JPH11117019A - Production of heat resistant parts - Google Patents

Production of heat resistant parts

Info

Publication number
JPH11117019A
JPH11117019A JP29177497A JP29177497A JPH11117019A JP H11117019 A JPH11117019 A JP H11117019A JP 29177497 A JP29177497 A JP 29177497A JP 29177497 A JP29177497 A JP 29177497A JP H11117019 A JPH11117019 A JP H11117019A
Authority
JP
Japan
Prior art keywords
less
heat
working
resistant
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29177497A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
茂紀 植田
Toshiharu Noda
俊治 野田
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP29177497A priority Critical patent/JPH11117019A/en
Publication of JPH11117019A publication Critical patent/JPH11117019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce heat resistant parts in which ηphases as brittle phases are not precipitated at a high temp. and at a low cost by processing an Fe-Ni-Cr series heat resistant steel composed of a specified compsn. with a specified Ti/Al atomic ratio by a solution treatment, thereafter working it by cold or warm working and executing an aging treatment while working strains are remained. SOLUTION: The stock of a heat resistant steel having a compsn. contg., by weight, 0.005 to 0.20% C, <=2.0% Si, <=2.0% Mn, 30.0 to 45.0% Ni, 10.0 to 25.0% Cr, 0.2 to 1.5% Nb+Ta, 1.2 to <2.5% Ti, 0.8 to 2.0% Al and 0.001 to 0.01% B, furthermore contg., at need, one or more kinds of <=3.0% Mo, <=3.0% W and <=1.0% V, moreover contg. <=5.0% Co, the balance Fe with inevitable impurities and, in which the atomic ratio of Ti/Al is regulated to 0.6 to 1.0 and the content of Ni+Co is regulated to 30.0 to 45.0% is processed by a solution treatment and is thereafter worked by cold or warm working at a working degree of >=30% to produce parts. The parts are processed by an aging treatment while working strains are remained. In this way, the heat resistant parts in which η phases are not precipitated at >=800 deg.C can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジン用ボル
ト、エンジンバルブなどの耐熱部品の製造方法に関す
る。
The present invention relates to a method for manufacturing heat-resistant parts such as engine bolts and engine valves.

【0002】[0002]

【従来の技術】従来、エンジン部品、タービン部品、熱
交換器用部品、加熱炉部品、原子力用部品などの耐熱性
および耐食性などが要求される部品として、オーステナ
イト系耐熱鋼であるJIS SUH660(C:≦0.08%
、Si: ≦1.0%、Mn: ≦2.0%、Ni:24.0 〜27.0% 、Cr:1
3.5 〜16.0% 、Mo:1.0〜1.5%、V:0.10〜0.50% 、Al: ≦
0.35% 、Ti:1.90 〜2.35% 、B:0.001 〜0.010%、残部F
e) が使用されている。このSUH660の使用上限温
度は700℃であり、700℃を超える使用条件の場合
にはSUH660より高いNiの合金鋼が用いられてい
る。この高Ni合金鋼を用いて使用上限温度800℃の
耐熱部品を製造する場合、多くが熱間加工により成形
し、続いて固溶化熱処理、時効処理を行う製造工程が採
用されている。
2. Description of the Related Art Conventionally, JIS SUH660 (C: austenitic heat-resistant steel) has been used as a component requiring heat resistance and corrosion resistance, such as an engine component, a turbine component, a heat exchanger component, a heating furnace component, and a nuclear component. ≤0.08%
, Si: ≤1.0%, Mn: ≤2.0%, Ni: 24.0-27.0%, Cr: 1
3.5 to 16.0%, Mo: 1.0 to 1.5%, V: 0.10 to 0.50%, Al: ≤
0.35%, Ti: 1.90-2.35%, B: 0.001-0.010%, balance F
e) is used. The upper-limit temperature for use of SUH660 is 700 ° C., and in the case of use conditions exceeding 700 ° C., a Ni alloy steel higher than SUH660 is used. In the case of manufacturing a heat-resistant component having an upper-limit use temperature of 800 ° C. using this high Ni alloy steel, a manufacturing process is often employed in which molding is performed by hot working, followed by solution heat treatment and aging treatment.

【0003】上記従来の製造工程の熱間加工の代わりに
冷間加工または温間加工をし、続いて加工ひずみを残留
させたまま時効処理を行う工程にすれば、固溶化熱処理
を省略することができ、また成形後の寸法精度も向上す
るため仕上げ加工時における加工代が小さく加工時間も
短くすることができるので、耐熱部品のコストを低減す
ることができるとともに、製造時間を短縮することがで
きる。しかし、加工ひずみを残留させたまま直接時効処
理をすると、時効が促進されて短時間で急激に硬化する
が、長時間高温に曝されると強度の低下が大きく、η相
に変化しやすくなる問題点があった。
[0003] If a process of performing cold working or warm working instead of the hot working of the conventional manufacturing process and then performing an aging treatment while leaving working strains is omitted, the solution heat treatment can be omitted. In addition, since the dimensional accuracy after molding is improved, the machining allowance at the time of finishing is small and the machining time can be shortened, so that the cost of heat-resistant parts can be reduced and the manufacturing time can be shortened. it can. However, when the direct aging treatment is performed with the processing strain remaining, aging is accelerated and hardens rapidly in a short time, but when exposed to a high temperature for a long time, the strength is greatly reduced and the η phase is easily changed. There was a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、耐熱鋼の素
材を溶体化処理したのち、冷間加工または温間加工を
し、続いて加工ひずみを残留させたまま時効処理をする
ことができ、且つ800℃以上の使用雰囲気でも脆化相
のη相が析出することがない耐熱部品の製造方法を提供
することを課題とするものである。
SUMMARY OF THE INVENTION According to the present invention, it is possible to perform a cold working or a warm working after a solution treatment of a heat resistant steel material, and then to carry out an aging treatment with a working strain remaining. It is another object of the present invention to provide a method for manufacturing a heat-resistant component in which the η phase of the embrittlement phase does not precipitate even in a use atmosphere of 800 ° C. or more.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、加工ひずみを残留させたまま直接時効
処理しても、その後の800℃以上の使用雰囲気でη相
が析出しない耐熱鋼製の耐熱部品の製造方法について研
究していたところ、Fe─Ni−Cr系耐熱鋼のTi/
Alの原子比が1.0%を超えるとη相が析出するが、
1.0%以下であるとη相の析出が抑えられ、長時間高
温に曝されても強度の低下が小さいこと、および0.6
%未満であるとγ′相の析出が不十分で強度が確保でき
ないとの知見を得て本発明をなしたものである。
Means for Solving the Problems To solve the above problems, the inventor of the present invention has proposed a method for preventing the η phase from precipitating in a subsequent use atmosphere of 800 ° C. or more even if the aging treatment is directly performed while the processing strain remains. While studying the manufacturing method of heat resistant parts made of steel, it was found that Ti /
When the atomic ratio of Al exceeds 1.0%, the η phase precipitates,
When the content is 1.0% or less, precipitation of the η phase is suppressed, and a decrease in strength is small even when exposed to a high temperature for a long time.
%, The present inventors have found that the precipitation of the γ 'phase is insufficient and the strength cannot be secured, and the present invention has been made.

【0006】すなわち、本発明の耐熱部品の製造方法に
おいては、C:0.005〜0.20%、Si:2.0
%以下、Mn:2.0%以下、Ni:30〜45%、C
r:10.0〜25.0%、Nb+Ta:0.2〜1.
5%、Ti:1.2〜2.5未満%、Al:0.8〜
2.0%、B:0.001〜0.01%、必要に応じて
Mo:3.0%以下、W:3.0%以下、V:1.0%
以下、Co:5.0%以下のうちの1種または2種以上
含有し、さらに必要に応じてMg+Ca:0.001〜
0.010%、残部Feおよび不可避的不純物からな
り、Ti/Alの原子比を0.6〜1.0、必要に応じ
てTi+Al+Nb+Taの原子%を4.0〜8.0%
とし、かつCoを含有させる場合にはNi+Co:3
0.0〜45.0%とした耐熱鋼の素材を溶体化処理し
たのち、冷間加工または温間加工により部品を製造し、
加工ひずみを残留したまま時効処理することである。
That is, in the method for manufacturing a heat-resistant component of the present invention, C: 0.005 to 0.20%, Si: 2.0
%, Mn: 2.0% or less, Ni: 30 to 45%, C
r: 10.0-25.0%, Nb + Ta: 0.2-1.
5%, Ti: 1.2 to less than 2.5%, Al: 0.8 to
2.0%, B: 0.001 to 0.01%, Mo: 3.0% or less, W: 3.0% or less, V: 1.0% as required
Hereinafter, one or more of Co: 5.0% or less are contained, and Mg + Ca: 0.001 to
0.010%, the balance being Fe and unavoidable impurities. The atomic ratio of Ti / Al is 0.6 to 1.0, and the atomic% of Ti + Al + Nb + Ta is 4.0 to 8.0% as required.
And when Co is contained, Ni + Co: 3
After heat-treating a 0.04-45.0% heat-resistant steel material, manufacture parts by cold working or warm working.
Aging treatment is performed while the processing strain remains.

【0007】以下本発明を詳細に説明する。先ず本発明
の耐熱鋼の成分組成を上記のように限定した理由を説明
する。 C:0.005〜0.20% Cは、Ti、Nb、Crなどと結合して炭化物を形成す
ることにより合金の高温強度を改善するために含有させ
る元素で、0.005%未満ではその効果がなく、また
0.20%を超えると炭化物を多量に析出して加工性、
靭延性および耐食性を劣化するので、その含有範囲を
0.005〜0.20%とする。 Si:2.0%以下 Siは、脱酸剤として有用であり、耐酸化性を改善する
元素であるが、2.0%を超えると加工性が低下するの
で、その含有量を2.0%以下とする。
Hereinafter, the present invention will be described in detail. First, the reason why the composition of the heat-resistant steel of the present invention is limited as described above will be described. C: 0.005 to 0.20% C is an element contained to improve the high-temperature strength of the alloy by forming carbides by combining with Ti, Nb, Cr and the like. It has no effect, and if it exceeds 0.20%, a large amount of carbides precipitates out, resulting in workability,
Since the toughness and corrosion resistance deteriorate, the content range is set to 0.005 to 0.20%. Si: 2.0% or less Si is useful as a deoxidizing agent and is an element that improves oxidation resistance. However, if it exceeds 2.0%, workability is reduced. % Or less.

【0008】Mn:2.0%以下 Mnは、Siと同様に脱酸剤として含有させる元素であ
るが、2.0%を超えると加工性および高温酸化性を損
なうだけでなく、靭性を害するη相の析出を助長するの
で、その含有量を2.0%以下とする。 Ni:30.0〜45.0% Niは、合金のマトリックスであるオーステナイト組織
を形成する元素であり、合金の耐熱性および耐食性を向
上し、また強化相であるγ′相を析出させる上で必要な
元素で、30.0%未満では800℃以上の高温強度が
得られず、また45.0%を超えるとコストが高くなる
ので、その含有範囲を30.0〜45.0%とする。 Cr:10.0〜25.0% Crは、合金の高温酸化および腐食を改善するために含
有させる元素で、10%未満ではこのような効果を得る
ことができず、25.0%を超えるとオーステナイト相
が不安定となり、脆化相であるσ相(FeCr)が析出
して合金の靭性を低下するので、その含有範囲を10.
0〜25.0%とする。なお、好ましい範囲は12〜2
0%である。
Mn: 2.0% or less Mn is an element to be contained as a deoxidizer like Si, but if it exceeds 2.0%, not only impairs workability and high-temperature oxidizability, but also impairs toughness. Since the precipitation of the η phase is promoted, the content is set to 2.0% or less. Ni: 30.0-45.0% Ni is an element forming an austenitic structure which is a matrix of the alloy, and improves the heat resistance and corrosion resistance of the alloy, and is used for precipitating a γ 'phase which is a strengthening phase. If it is a necessary element, if it is less than 30.0%, a high-temperature strength of 800 ° C. or more cannot be obtained, and if it exceeds 45.0%, the cost will be high. . Cr: 10.0-25.0% Cr is an element contained for improving high-temperature oxidation and corrosion of the alloy. If the content is less than 10%, such an effect cannot be obtained, and the content exceeds 25.0%. And the austenite phase become unstable, and the σ phase (FeCr), which is an embrittlement phase, precipitates and lowers the toughness of the alloy.
0 to 25.0%. The preferred range is 12 to 2
0%.

【0009】Nb+Ta:0.2〜1.5% NbおよびTaは、いずれもNiとともに重要な析出相
である金属間化合物のγ′相(γプライム相)であるN
3 (Al,Ti,Nb,Ta)を形成し、そのγ′相
の析出によって合金の高温強度を効果的に高くすること
ができる元素で、この効果を得るために0.2%以上含
有させる必要があるが、1.5%を超えるとラーバス相
(Fe2 Nb)が多量に析出して高温強度および靭性を
低下するので、その含有範囲を 0.2〜1.5%とす
る。 Ti:1.2〜2.5未満% Tiは、Al,Nb,TaとともにNiと結合して高温
強度を向上させるのに有効なγ′相を形成する元素で、
その含有量が1.2%未満であるとγ′の固溶温度が低
下し、2.5%以上になるとη相(Ni3 Ti)が析出
して高温強度および靭性を低下するので、その含有範囲
を1.2〜2.5未満%とする。
Nb + Ta: 0.2-1.5% Nb and Ta are both N and γ ′ phase (γ prime phase) of an intermetallic compound which is an important precipitation phase together with Ni.
An element that forms i 3 (Al, Ti, Nb, Ta) and can effectively increase the high-temperature strength of the alloy by the precipitation of its γ ′ phase. To obtain this effect, the content is 0.2% or more. However, if the content exceeds 1.5%, a large amount of the Lavas phase (Fe 2 Nb) precipitates to lower the high-temperature strength and toughness, so the content range is set to 0.2 to 1.5%. Ti: 1.2 to less than 2.5% Ti is an element that combines with Ni, Al, Nb, and Ta to form a γ ′ phase that is effective for improving high-temperature strength.
If the content is less than 1.2%, the solid solution temperature of γ 'is lowered, and if it is 2.5% or more, η phase (Ni 3 Ti) is precipitated to lower the high-temperature strength and toughness. The content range is set to 1.2 to less than 2.5%.

【0010】Al:0.8〜2.0% Alは、Niと結合してγ′相を形成する最も重要な元
素で、0.8%未満であるとγ′相の析出が不十分で高
温強度が確保できず、2.0%を超えると合金の熱間加
工性が低下するので、その含有範囲を0.8〜2.0%
とする。好ましい範囲は1.2〜1.6未満%である。 B:0.001〜0.01% Bは、結晶粒界に偏析して粒界を強化する元素で、この
効果を得るために0.001%以上含有させる必要があ
るが、0.01%を超えると熱間加工性を損なうので、
その含有範囲を0.001〜0.01%とする。 Mo:3.0%以下、W:3.0%以下、V:1.0%
以下 Mo、W、Vは、固溶強化により高温強度を向上させる
元素で、MoおよびWについては3%を超えて、Vは1
%を超えて含有しても効果の向上が少なく、またコスト
の上昇および加工性を低下するので、その含有量をMo
を3.0%以下、Wを3.0%以下、Vを1.0%以下
とする。
Al: 0.8-2.0% Al is the most important element that combines with Ni to form a γ ′ phase. If it is less than 0.8%, the precipitation of the γ ′ phase is insufficient. High temperature strength cannot be secured, and if it exceeds 2.0%, the hot workability of the alloy decreases, so the content range is 0.8 to 2.0%.
And A preferred range is from 1.2 to less than 1.6%. B: 0.001 to 0.01% B is an element that segregates at crystal grain boundaries and strengthens the grain boundaries. To obtain this effect, it is necessary to contain 0.001% or more, but 0.01%. If it exceeds, the hot workability is impaired,
The content range is 0.001 to 0.01%. Mo: 3.0% or less, W: 3.0% or less, V: 1.0%
Mo, W, and V are elements that improve high-temperature strength by solid solution strengthening. Mo and W exceed 3%, and V is 1
%, The effect is little improved, the cost is increased and the processability is reduced.
Is 3.0% or less, W is 3.0% or less, and V is 1.0% or less.

【0011】Co:5.0%以下 Ni+Co:30.0〜45.0% Coは、Niとほぼ同じような作用がある元素で、Ni
を一部置換する形で合金に含有させることができる。す
なわちNi+Co:30.0〜45.0%の条件を満た
す範囲でCoを含有させることができる。しかしCoは
Niに比較して高価な元素であるので、上限を5.0%
とする。 Mg+Ca:0.001〜0.010% MgおよびCaは、溶解時に脱酸および脱硫元素として
添加する元素で、熱間加工性を改善する効果がある。こ
の効果が現れるのは0.001%からであり、0.01
0%を超えて含有させるとかえって熱間加工性を低下す
るので、その含有範囲を0.001〜0.010%とす
る。
Co: 5.0% or less Ni + Co: 30.0-45.0% Co is an element having almost the same effect as Ni.
Can be contained in the alloy in such a way that it is partially substituted. That is, Co can be contained in a range satisfying the condition of Ni + Co: 30.0 to 45.0%. However, since Co is an expensive element compared to Ni, the upper limit is 5.0%.
And Mg + Ca: 0.001 to 0.010% Mg and Ca are elements added as deoxidizing and desulfurizing elements during dissolution, and have an effect of improving hot workability. This effect appears from 0.001% and 0.01%.
If the content exceeds 0%, the hot workability is rather deteriorated. Therefore, the content range is 0.001 to 0.010%.

【0012】Ti/Alの原子比:0.6〜1.0 Ti/Alの原子比が0.6%未満であるとγ′相の析
出が不十分で強度が確保できず、また1.0%を超える
と脆化相のη相が析出し、長時間高温に曝されると強度
が低下するので、その範囲を0.6〜1.0とする。 Ti+Al+Nb+Taの原子%が4.0〜8.0% Ti、Al、Nb、Taは、何れもγ′相の構成元素
で、十分なNi量が存在する場合、γ′相の析出量はこ
れらの元素の含有量の総和に比例する。そして合金の高
温強度はγ′相の析出量に比例する。本発明において合
金の700℃以上での高温強度を十分発現させる上で
4.0原子%以上含有させる必要がある。一方、その総
和が8.0原子%を超えると強度は上昇するものの熱間
加工性は低下する。そこでこれらの元素の含有量の総和
を4.0〜8.0%とする。好ましくは5.0〜6.5
%である。 P,S,O,N これらの元素は、何れも不可避的不純物で、これらのう
ちPおよびSは熱間加工性を低下させ、またOおよびN
は酸化物または窒化物を形成し、機械的性質を劣化する
ので、Pは0.02%以下、S,OおよびNは0.01
%以下にするのが好ましい。
Atomic ratio of Ti / Al: 0.6 to 1.0 When the atomic ratio of Ti / Al is less than 0.6%, the precipitation of the γ 'phase is insufficient and the strength cannot be secured. If it exceeds 0%, the embrittlement phase η phase will precipitate, and if it is exposed to a high temperature for a long time, the strength will decrease, so the range is set to 0.6 to 1.0. The atomic percentage of Ti + Al + Nb + Ta is 4.0 to 8.0%. Ti, Al, Nb, and Ta are all constituent elements of the γ ′ phase, and when there is a sufficient amount of Ni, the precipitation amount of the γ ′ phase is It is proportional to the sum of the element contents. The high temperature strength of the alloy is proportional to the amount of the γ 'phase precipitated. In the present invention, it is necessary to contain 4.0 atomic% or more in order to sufficiently develop the high-temperature strength of the alloy at 700 ° C. or more. On the other hand, if the total exceeds 8.0 atomic%, the strength increases but the hot workability decreases. Therefore, the sum of the contents of these elements is set to 4.0 to 8.0%. Preferably 5.0 to 6.5
%. P, S, O, N These elements are all unavoidable impurities, of which P and S decrease hot workability, and O and N
Forms oxides or nitrides and deteriorates mechanical properties, so that P is 0.02% or less, and S, O and N are 0.01% or less.
% Is preferred.

【0013】次に、本発明の素材の製造方法、加工およ
び熱処理について説明する。本発明の耐熱部品の製造方
法は、上記成分組成の耐熱鋼の素材を溶体化処理したの
ち、冷間加工または温間加工により製品の部品を製造
し、加工ひずみを残留したまま時効処理することである
が、上記耐熱鋼の素材は、高周波誘導炉、真空溶解溶解
後エレクトロスラグ再溶解、大気溶解後真空エレクトロ
スラグ再溶解などによって溶解および精製後、鋳造して
製造されたインゴットを必要に応じてソーキングした
後、熱間鍛造や熱間圧延などの加工工程を通して製造さ
れるものである。さらに、本発明の耐熱部品の製造方法
の溶体化処理は、950〜1150℃で、素材の大きさ
にもよるが通常10分〜4時間加熱後油冷または水冷す
ることである。
Next, the method for manufacturing the material of the present invention, processing and heat treatment will be described. The method for producing a heat-resistant part of the present invention comprises, after solution-treating a heat-resistant steel material having the above-mentioned component composition, producing a product part by cold working or warm working, and subjecting the product to an aging treatment while processing strain remains. However, the above heat-resistant steel material is melted and refined in a high-frequency induction furnace, vacuum melting and melting of electroslag after melting, air melting and melting of vacuum electroslag after melting, etc. After being soaked, it is manufactured through a working process such as hot forging or hot rolling. Further, the solution treatment in the method for producing a heat-resistant component of the present invention is to perform oil cooling or water cooling after heating at 950 to 1150 ° C., usually for 10 minutes to 4 hours, depending on the size of the material.

【0014】また、本発明の冷間加工または温間加工
は、製品の部品を製造するためのもので、加工率が小さ
いと時効の促進が小さく十分の強度が得られないので、
本発明の耐熱鋼においては30%以上にすることが好ま
しい。また、本発明の時効処理は、600〜800℃
で、製品の大きさ、部品の種類および用途にもよるが通
常0.1〜20時間加熱して行う。本発明の製造方法で
製造される耐熱部品は、ボルト、ナット、エンジンバル
ブ、板、ワイヤーなどのエンジン部品、タービン部品、
熱交換器用部品、加熱炉部品、原子力用部品などであ
る。
The cold working or warm working of the present invention is for producing parts of a product. If the working ratio is small, the aging is not accelerated sufficiently and sufficient strength cannot be obtained.
In the heat-resistant steel of the present invention, the content is preferably 30% or more. The aging treatment of the present invention is performed at 600 to 800 ° C.
The heating is usually carried out for 0.1 to 20 hours, depending on the size of the product, the type of parts and the use. Heat-resistant parts manufactured by the manufacturing method of the present invention include engine parts such as bolts, nuts, engine valves, plates, and wires, turbine parts,
Parts for heat exchangers, parts for heating furnaces, parts for nuclear power, etc.

【0015】[0015]

【発明の実施の形態】以下本発明を実施例により説明す
る。下記表1に示した成分組成の材料50kgを高周波
誘導炉で溶解および精製し、鋳造してインゴットを得
た。そしてこのインゴットを1100℃で16時間ソー
キングした後、引き続いて1100〜900℃の温度範
囲で鍛造、圧延して直径25mmの丸棒(本発明の素
材)とした。その丸棒を975℃で30分間加熱後油冷
の条件で溶体化処理をし、その熱処理をした丸棒から直
径24.0mm、高さ45.0mmの試験片を切り出し
た。そしてそれらの試験片を用いて、室温において絞り
65%の前方押出し加工を行い、それらの試験片に75
0℃×4時間、さらに長時間使用を想定して800℃×
100時間の時効処理をした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. 50 kg of a material having a component composition shown in Table 1 below was melted and purified in a high-frequency induction furnace, and cast to obtain an ingot. The ingot was soaked at 1100 ° C. for 16 hours, and subsequently forged and rolled in a temperature range of 1100 to 900 ° C. to obtain a round bar having a diameter of 25 mm (material of the present invention). The round bar was heated at 975 ° C. for 30 minutes and then subjected to a solution treatment under oil-cooling conditions. A test piece having a diameter of 24.0 mm and a height of 45.0 mm was cut out from the heat-treated round bar. Then, using these test pieces, a front extrusion process of drawing 65% was performed at room temperature.
0 ° C x 4 hours, 800 ° C x for longer use
The aging treatment was performed for 100 hours.

【0016】その後この時効処理をした試験片より硬さ
試験および引張り試験用の試験片を切り出して室温で硬
さ試験および800℃で引張り試験を行った。その結果
を下記表2の本発明方法の欄に記載した。また同時に従
来の製造方法で製造した試験片、すなわち上記前方押出
し加工をした後に固溶化熱処理(975℃で30分間加
熱後油冷)をし、その後750℃×4時間で時効処理を
し、さらに長時間使用を想定して800℃×100時間
の時効処理をした試験片も用意して同様な試験を行っ
た。その結果を下記表2の従来方法の欄に記載した。な
お、引張り試験は、JIS 4号試験片を用いて800
℃で行った。
Thereafter, test specimens for a hardness test and a tensile test were cut out from the aged test specimens and subjected to a hardness test at room temperature and a tensile test at 800 ° C. The results are shown in the column of the method of the present invention in Table 2 below. At the same time, a test piece manufactured by a conventional manufacturing method, that is, a solution heat treatment (heating at 975 ° C. for 30 minutes followed by oil cooling) after the above-mentioned forward extrusion, followed by an aging treatment at 750 ° C. × 4 hours, A similar test was performed by preparing a test piece that had been subjected to an aging treatment at 800 ° C. for 100 hours for long-term use. The results are shown in the column of the conventional method in Table 2 below. The tensile test was performed using a JIS No. 4 test piece at 800
C. was performed.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】これらの結果より、本発明の耐熱鋼の素材
を冷間加工後直接時効処理したものは、本発明の耐熱鋼
の素材を従来方法の冷間加工後に固溶化熱処理し、その
後時効処理したものより室温硬さが約18〜31%高く
なっており、また800℃の引張強さが約33〜40%
高くなっている。さらに、本発明の耐熱鋼を冷間加工後
直接時効処理したものは、比較鋼のTi/Alの原子%
比が1.0を超えたものを冷間加工後直接時効処理した
ものより室温硬さが約16〜40%も高くなっており、
また800℃の引張強さが約19〜54%も高くなって
いる。
According to these results, the heat-resistant steel material of the present invention obtained by subjecting the material of the heat-resistant steel of the present invention to direct aging after cold working is subjected to a solution heat treatment after cold working of the heat-resistant steel material of the present invention, followed by aging treatment. The room temperature hardness is about 18 to 31% higher than that of the cured product, and the tensile strength at 800 ° C. is about 33 to 40%.
Is getting higher. Further, the heat-resistant steel of the present invention which was subjected to direct aging treatment after cold working was the atomic% of Ti / Al of the comparative steel.
The room temperature hardness is about 16 to 40% higher than that in which the ratio exceeds 1.0 and that subjected to direct aging after cold working.
Further, the tensile strength at 800 ° C. is as high as about 19 to 54%.

【0020】また、本発明の耐熱鋼を冷間加工後直接時
効処理したものは、全てミクロ組織が正常であったが、
比較鋼を冷間加工後直接時効処理したもののTi/Al
の原子%比が大きいものは、時効が進み過ぎたため脆化
相であるη相が析出し、またTi/Alの原子%比が小
さいものは、ミクロ組織が正常であるがγ′相の析出が
十分でないため本発明鋼より強度が低い。また、本発明
の耐熱鋼を冷間加工後直接時効処理したものは、比較鋼
のTi/Alの原子%比が1.0を超えたものを従来方
法で処理したものより室温硬さが1例を除いて高くなっ
ており、また800℃の引張強さが約10〜38%高く
なっている。
The microstructures of all of the heat-resisting steels of the present invention subjected to direct aging after cold working had normal microstructures.
Ti / Al after cold working and direct aging treatment of comparative steel
When the atomic% ratio of Ti is large, the aging phase is excessively advanced, and the η phase, which is an embrittlement phase, precipitates. When the atomic% ratio of Ti / Al is small, the microstructure is normal but the γ 'phase is precipitated. Is not enough, the strength is lower than that of the steel of the present invention. Further, the heat-resistant steel of the present invention, which had been subjected to direct aging treatment after cold working, had a room temperature hardness of 1 compared with that of a comparative steel having a Ti / Al atomic ratio of more than 1.0, which was treated by the conventional method. It is high except for the examples, and the tensile strength at 800 ° C. is about 10-38% higher.

【0021】[0021]

【発明の効果】本発明の耐熱製品の製造方法は、上記構
成にしたことにより、固溶化熱処理をすることなく直接
時効をすることができるとともに、冷間加工または温間
加工により成形することにより寸法精度が向上するため
仕上げ加工時における加工代が小さく加工時間も短くな
るので、低コストで、かつ長時間800℃以上に曝され
ても強度が低下しない耐熱部品を製造することができる
という優れた効果を奏する。
According to the method for manufacturing a heat-resistant product of the present invention, the aging can be directly performed without performing the solution heat treatment by the above-described structure, and the heat-resistant product can be formed by cold working or warm working. Since the dimensional accuracy is improved, the machining allowance at the time of finish machining is small and the machining time is also short, so that it is possible to manufacture a heat-resistant component that is low in cost and does not decrease in strength even when exposed to 800 ° C. or more for a long time. It has the effect.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下同じ)、C:0.005
〜0.20%、Si:2.0%以下、Mn:2.0%以
下、Ni:30.0〜45.0%、Cr:10.0〜2
5.0%、Nb+Ta:0.2〜1.5%、Ti:1.
2〜2.5未満%、Al:0.8〜2.0%、B:0.
001〜0.01%、残部Feおよび不可避的不純物か
らなり、Ti/Alの原子比が0.6〜1.0である耐
熱鋼の素材を溶体化処理したのち、冷間加工または温間
加工により部品を製造し、加工ひずみを残留したまま時
効処理することを特徴とする耐熱部品の製造方法。
C: 0.005% by weight (the same applies hereinafter)
0.20%, Si: 2.0% or less, Mn: 2.0% or less, Ni: 30.0 to 45.0%, Cr: 10.0 to 2
5.0%, Nb + Ta: 0.2-1.5%, Ti: 1.
2 to less than 2.5%, Al: 0.8 to 2.0%, B: 0.
001-0.01%, balance Fe and unavoidable impurities, heat treatment steel material having Ti / Al atomic ratio of 0.6-1.0, and then cold working or warm working A method for producing a heat-resistant component, comprising: producing a component by aging treatment while retaining processing strain.
【請求項2】 C:0.005〜0.20%、Si:
2.0%以下、Mn:2.0%以下、Ni:30.0〜
45.0%、Cr:10.0〜25.0%、Nb+T
a:0.2〜1.5%、Ti:1.2〜2.5未満%、
Al:0.8〜2.0%、B:0.001〜0.01
%、およびMo:3.0%以下、W:3.0%以下、
V:1.0%以下の1種または2種以上、残部Feおよ
び不可避的不純物からなり、Ti/Alの原子比が0.
6〜1.0である耐熱鋼の素材を溶体化処理したのち、
冷間加工または温間加工により部品を製造し、加工ひず
みを残留したまま時効処理することを特徴とする耐熱部
品の製造方法。
2. C: 0.005 to 0.20%, Si:
2.0% or less, Mn: 2.0% or less, Ni: 30.0 to
45.0%, Cr: 10.0 to 25.0%, Nb + T
a: 0.2 to 1.5%, Ti: 1.2 to less than 2.5%,
Al: 0.8 to 2.0%, B: 0.001 to 0.01
%, And Mo: 3.0% or less, W: 3.0% or less,
V: One or more of 1.0% or less, the balance being Fe and unavoidable impurities, and an atomic ratio of Ti / Al of 0.1%.
After heat-treating a heat-resistant steel material of 6 to 1.0,
A method for producing a heat-resistant component, comprising: producing a component by cold working or warm working; and performing aging treatment while maintaining processing strain.
【請求項3】 C:0.005〜0.20%、Si:
2.0%以下、Mn:2.0%以下、Ni:30.0〜
45.0%、Cr:10.0〜25.0%、Nb+T
a:0.2〜1.5%、Ti:1.2〜2.5未満%、
Al:0.8〜2.0%、B:0.001〜0.01
%、およびMo:3.0%以下、W:3.0%以下、
V:1.0%以下のうちの1種または2種以上、Co:
5.0%以下、残部Feおよび不可避的不純物からな
り、Ti/Alの原子比が0.6〜1.0、で、かつN
i+Co:30.0〜45.0%であることを特徴とす
る耐熱鋼の素材を溶体化処理したのち、冷間加工または
温間加工により部品を製造し、加工ひずみを残留したま
ま時効処理することを特徴とする耐熱部品の製造方法。
3. C: 0.005 to 0.20%, Si:
2.0% or less, Mn: 2.0% or less, Ni: 30.0 to
45.0%, Cr: 10.0 to 25.0%, Nb + T
a: 0.2 to 1.5%, Ti: 1.2 to less than 2.5%,
Al: 0.8 to 2.0%, B: 0.001 to 0.01
%, And Mo: 3.0% or less, W: 3.0% or less,
V: one or more of 1.0% or less, Co:
5.0% or less, the balance being Fe and unavoidable impurities, the atomic ratio of Ti / Al is 0.6 to 1.0, and N
After heat-treating a heat-resistant steel material characterized by i + Co: 30.0 to 45.0%, a component is manufactured by cold working or warm working, and then subjected to aging treatment while maintaining working strain. A method for producing a heat-resistant component, comprising:
【請求項4】 上記耐熱鋼はMg+Caを0.001〜
0.010%含有するものであることを特徴とする請求
項1ないし請求項3のいずれか1項記載の耐熱部品の製
造方法。
4. The heat-resistant steel contains Mg + Ca in an amount of 0.001 to 0.001.
The method for producing a heat-resistant component according to any one of claims 1 to 3, wherein the content is 0.010%.
【請求項5】 上記耐熱鋼のTi+Al+Nb+Taの
原子%が4.0〜8.0%であることを特徴とする請求
項1ないし請求項4のいずれか1項記載の耐熱部品の製
造方法。
5. The method for manufacturing a heat-resistant component according to claim 1, wherein the heat-resistant steel has an atomic percentage of Ti + Al + Nb + Ta of 4.0 to 8.0%.
【請求項6】 上記冷間加工または温間加工の加工度が
30%以上であることを特徴とする請求項1ないし請求
項5のいずれか1項記載の耐熱部品の製造方法。
6. The method for manufacturing a heat-resistant component according to claim 1, wherein the degree of cold working or warm working is 30% or more.
JP29177497A 1997-10-09 1997-10-09 Production of heat resistant parts Pending JPH11117019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29177497A JPH11117019A (en) 1997-10-09 1997-10-09 Production of heat resistant parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29177497A JPH11117019A (en) 1997-10-09 1997-10-09 Production of heat resistant parts

Publications (1)

Publication Number Publication Date
JPH11117019A true JPH11117019A (en) 1999-04-27

Family

ID=17773257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29177497A Pending JPH11117019A (en) 1997-10-09 1997-10-09 Production of heat resistant parts

Country Status (1)

Country Link
JP (1) JPH11117019A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016661A3 (en) * 2000-08-24 2002-06-06 Inco Alloys Int Low cost, corrosion and heat resistant alloy for diesel engine valves
JP2009542919A (en) * 2006-07-07 2009-12-03 イートン コーポレーション Abrasion resistant heat resistant alloy
EP2806047A1 (en) * 2013-05-21 2014-11-26 Daido Steel Co.,Ltd. Precipitation hardened FE-NI alloy
JP2015030873A (en) * 2013-08-01 2015-02-16 株式会社東芝 Austenitic heat resistant steel and turbine component
JP2015183256A (en) * 2014-03-25 2015-10-22 株式会社東芝 Austenitic heat resistant steel and turbine component
CN108431258A (en) * 2015-12-18 2018-08-21 博格华纳公司 Include the wastegate component of novel alloy
CN110465667A (en) * 2019-09-25 2019-11-19 广西科技大学 A kind of turbocharger vanes and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016661A3 (en) * 2000-08-24 2002-06-06 Inco Alloys Int Low cost, corrosion and heat resistant alloy for diesel engine valves
JP2009542919A (en) * 2006-07-07 2009-12-03 イートン コーポレーション Abrasion resistant heat resistant alloy
EP2806047A1 (en) * 2013-05-21 2014-11-26 Daido Steel Co.,Ltd. Precipitation hardened FE-NI alloy
JP2015030873A (en) * 2013-08-01 2015-02-16 株式会社東芝 Austenitic heat resistant steel and turbine component
JP2015183256A (en) * 2014-03-25 2015-10-22 株式会社東芝 Austenitic heat resistant steel and turbine component
CN108431258A (en) * 2015-12-18 2018-08-21 博格华纳公司 Include the wastegate component of novel alloy
JP2019505662A (en) * 2015-12-18 2019-02-28 ボーグワーナー インコーポレーテッド Wastegate parts containing new alloys
US11306376B2 (en) 2015-12-18 2022-04-19 Borgwarner Inc. Wastegate component comprising a novel alloy
CN110465667A (en) * 2019-09-25 2019-11-19 广西科技大学 A kind of turbocharger vanes and preparation method thereof
CN110465667B (en) * 2019-09-25 2022-04-22 广西科技大学 Turbocharger blade and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1003922B1 (en) High-strength, notch-ductile precipitation-hardening stainless steel alloy
KR20190046729A (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP6860413B2 (en) Maraging steel and its manufacturing method
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JPH11117019A (en) Production of heat resistant parts
JPH11117020A (en) Production of heat resistant parts
JPH062904B2 (en) High strength low alloy steel Extra thick steel manufacturing method
JPH029647B2 (en)
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPS61238942A (en) Heat resisting alloy
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JPH01139717A (en) Method for working high cr ferritic steel for use at high temperature
JP4207447B2 (en) Stainless steel rebar and manufacturing method thereof
JP2003064416A (en) Method for producing precipitation hardening type martensitic stainless steel having excellent cold forgeability and warm forgeability
JP5703934B2 (en) Cold forging induction hardening steel, cold forging induction hardening steel bar, automobile undercarriage parts and automobile hub
JP2001158943A (en) Heat resistant bolt
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP2000119818A (en) Martensitic heat resistant steel excellent in cold workability
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JP3543581B2 (en) Ferrite / pearlite non-heat treated steel
JP3931400B2 (en) Method for producing boron steel
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel