and clamp the lens device 70 from the direction.
8 and supports the lens device 70. The center position of the housing 88 is determined by a centering ball 89 embedded approximately in the center of the lower support member 86, and a pair of backing plates 90 are mounted on the base plate 85 so as to be perpendicular to the direction of the support member 86.
91 defines the lateral position of the housing 88. This allows the lens device 70 to be attached to the mounting device 72.
It is attached to the surface of the board 85. A terminal 92 is shown for supplying electricity to the light source.

第4〜7図に示した実施例の作動を説明する。 The operation of the embodiment shown in FIGS. 4 to 7 will be explained.

角度調整装置71の取付面73をY調整装置の
可動台25に取付け、取付面83には取付装置7
2の基板85を取付ける。光源内蔵のレンズ装置
70を取付装置72の推力ボール87、心出しボ
ール89、当て板91,92によつて取付ける。
The mounting surface 73 of the angle adjustment device 71 is attached to the movable base 25 of the Y adjustment device, and the mounting surface 83 is attached to the mounting surface 73 of the Y adjustment device.
Attach the second board 85. The lens device 70 with a built-in light source is mounted using the thrust ball 87, centering ball 89, and backing plates 91, 92 of the mounting device 72.

次に光源に端子92から電気を供給し、光源か
らのレーザ光はレンズ10によつて焦点を結ぶ。
第1の低倍率対物レンズ30によつて焦点位置を
目視装置8に導く。XY調整は可動台23,25
を動かして調整し、焦点の光軸15方向の位置は
Z調整可動台21を動かして調整する。次に角度
調整装置の組79,80を調整してレンズ装置7
0の光軸の方向を装置光軸15の方向に一致させ
る。市販の角度調整装置は角度調整すればレンズ
10の光軸の方向が変化すると同時にレンズの中
心位置も移動するため、微調整に際してXY調整
マイクロメータ24,26による調整を必要とす
る。
Next, electricity is supplied to the light source from the terminal 92, and the laser light from the light source is focused by the lens 10.
A first low magnification objective 30 guides the focal position to the viewing device 8 . For XY adjustment, movable bases 23 and 25
The position of the focal point in the direction of the optical axis 15 is adjusted by moving the Z adjustment movable table 21. Next, adjust the angle adjustment device set 79, 80 to adjust the lens device 7.
The direction of the optical axis of 0 is made to coincide with the direction of the device optical axis 15. With commercially available angle adjustment devices, when the angle is adjusted, the direction of the optical axis of the lens 10 changes and at the same time the center position of the lens also moves, so fine adjustment requires adjustment using XY adjustment micrometers 24 and 26.

図示のレンズ装置70はアクリル板を透過して
焦点を結ばせる構成であるため、同質の材料から
成る透明部材32を高倍率対物レンズ31の前面
に所要の距離としてかぶせ、所要に応じてZ調整
マイクロメータ22によつて焦点位置を微調整す
る。
Since the illustrated lens device 70 has a configuration that focuses through an acrylic plate, a transparent member 32 made of the same material is placed over the front surface of the high-magnification objective lens 31 at a required distance, and Z adjustment is performed as required. A micrometer 22 is used to finely adjust the focal position.

この後の焦点測定、記録、表示は第1図につい
ての説明と同様である。
The subsequent focus measurement, recording, and display are the same as those described with respect to FIG.

本発明の構成によれば、測定すべきレンズの光
軸が装置光軸に対してズレたり傾いたりしていて
も該装置光軸に一致させることが簡単で短時間に
でき、熟練を要することなく容易に性能検査がで
きる。またレンズの光軸を装置光軸に一致させる
際に、第一段階は低倍率レンズにより大まかに合
わせ、第二段階で高倍率レンズによりレンズの像
を拡大して合わせるという工程を経るので、調整
の初期に像位置を見失うことがないことにより調
整時間が短かく、測定も極めて容易に行ない得る
顕著な効果がある。
According to the configuration of the present invention, even if the optical axis of the lens to be measured is shifted or tilted with respect to the optical axis of the device, it can be easily and quickly aligned with the optical axis of the device, and does not require skill. Performance can be easily inspected without any problems. In addition, when aligning the optical axis of the lens with the optical axis of the device, the first step is to roughly align it with a low magnification lens, and the second step is to enlarge the lens image with a high magnification lens and align it. Since the image position is not lost at the beginning of the process, the adjustment time is short and the measurement is extremely easy, which is a remarkable effect.

本発明による装置は単体のレンズ又はレンズ系
の結像性能測定装置として使用することもでき、
光源装置まで組込んだ光学系装置用の結像性能測
定装置として使用することもできる。更に、レン
ズ系又はレンズ装置が透明板を透過して焦点を結
ばせる用途に使用する時は同質の材料から成る透
明部材を置いて実用上の焦点寸法を検査すること
ができる。更にレンズ系の、実用焦点距離測定装
置として使用することも可能である。
The device according to the invention can also be used as a device for measuring the imaging performance of a single lens or a lens system,
It can also be used as an imaging performance measuring device for an optical system device including a light source device. Furthermore, when the lens system or lens device is used for focusing by passing through a transparent plate, a transparent member made of the same material can be placed to inspect the practical focal size. Furthermore, it can also be used as a practical focal length measuring device for lens systems.

従つて本発明による装置は広い用途に使用可能
であり、比較的簡単な構造で極めて正確な測定を
行ない得る。
Therefore, the device according to the invention can be used in a wide range of applications and can perform extremely accurate measurements with a relatively simple construction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるレンズ焦点測定装置の第
1の実施例の側面図、第2図は第1図の装置の角
度調整装置とレンズ保持装置との一部断面とした
拡大側面図、第3図は第2図の端面図、第4図は
レンズ測定装置の第2の実施例の側面図、第5図
は第4図の装置の角度調整装置の拡大側面図、第
6図は第5図の平面図、第7図は第4図の装置の
取付装置とレンズ装置の拡大平面図である。 1……レーザ装置、2……直線調整装置、3,
71……角度調整装置、4……レンズ支持装置、
5……光学装置、6……プリズム装置、7……テ
レビカメラ装置、8……目視装置、10……測定
すべきレンズ、11……フレーム、12……レー
ザ発振器、15……光軸、20……架台、21,
23,25……可動台、22,24,26,52
……調整マイクロメータ、30,31……対物レ
ンズ、32……透明部材、41,85……基板、
45,46,66……軸受、49……傾動板、7
0……レンズ装置、72……取付装置、73,8
3……取付面、79,80……回動装置、86…
…支持部材、87……支持ボール、88……ハウ
ジング。
FIG. 1 is a side view of a first embodiment of a lens focus measuring device according to the present invention, FIG. 3 is an end view of FIG. 2, FIG. 4 is a side view of the second embodiment of the lens measuring device, FIG. 5 is an enlarged side view of the angle adjustment device of the device of FIG. 4, and FIG. 5 is a plan view, and FIG. 7 is an enlarged plan view of the mounting device and lens device of the device shown in FIG. 4. 1...Laser device, 2...Line adjustment device, 3,
71... Angle adjustment device, 4... Lens support device,
5... Optical device, 6... Prism device, 7... Television camera device, 8... Visualization device, 10... Lens to be measured, 11... Frame, 12... Laser oscillator, 15... Optical axis, 20... mount, 21,
23, 25...Movable stand, 22, 24, 26, 52
... Adjustment micrometer, 30, 31 ... Objective lens, 32 ... Transparent member, 41, 85 ... Substrate,
45, 46, 66... bearing, 49... tilting plate, 7
0...Lens device, 72...Mounting device, 73,8
3... Mounting surface, 79, 80... Rotating device, 86...
...Support member, 87...Support ball, 88...Housing.

Claims (1)

【特許請求の範囲】 1 レンズの性能を測定する装置であつて、光源
よりの光束を測定装置光軸に供給する装置と、 測定すべきレンズの光軸を上記測定装置光軸に
対して所定の方向に最大角度偏差させるために、
該レンズを回転自在に取付けるレンズ取付装置
と、 該レンズ取付装置を取付けて、レンズ取付装置
により所定の方向に最大角度偏差されたレンズの
光軸方向を、上記測定装置光軸の方向に一致させ
るための角度調整装置と、 該角度調整装置を取付けるとともに、上記レン
ズ取付装置に取付けたレンズの中心を上記測定装
置光軸上の所定位置に一致させるためのレンズ位
置調整装置と、 測定すべきレンズの結ぶ焦点像を認識するため
のレンズモニター用の低倍率対物レンズと、 上記レンズの結ぶ焦点像を拡大するためのレン
ズ計測用の高倍率対物レンズと、 上記低倍率対物レンズと高倍率対物レンズとを
選択的に切換えて上記測定装置光軸中に位置させ
る選択位装と、 上記対物レンズからの像の寸法形状を演算処理
する装置と、 を備えたことを特徴とするレンズ性能測定装置。 2 上記測定装置は、上記低倍率対物レンズまた
は高倍率対物レンズを介して得られるレンズの像
を半透過プリズムによつて分光して一方の像を可
視像に変換して表示する可視監視装置と、他方の
像を撮像する撮像装置とを備えることにより構成
したことを特徴とする特許請求の範囲第1項記載
のレンズ性能測定装置。
[Scope of Claims] 1. A device for measuring the performance of a lens, comprising: a device for supplying a luminous flux from a light source to an optical axis of a measuring device; In order to have a maximum angular deviation in the direction of
a lens mounting device for rotatably mounting the lens; and a lens mounting device for mounting the lens mounting device so that the optical axis direction of the lens, which has been deviated by the maximum angle in a predetermined direction by the lens mounting device, coincides with the direction of the optical axis of the measuring device. a lens position adjustment device for attaching the angle adjustment device and aligning the center of the lens attached to the lens attachment device with a predetermined position on the optical axis of the measurement device; and a lens to be measured. A low-magnification objective lens for lens monitoring to recognize the focal image formed by the lens, a high-magnification objective lens for lens measurement to magnify the focal image formed by the above-mentioned lens, and the above-mentioned low-magnification objective lens and high-magnification objective lens. A lens performance measuring device comprising: a selective positioning device for selectively switching between the two positions to position the measuring device in the optical axis of the measuring device; and a device for calculating the size and shape of an image from the objective lens. 2. The measurement device is a visible monitoring device that spectrally separates the lens image obtained through the low-magnification objective lens or the high-magnification objective lens using a semi-transparent prism, converts one image into a visible image, and displays the resulting image. 2. The lens performance measuring device according to claim 1, wherein the lens performance measuring device comprises: and an imaging device that captures the other image.
JP4511482A 1982-03-20 1982-03-20 Apparatus for measuring lens performance Granted JPS58161839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4511482A JPS58161839A (en) 1982-03-20 1982-03-20 Apparatus for measuring lens performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4511482A JPS58161839A (en) 1982-03-20 1982-03-20 Apparatus for measuring lens performance

Publications (2)

Publication Number Publication Date
JPS58161839A JPS58161839A (en) 1983-09-26
JPH0461298B2 true JPH0461298B2 (en) 1992-09-30

Family

ID=12710232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4511482A Granted JPS58161839A (en) 1982-03-20 1982-03-20 Apparatus for measuring lens performance

Country Status (1)

Country Link
JP (1) JPS58161839A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228545A (en) * 2001-02-01 2002-08-14 Topcon Corp Measuring method of optical characteristic of framed spectacle lens and its measuring jig and collection system of its optical characteristic image data and its sales system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134339A (en) * 1979-04-06 1980-10-20 Canon Inc Inspecting device of lens
JPS5713334A (en) * 1980-06-27 1982-01-23 Ricoh Co Ltd Reflex-type measuring device for eccentricity of lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134339A (en) * 1979-04-06 1980-10-20 Canon Inc Inspecting device of lens
JPS5713334A (en) * 1980-06-27 1982-01-23 Ricoh Co Ltd Reflex-type measuring device for eccentricity of lens

Also Published As

Publication number Publication date
JPS58161839A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
US4899921A (en) Aligner bonder
US7715129B2 (en) Method for aligning and assembling two lens pieces, and a machine to accomplish this task
US6415654B1 (en) Scanning probe microscope system including removable probe sensor assembly
EP0406413A1 (en) Scanning type tunnel microscope
EP1924954A2 (en) Method for aligning and assembling two lens pieces, and a machine to accomplish this task
US5532815A (en) System and method for aligning a first surface with respect to a second surface
US20070024870A1 (en) Apparatuses and methods for measuring head suspensions and head suspension assemblies
KR20080014250A (en) The de-center adjustment device and method for lens assembly
JP2012078330A (en) Method for adjusting movement of camera unit in lens inspection apparatus and focus check tool
JPH0659172A (en) Objective lens, method for adjusting inclination of objective lens and device for manufacturing objective lens
JPH0461298B2 (en)
JPS58161843A (en) Apparatus for measuring lens performance
JPS58161842A (en) Apparatus for measuring lens performance
JPS58161840A (en) Apparatus for measuring lens performance
JPS58161841A (en) Apparatus for measuring lens performance
JP2791121B2 (en) Micro surface shape measuring device
JPS58161844A (en) Apparatus for measuring lens performance
JP2767138B2 (en) Optical axis adjustment method and jig for optical system for optical information recording / reproducing device
JP2993335B2 (en) Matching telescope
JPH02163601A (en) Scanning type tunnel microscope
CN214666665U (en) Autocollimator
JP2521736B2 (en) Microscope adjustment inspection device
JPS60230030A (en) Optical fiber visual inspection method and optical microscope
KR0149007B1 (en) Lens assembling apparatus
CN115615354A (en) Calibration method and calibration device for measuring instrument