JPH0461057B2 - - Google Patents

Info

Publication number
JPH0461057B2
JPH0461057B2 JP60164865A JP16486585A JPH0461057B2 JP H0461057 B2 JPH0461057 B2 JP H0461057B2 JP 60164865 A JP60164865 A JP 60164865A JP 16486585 A JP16486585 A JP 16486585A JP H0461057 B2 JPH0461057 B2 JP H0461057B2
Authority
JP
Japan
Prior art keywords
carbides
based alloy
temperature
precipitated
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60164865A
Other languages
Japanese (ja)
Other versions
JPS6223951A (en
Inventor
Nobuyoshi Kurauchi
Masaaki Kato
Katsuhisa Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16486585A priority Critical patent/JPS6223951A/en
Publication of JPS6223951A publication Critical patent/JPS6223951A/en
Publication of JPH0461057B2 publication Critical patent/JPH0461057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、すぐれた耐摩耗性を有し、かつ耐
熱性にもすぐれたCo基合金部材の製造法に関す
るものである。 〔従来の技術〕 一般に、チエンソーガイドや、木工加工用並び
に軽金属および合金切断用のこ歯、さらに蒸気タ
ービンのブレードなどの各種部材の製造には、す
ぐれた耐摩耗性と耐熱性が要求されることから、
各種のCo基合金が用いられている。 また、これらのCo基合金のうち1つとして、
C:0.05〜2%、 WおよびMoのうち1種または2種:2〜20
%、 Cr:15〜35%、 を含有し、さらに必要に応じて、 NiおよびFeのうち1種または2種:1〜25%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%、以下%は重量%を示す)を有す
るCo基合金が広く知られている。 さらに、このCo基合金を用いて上記の各種部
材を製造するには、通常、鋳造後のインゴツト
に、分塊鍛造や分塊圧延、さらに熱間圧延や冷間
圧延などの熱間加工や冷間加工を施して所定形状
の部材、例えば板厚:1〜4mmの板材とし、最終
的にこれに1100〜1250℃の温度で溶体化処理を施
す方法がとられている。 〔発明が解決しようとする課題〕 しかし、近年、上記の利用分野においても高速
化や高性能化が要求されるようになつており、こ
れに伴つて、上記の従来Co基合金部材のもつ耐
摩耗性のより一層の向上が望まれている。 〔課題を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、より一段と耐摩耗性のすぐれたCo基合金部
材を開発すべく研究を行なつた結果、 Co基合金を、重量%で(以下%は重量%を示
す)、 C:1%超〜1.5%、Cr:25〜32%、W:2〜
10%、 を含有し、さらに必要に応じて、 NiおよびFeのうち1種または2種:1〜3%、 を含有し、残りがCoと不可避不純物からなる組
成に特定した上で、この溶湯を鋳造して、初晶炭
化物が晶出したインゴツトとし、 このインゴツトに、通常の条件で分塊鍛造や分
塊圧延、さらに熱間加工や冷間加工を施して、上
記初晶炭化物が微細化した組織を有する所定形状
のCo基合金素材とし、 ついで、このCo基合金素材に、加工硬化を除
去する目的で、1200℃超〜1250℃の温度で軟化焼
鈍を施した状態で、 さらに、700〜900℃未満の温度で炭化物析出処
理を施すと、この結果のCo基合金部材において
は、初晶炭化物が素地中に、析出炭化物が結晶粒
界に分散した状態で存在すると共に、さらに析出
炭化物が結晶粒内にも析出した組織をもつように
なり、しかもこの結晶粒内に析出した析出炭化物
は直径:1μm以下と微細なものであるため、結
晶粒内の硬さが、従来のCo基合金部材ではビツ
カース硬さで約250であつたものが、同300程度に
まで向上し、耐摩耗性の著しい改善がはかれるよ
になるという研究結果を得たのである。 この発明は、上記研究結果にもとづいてなされ
たまなであつて、以下にこの発明の方法におい
て、製造条件を上記の通りに限定した理由を説明
する。 A Co基合金の成分組成 (a) C C成分には、炭化物を形成して耐摩耗性を
向上させる作用があるが、その含有量が1%
以下では、特に析出炭化物の結晶粒内への析
出を十分に行なうことができず、この結果炭
化物のミクロ的分散が不均一になつて、所望
の著しくすぐれた耐摩耗性を確保することが
できず、一方その含有が1.5%を越えると、
特に薄物部材の塑性加工が困難になることか
ら、その含有量を1%超〜1.5%と定めた。 (b) Cr Cr成分には、素地に固溶して耐熱性を向
上させるほか、炭化物を形成して耐摩耗性を
向上させる作用があるが、その含有量が25%
未満では、結晶粒内の析出炭化物の割合が相
対的に少なく、飛躍的耐摩耗性の向上がはか
れず、一方その含有量が32%を越えると、σ
相などの脆化相が出現するようになつて塑性
加工が低下し、また延性も低下するようにな
ることから、その含有量を25〜32%と定め
た。 (c) W W成分には、Crとの共存において、特に
結晶粒内への微細炭化物の析出を促進する作
用があるほか、自身も一部が素地に固溶し
て、これを強化するほか、炭化物を形成して
耐摩耗性を向上させる作用があるが、その含
有量が2%未満では前記作用に所望の効果が
得られず、一方その含有量が10%を越える
と、Crと同様に塑性加工性が低下するよう
になるほか、合金に脆化傾向が現われるよう
になることから、その含有量を2〜10%と定
めた。 (d) NiおよびFe これらの成分には、素地に固溶して、延性
および塑性加工性を向上さる作用があるの
で、必要に応じて含有されるが、その含有量
が1%未満では前記作用に所望の向上効果が
得られず、一方その含有量が3%を越えると
耐摩耗性に低下傾向が現われるようになるこ
とから、その含有量を1〜3%と定めた。 B 軟化焼鈍温度 軟化焼鈍は、分塊鍛造や分塊圧延、さらに熱
間加工や冷間加工による加工硬化を除去するた
めに行なわれるものであり、したがつてその温
度が1200℃以下では軟化焼鈍が十分に行なわれ
ず、一方その温度が1250℃を越えると素地中に
微細均一に分散する初晶炭化物が初期溶融を起
し、ボイドが発生するようになることから、そ
の温度を1200℃超〜1250℃と定めた。 C 炭化物析出処理温度 この炭化物析出処理は、結晶粒内に直径:
1μm以下の微細な炭化物を分散させると共に、
結晶粒界にも炭化物を析出させ、もつてこれら
の析出炭化物と、鋳造時に形成され、以後の加
工工程で微細化された初晶炭化物の共存におい
て、Co基合金部材の硬さを向上させて耐摩耗
性を著しく向上さる目的で施されるが、その温
度が700℃未満では炭化物を十分に析出させる
ことができず、一方その温度が900℃以上にな
ると、特に、結晶粒内に析出する炭化物が直
径:1μmを越えて粗大化するようになり、す
ぐれた耐摩耗性を確保することができなくなる
ことから、その温度を700〜900℃未満と定め
た。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 通常の溶解法を用い、それぞれ第1表に示され
る成分組成をもつたCo基合金溶湯を調整し、鋳
造して直径:90mmφ長さ:350mmのインゴツトと
した後、1000〜1200℃の温度で熱間鍛造および熱
間圧延を行なつて幅:200mm×厚さ:2mmの熱延
板とし、ついで、このCo基合金素材として熱延
板に、同じく第1表に示される条件で軟化焼鈍お
よび炭化物析出処理を施すことにより本発明法1
〜11および比較法1〜6をそれぞれ実施し、Co
基合金板材を製造した。 なお、比較法1〜6は、耐摩耗性に影響を及ぼ
す製造条件のうちいずれかの条件(第1表に※印
を付す)がこの発明の範囲から外れたものであ
る。 ついで、この結果得られた各種のCo基合金板
材について、大越式摩耗試験機を用い、 相手材:JIS・SUJ−2(硬さ:HRC60)、
[Industrial Application Field] The present invention relates to a method for producing a Co-based alloy member that has excellent wear resistance and heat resistance. [Prior Art] Generally, excellent wear resistance and heat resistance are required in the manufacture of various parts such as chain saw guides, saw teeth for woodworking, light metal and alloy cutting, and steam turbine blades. Therefore,
Various Co-based alloys are used. In addition, as one of these Co-based alloys,
C: 0.05-2%, one or two of W and Mo: 2-20
%, Cr: 15 to 35%, and if necessary, one or two of Ni and Fe: 1 to 25%, with the remainder being Co and unavoidable impurities (the above) % by weight (hereinafter % indicates weight %) is widely known. Furthermore, in order to manufacture the above-mentioned various parts using this Co-based alloy, the ingot after casting is usually subjected to hot processing such as blooming, blooming, hot rolling, and cold rolling. A method is used in which a pre-processed member is formed into a predetermined shape, for example, a plate with a thickness of 1 to 4 mm, and the material is finally subjected to solution treatment at a temperature of 1100 to 1250°C. [Problem to be solved by the invention] However, in recent years, higher speeds and higher performance have been required even in the above-mentioned fields of application, and with this, the durability of the above-mentioned conventional Co-based alloy members has been reduced. Further improvement in abrasion resistance is desired. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a Co-based alloy member with even better wear resistance. , in weight% (hereinafter % indicates weight%), C: more than 1% to 1.5%, Cr: 25 to 32%, W: 2 to
10%, and if necessary, one or two of Ni and Fe: 1 to 3%, with the remainder being Co and unavoidable impurities. is cast to obtain an ingot in which primary carbides have crystallized, and this ingot is subjected to blooming forging, blooming rolling, and further hot working and cold working under normal conditions to refine the primary carbides. This Co-based alloy material is made into a predetermined shape having a microstructure, and is then subjected to softening annealing at a temperature of over 1200°C to 1250°C for the purpose of removing work hardening. When carbide precipitation treatment is performed at a temperature below ~900°C, in the resulting Co-based alloy member, primary carbides exist in the matrix, precipitated carbides are dispersed at grain boundaries, and further precipitated carbides are present in the matrix. now has a structure in which it is precipitated within the crystal grains, and the precipitated carbides that have precipitated within the crystal grains are fine, with a diameter of 1 μm or less, so the hardness within the crystal grains is lower than that of the conventional Co-based The research results showed that the Vickers hardness of alloy parts increased from about 250 to about 300, resulting in a significant improvement in wear resistance. This invention has been made based on the above research results, and the reason for limiting the manufacturing conditions as described above in the method of this invention will be explained below. A Composition of Co-based alloy (a) C The C component has the effect of forming carbides and improving wear resistance, but its content is 1%.
In this case, the precipitated carbide cannot be sufficiently precipitated into the crystal grains, and as a result, the microdispersion of the carbide becomes uneven, making it impossible to secure the desired extremely excellent wear resistance. On the other hand, if its content exceeds 1.5%,
In particular, since plastic working of thin members becomes difficult, the content was set at more than 1% to 1.5%. (b) Cr The Cr component has the effect of improving heat resistance by forming a solid solution in the base material, as well as improving wear resistance by forming carbide, but when the content is 25%
If the content is less than 32%, the proportion of precipitated carbides in the grains will be relatively small, and a dramatic improvement in wear resistance will not be achieved.On the other hand, if the content exceeds 32%, σ
The content was determined to be 25 to 32% because embrittlement phases such as C phase appear, resulting in a decrease in plastic working and a decrease in ductility. (c) W The W component, when coexisting with Cr, has the effect of promoting the precipitation of fine carbides, especially within the crystal grains, and also partially dissolves in the matrix to strengthen it. , has the effect of forming carbides and improving wear resistance, but if its content is less than 2%, the desired effect cannot be obtained, while if its content exceeds 10%, it will form carbides similar to Cr. The content was determined to be 2 to 10%, as the plastic workability deteriorates and the alloy tends to become brittle. (d) Ni and Fe These components dissolve in solid solution in the base material and have the effect of improving ductility and plastic workability, so they are included as necessary, but if their content is less than 1%, the above-mentioned The desired effect of improving the action cannot be obtained, and on the other hand, if the content exceeds 3%, the wear resistance tends to decrease, so the content was set at 1 to 3%. B Softening annealing temperature Softening annealing is performed to remove work hardening caused by blooming forging, blooming rolling, hot working and cold working. Therefore, if the temperature is below 1200°C, softening annealing is On the other hand, if the temperature exceeds 1250℃, the primary carbides that are finely and uniformly dispersed in the matrix will undergo initial melting and voids will occur. The temperature was set at 1250℃. C Carbide precipitation treatment temperature In this carbide precipitation treatment, the diameter within the grain is:
In addition to dispersing fine carbides of 1 μm or less,
By precipitating carbides at grain boundaries, the coexistence of these precipitated carbides and primary carbides formed during casting and refined in subsequent processing steps improves the hardness of Co-based alloy members. It is applied to significantly improve wear resistance, but if the temperature is less than 700℃, carbides cannot be sufficiently precipitated, but if the temperature exceeds 900℃, carbides will precipitate, especially within the crystal grains. The temperature was set at 700 to less than 900°C because the carbide becomes coarser with a diameter of more than 1 μm, making it impossible to ensure excellent wear resistance. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. Using a normal melting method, Co-based alloy melts having the composition shown in Table 1 were prepared and cast into ingots with a diameter of 90mmφ and a length of 350mm. Hot forging and hot rolling are performed to obtain a hot rolled sheet with a width of 200 mm and a thickness of 2 mm.Then, this Co-based alloy material is softened and annealed under the conditions shown in Table 1. Method 1 of the present invention by performing carbide precipitation treatment
~11 and Comparative Methods 1~6, respectively, and Co
A base alloy sheet material was manufactured. In addition, in Comparative Methods 1 to 6, one of the manufacturing conditions (marked with * in Table 1) that affects the abrasion resistance is outside the scope of the present invention. Next, the various Co-based alloy sheet materials obtained as a result were tested using an Okoshi type abrasion tester, with mating materials: JIS/SUJ-2 (hardness: H R C60),

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜11に
よれば、析出炭化物が結晶粒界だけでなく、結晶
粒内にも析出した組織を有するCo基合金板材を
製造することができ、この組織を有するCo基合
金板材は、すぐれた耐摩耗性を示し、一方比較法
1〜6によつて製造されたCo基合金板材の耐摩
耗性に見られるように、製造条件のうちいずれか
の条件でもこの発明の範囲から外れると、所望の
組織を形成することができず、すぐれた耐摩耗性
の確保は困難であることが明らかである。 上述のように、この発明の方法によれば、素地
に分散する微細な初晶炭化物および結晶粒界の析
出炭化物に加えて、結晶粒自体の硬さを著しく高
める結晶粒内に析出した直径:1μm以下の微細
な析出炭化物によつてすぐれた耐摩耗性を示すよ
うになるCo基合金部材を製造することができる
のである。
From the results shown in Table 1, according to methods 1 to 11 of the present invention, it is possible to produce a Co-based alloy sheet material having a structure in which precipitated carbides are precipitated not only at the grain boundaries but also within the grains. The Co-based alloy sheet material having this structure exhibits excellent wear resistance, and on the other hand, as seen in the wear resistance of the Co-based alloy sheet materials manufactured by Comparative Methods 1 to 6, under any of the manufacturing conditions It is clear that if the conditions are outside the scope of the present invention, the desired structure cannot be formed and it is difficult to ensure excellent wear resistance. As mentioned above, according to the method of the present invention, in addition to the fine primary carbides dispersed in the matrix and the precipitated carbides at the grain boundaries, the diameter precipitated within the grains significantly increases the hardness of the grains themselves: It is possible to produce a Co-based alloy member that exhibits excellent wear resistance due to the fine precipitated carbides of 1 μm or less.

Claims (1)

【特許請求の範囲】 1 C:1%超〜1.5%、Cr:25〜32%、W:2
〜10%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有するCo基合金を鋳造して、
初晶炭化物が晶出したインゴツトとし、 このインゴツトに、通常の条件で分塊鍛造や分
塊圧延、さらに熱間加工や冷間加工を施して、上
記初晶炭化物が微細化した組織を有する所定形状
のCo基合金素材とし、 ついで、このCo基合金素材に、1200℃超〜
1250℃の温度で軟化焼鈍を施し、 引続いて、700〜900℃未満の温度で炭化物析出
処理を施すこと、 により素地中に初晶炭化物、結晶粒界に析出炭化
物がそれぞれ分散し、さらに結晶粒内にも直径:
1μm以下の析出炭化物が分散した組織を形成す
ることを特徴とする耐摩耗性のすぐれたCo基合
金部材の製造法。 2 C:1%超〜1.5%、Cr:25〜32%、W:2
〜10%、 を含有し、さらに、 NiおよびFeのうちの1種または2種:1〜3
%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有するCo基合金を鋳造して、
初晶炭化物が晶出したインゴツトとし、 このインゴツトに、通常の条件で分塊鍛造や分
塊圧延、さらに熱間加工や冷間加工を施して、上
記初晶炭化物が微細化した組織を有する所定形状
のCo基合金素材とし、 ついで、このCo基合金素材に、1200℃超〜
1250℃の温度で軟化焼鈍を施し、 引続いて、700〜900℃未満の温度で炭化物析出
処理を施すこと、 により素地中に初晶炭化物、結晶粒界に析出炭化
物がそれぞれ分散し、さらに結晶粒内にも直径:
1μm以下の析出炭化物が分散した組織を形成す
ることを特徴とする耐摩耗性のすぐれたCo基合
金部材の製造法。
[Claims] 1 C: more than 1% to 1.5%, Cr: 25 to 32%, W: 2
~10%, with the remainder consisting of Co and unavoidable impurities (by weight).
An ingot in which primary carbides have crystallized is obtained, and this ingot is subjected to blooming forging, blooming rolling, and further hot working and cold working under normal conditions to obtain a predetermined structure having a fine structure in which the primary carbides are refined. Co-based alloy material with a shape of
Softening annealing is performed at a temperature of 1250°C, followed by carbide precipitation treatment at a temperature of 700 to less than 900°C, thereby dispersing primary carbides in the matrix and precipitated carbides at grain boundaries, and further crystallization. Diameter inside the grain:
A method for manufacturing a Co-based alloy member with excellent wear resistance, which is characterized by forming a structure in which precipitated carbides of 1 μm or less are dispersed. 2 C: more than 1% to 1.5%, Cr: 25 to 32%, W: 2
~10%, and further contains one or two of Ni and Fe: 1 to 3
%, with the remainder consisting of Co and unavoidable impurities (weight %),
An ingot in which primary carbides have crystallized is obtained, and this ingot is subjected to blooming forging, blooming rolling, and further hot working and cold working under normal conditions to produce a predetermined structure having a fine structure in which the primary carbides are refined. Co-based alloy material with a shape of
Softening annealing is performed at a temperature of 1250°C, followed by carbide precipitation treatment at a temperature of 700 to less than 900°C, thereby dispersing primary carbides in the matrix and precipitated carbides at grain boundaries, and further crystallization. Diameter inside the grain:
A method for manufacturing a Co-based alloy member with excellent wear resistance, which is characterized by forming a structure in which precipitated carbides of 1 μm or less are dispersed.
JP16486585A 1985-07-25 1985-07-25 Co-base alloy excellent in wear resistance Granted JPS6223951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16486585A JPS6223951A (en) 1985-07-25 1985-07-25 Co-base alloy excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16486585A JPS6223951A (en) 1985-07-25 1985-07-25 Co-base alloy excellent in wear resistance

Publications (2)

Publication Number Publication Date
JPS6223951A JPS6223951A (en) 1987-01-31
JPH0461057B2 true JPH0461057B2 (en) 1992-09-29

Family

ID=15801389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16486585A Granted JPS6223951A (en) 1985-07-25 1985-07-25 Co-base alloy excellent in wear resistance

Country Status (1)

Country Link
JP (1) JPS6223951A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984392A (en) * 1988-09-29 1991-01-15 Shin-Etsu Handotai Company Limited Chamfering the notch of a semiconductor wafer
JP6306393B2 (en) * 2014-03-28 2018-04-04 国立大学法人東北大学 Machine parts
JP6875682B2 (en) * 2017-07-03 2021-05-26 国立大学法人東北大学 Machine parts
US11155904B2 (en) 2019-07-11 2021-10-26 L.E. Jones Company Cobalt-rich wear resistant alloy and method of making and use thereof
TWI776372B (en) * 2021-01-27 2022-09-01 國立清華大學 High hardness and temperature-resistant alloy and use thereof
CN114635059B (en) * 2022-03-03 2023-02-10 北京北冶功能材料有限公司 Ni-Cr-W-based alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134553A (en) * 1973-04-27 1974-12-25
JPS52105526A (en) * 1976-03-03 1977-09-05 Mitsubishi Heavy Ind Ltd Treatment of cobalt base heat-resisting alloy
JPS55148744A (en) * 1979-05-10 1980-11-19 Sumitomo Electric Ind Ltd Hard alloy for cutting copper and copper alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134553A (en) * 1973-04-27 1974-12-25
JPS52105526A (en) * 1976-03-03 1977-09-05 Mitsubishi Heavy Ind Ltd Treatment of cobalt base heat-resisting alloy
JPS55148744A (en) * 1979-05-10 1980-11-19 Sumitomo Electric Ind Ltd Hard alloy for cutting copper and copper alloy

Also Published As

Publication number Publication date
JPS6223951A (en) 1987-01-31

Similar Documents

Publication Publication Date Title
CN111118422B (en) Preparation method of high-tungsten high-cobalt nickel alloy fine-grain plate
JPH11310825A (en) Manufacture of work roll for cold rolling
JP3909406B2 (en) Method for producing Ni-based alloy material
JPH0461057B2 (en)
US2799602A (en) Process for producing stainless steel
JP3613395B2 (en) Hot work tool steel
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JP3846008B2 (en) Cold tool steel with excellent toughness and wear resistance and manufacturing method thereof
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JP4665327B2 (en) Method for producing B-containing high carbon steel with excellent cold workability in hot work
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPS60138038A (en) Aluminum alloy having superior wear resistance and machinability
JPH11117019A (en) Production of heat resistant parts
JPH03257131A (en) Cutlery material made of ni-based alloy precipitation hardened with intermetallic compound and production thereof
JPS635464B2 (en)
JPS634905B2 (en)
JPH0585630B2 (en)
JPS6237354A (en) Manufacture of co base alloy plate material superior in wear resistance
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JPS634906B2 (en)
JPH04116125A (en) Production of free cutting pb steel excellent in warm ductility
JP3049567B2 (en) Manufacturing method of Ni-base heat-resistant alloy material
JP2000345290A (en) Hot roll for copper and copper alloy
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees