JPH046005Y2 - - Google Patents

Info

Publication number
JPH046005Y2
JPH046005Y2 JP1982178987U JP17898782U JPH046005Y2 JP H046005 Y2 JPH046005 Y2 JP H046005Y2 JP 1982178987 U JP1982178987 U JP 1982178987U JP 17898782 U JP17898782 U JP 17898782U JP H046005 Y2 JPH046005 Y2 JP H046005Y2
Authority
JP
Japan
Prior art keywords
optical axis
sample
light beam
eyepiece
beam splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982178987U
Other languages
Japanese (ja)
Other versions
JPS5984513U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17898782U priority Critical patent/JPS5984513U/en
Publication of JPS5984513U publication Critical patent/JPS5984513U/en
Application granted granted Critical
Publication of JPH046005Y2 publication Critical patent/JPH046005Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【考案の詳細な説明】 本考案は、簡単な構造により細菌学等において
有用な偽体(凹凸が逆になる像)と正体の立体像
を容易に観察し得る単対物双眼立体視顕微鏡に関
する。
[Detailed Description of the Invention] The present invention relates to a single-objective binocular stereoscopic microscope that has a simple structure and is useful in bacteriology, etc., and is capable of easily observing a 3D image of a pseudobody (an image with reversed concavities and convexities) and a true body.

この種の顕微鏡としては、例えば実公昭47−
18686号公報によるものが知られているが、これ
は光路中に分割ポラライザ、1/2波長板、アナラ
イザ等が挿入されるため光学系が複雑であり高価
になつてしまい、また偏光を利用しているため観
察像が暗くなつてしまう等の欠点があつた。
As this type of microscope, for example,
18686 is known, but this requires a split polarizer, a 1/2 wavelength plate, an analyzer, etc. to be inserted into the optical path, making the optical system complicated and expensive, and it also does not utilize polarized light. Because of this, there were drawbacks such as the observed image becoming dark.

本考案は、以上の点に鑑み、明るい観察像が得
られ而も構造が簡単で安価に製造し得る偽体と正
体の立体像の観察可能な単対物双眼立体視顕微鏡
を提供せんとするものであるが、以下透過型顕微
鏡に適用した場合について図面に示した実施例に
より説明すれば、第1図において、1は光源、2
はコンデンサレンズ、3は試料、4は対物レン
ズ、5はリレーレンズ、6,7は光路中に選択的
に対物レンズ4の射出瞳の投影位置近傍に挿入さ
れ得るように配設された光束分割プリズムで、そ
の構成は後述する。8,8′はリレープリズム、
9,9′は結像レンズ、10,10′は眼幅調整プ
リズム、11,11′は接眼レンズである。第一
の光束分割プリズム6は第2図Aのように構成さ
れており、その反射面6aは第1図にて光軸の左
側の部分6a′が全反射面にまた右側の部分6a″が
全透過面に形成されている。これに対して第二の
光束分割プリズム7の場合には、第2図Bに示さ
れる如くその反射面7aは光軸の左側の部分7
a′が全透過面にまた右側の部分7a″が全反射面に
即ち第一の光束分割プリズム6とは逆に形成され
ている。
In view of the above points, the present invention aims to provide a single-objective binocular stereoscopic microscope that provides a bright observation image, has a simple structure, can be manufactured at low cost, and is capable of observing three-dimensional images of a false object and a real object. However, the case where it is applied to a transmission microscope will be explained below using the embodiment shown in the drawings. In FIG. 1, 1 is a light source, 2 is a light source,
3 is a condenser lens, 3 is a sample, 4 is an objective lens, 5 is a relay lens, and 6 and 7 are beam splitters arranged so that they can be selectively inserted into the optical path near the projection position of the exit pupil of the objective lens 4. It is a prism, the configuration of which will be described later. 8, 8' are relay prisms,
9 and 9' are imaging lenses, 10 and 10' are interpupillary distance adjusting prisms, and 11 and 11' are eyepiece lenses. The first beam splitting prism 6 is constructed as shown in FIG. 2A, and its reflecting surface 6a has a total reflection surface on the left side of the optical axis in FIG. On the other hand, in the case of the second beam splitting prism 7, the reflecting surface 7a is formed on the left side of the optical axis 7, as shown in FIG.
a' is formed as a total transmission surface, and the right portion 7a'' is formed as a total reflection surface, that is, opposite to the first beam splitting prism 6.

本案実施例は以上のように構成されているか
ら、第一の光束分割プリズム6を光路中に挿入し
た場合、第1図に示されているように光源1から
出た光はコンデンサレンズ2を介して試料3を照
明し、試料3を照明した光は対物レンズ4及びリ
レーレンズ5を介して第一の光束分割プリズム6
の反射面6aに入射するが、試料3を照明した光
のうち試料3からの右斜上方の光束Rは反射面6
aの全反射面6a′で反射した後右眼の接眼系へ導
かれる、即ちプリズム8′、結像レンズ9′、プリ
ズム10′を通つて結像し、接眼レンズ11′を介
して観察が行なわれる。また試料3を照明した光
のうち試料3からの左斜上方の光束Lは反射面6
aの全透過面6a″を透過した後左眼の接眼系へ導
かれる。即ちプリズム8、結像レンズ9、プリズ
ム10を通つて結像し、接眼レンズ11を介して
観察が行なわれる。かくして、試料3から左斜上
方へ透過した光束Lは観察者の左眼により射出瞳
12のように観察され、試料3から右斜上方へ透
過した光束Rは観察者の右眼により射出瞳12′
のように観察され、従つて正体の立体像が観察さ
れ得る。ここで第一の光束分割プリズム6から第
二の光束分割プリズム7へ切換えると(第3図参
照)、光源1から出た光はコンデンサレンズ2を
介して試料3を照明し、試料3を照明した光は対
物レンズ4及びリレーレンズ5を介して第二の光
束分割プリズム7の反射面7aに入射するが、試
料3を照明した光のうち試料3からの右斜上方の
光束Rは反射面7aの全透過面7a′を透過した後
左眼の接眼系へ導かれ、また試料3からの左斜上
方の光束Lは反射面7aの全反射面7a″で反射し
た後右眼の接眼系へ導かれる。かくして、試料3
から左斜上方へ透過した光束Lは観察者の右眼に
より射出瞳13′のように観察され、試料3から
右斜上方へ透過した光束Rは観察者の左眼により
射出瞳13のように観察され、従つて偽体の立体
像が観察され得る。
Since the present embodiment is constructed as described above, when the first beam splitting prism 6 is inserted into the optical path, the light emitted from the light source 1 passes through the condenser lens 2 as shown in FIG. The light that illuminated the sample 3 passes through the objective lens 4 and the relay lens 5 to the first beam splitting prism 6.
However, among the light illuminating the sample 3, the light flux R from the sample 3 diagonally upward to the right is incident on the reflecting surface 6a.
After being reflected by the total reflection surface 6a' of the lens a, it is guided to the eyepiece system of the right eye, that is, it is imaged through a prism 8', an imaging lens 9', and a prism 10', and is observed through an eyepiece 11'. It is done. Also, among the light illuminating the sample 3, the light flux L from the sample 3 diagonally upward to the left is reflected by the reflection surface 6.
After passing through the fully transparent surface 6a'' of the lens a, it is guided to the eyepiece system of the left eye. That is, it is imaged through the prism 8, the imaging lens 9, and the prism 10, and is observed through the eyepiece 11. Thus, , the luminous flux L transmitted diagonally upward to the left from the specimen 3 is observed by the observer's left eye as an exit pupil 12, and the luminous flux R transmitted diagonally upward to the right from the specimen 3 is observed by the observer's right eye as an exit pupil 12'.
Therefore, a true stereoscopic image can be observed. When switching from the first beam splitting prism 6 to the second beam splitting prism 7 (see Figure 3), the light emitted from the light source 1 illuminates the sample 3 via the condenser lens 2, and the sample 3 is illuminated. The light enters the reflecting surface 7a of the second beam splitting prism 7 via the objective lens 4 and the relay lens 5, but among the light that illuminates the sample 3, the light beam R from the sample 3 diagonally upward to the right enters the reflecting surface 7a. After passing through the total transmission surface 7a' of the reflective surface 7a, it is guided to the eyepiece system of the left eye, and the light beam L from the upper left side from the sample 3 is reflected by the total reflection surface 7a'' of the reflection surface 7a, and then enters the eyepiece system of the right eye. Thus, sample 3
The luminous flux L transmitted diagonally upward to the left from the sample 3 is observed by the observer's right eye as exit pupil 13', and the luminous flux R transmitted diagonally upward to the right from the sample 3 is observed by the observer's left eye as exit pupil 13'. and thus a stereoscopic image of the pseudobody can be observed.

第4図及び第5図は本考案の第二の実施例を示
しており、14は60°プリズムと二つのリレープ
リズムから成る第一の光束分割プリズム、15は
二つの45°平行四辺形プリズムの組合わせによる
第二の光束分割プリズムであつて、第一の光束分
割プリズム14を光路中に挿入した場合は第4図
の如く正体の立体像が観察され、第二の光束分割
プリズム15を光路中に挿入した場合には第5図
に示されているように偽体の立体像が観察され
る。
4 and 5 show a second embodiment of the present invention, 14 is a first beam splitting prism consisting of a 60° prism and two relay prisms, and 15 is a 45° parallelogram prism. When the first beam splitting prism 14 is inserted into the optical path, a true three-dimensional image is observed as shown in FIG. 4, and the second beam splitting prism 15 is When inserted into the optical path, a three-dimensional image of the fake body is observed as shown in FIG.

以上述べたように本考案によれば、二組の簡単
な構成の光束分割プリズムを備え、これを選択的
に切換使用することにより偽体と正体の立体像を
観察するようにしたから、構造が簡単で安価に製
造し得ると共に明るい観察像が得られる等、非常
に効果的である。
As described above, according to the present invention, two sets of light beam splitting prisms with a simple structure are provided, and by selectively switching and using them, three-dimensional images of the false object and the real object are observed. It is very effective in that it can be manufactured easily and inexpensively, and a bright observation image can be obtained.

尚、以上の説明では光束を分割するために光束
分割プリズムを使用した場合について述べたが、
これに限らず他の光束分割要素を使用してもよい
ことはいうまでもない。
Note that the above explanation deals with the case where a beam splitting prism is used to split the beam, but
It goes without saying that the present invention is not limited to this, and other light beam splitting elements may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による単対物双眼立体視顕微鏡
の一実施例の構成図、第2図A,Bは夫々第1図
の実施例で使用する光束分割プリズムの斜視図、
第3図は第1図の実施例により偽体の立体像を観
察する場合を示す第1図と同様の図、第4図及び
第5図は本考案の第二の実施例を示す構成図であ
る。 1……光源、2……コンデンサレンズ、3……
試料、4……対物レンズ、5……リレーレンズ、
6,7,14,15……光束分割プリズム、8,
8′……リレープリズム、9,9′……結像レン
ズ、10,10……眼幅調整プリズム、11,1
1′……接眼レンズ、12,12′,13,13′
……射出瞳。
FIG. 1 is a configuration diagram of an embodiment of a single-objective binocular stereoscopic microscope according to the present invention, and FIGS. 2A and 2B are perspective views of a beam splitting prism used in the embodiment of FIG. 1, respectively.
FIG. 3 is a diagram similar to FIG. 1, showing a case where a three-dimensional image of a fake body is observed using the embodiment of FIG. 1, and FIGS. 4 and 5 are configuration diagrams showing a second embodiment of the present invention. It is. 1...Light source, 2...Condenser lens, 3...
Sample, 4...Objective lens, 5...Relay lens,
6, 7, 14, 15... light beam splitting prism, 8,
8'...Relay prism, 9,9'...Imaging lens, 10,10...Pupillary distance adjustment prism, 11,1
1'...eyepiece, 12, 12', 13, 13'
...Ejection pupil.

Claims (1)

【実用新案登録請求の範囲】 対物レンズの射出瞳の投影位置近傍に配設した
光束分割要素により光軸に対して対物レンズから
の光束を二分割して対応する左右の接眼系に導く
ようにした単対物双眼立体視顕微鏡において、 前記投影位置近傍の光路に挿脱可能に配置さ
れ、前記光軸に対して該光軸を含む面で光束を左
右二領域に分割し、試料からの右斜上方の光束を
右眼の接眼系に導き、試料からの左斜上方の光束
を左眼の接眼系に導く正体像を得るための第一の
光束分割要素と、 前記投影位置近傍の光路に挿脱可能に配置さ
れ、前記光軸に対して該光軸を含む面で光束を左
右二領域に分割し、試料からの右斜上方の光束を
左眼の接眼系に導き、試料からの左斜上方の光束
を右眼の接眼系に導く偽体像を得るための第二の
光束分割要素とを備えていて、 前記第一の光束分割要素と第二の光束分割要素
が選択的に光路内に挿入されるようにしたことを
特徴とする単対物双眼立体視顕微鏡。
[Claim for Utility Model Registration] A beam splitting element disposed near the projection position of the exit pupil of the objective lens divides the beam from the objective lens into two along the optical axis and guides the beam to the corresponding left and right eyepiece systems. In the single-objective binocular stereoscopic microscope, the light beam is removably placed in the optical path near the projection position, and divides the light beam into two areas, left and right, on a plane including the optical axis with respect to the optical axis, a first beam splitting element for obtaining a true image in which the upper beam is guided to the eyepiece system of the right eye and the left diagonally upward beam from the sample is guided to the eyepiece system of the left eye; It is removably arranged, divides the light beam into two areas, left and right, on a plane that includes the optical axis with respect to the optical axis, guides the right obliquely upper light beam from the sample to the left eyepiece, and a second light beam splitting element for obtaining a false body image that guides the upper light flux to the eyepiece system of the right eye; A single-objective binocular stereoscopic microscope characterized in that it is inserted into the.
JP17898782U 1982-11-29 1982-11-29 Single objective binocular stereoscopic microscope Granted JPS5984513U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17898782U JPS5984513U (en) 1982-11-29 1982-11-29 Single objective binocular stereoscopic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17898782U JPS5984513U (en) 1982-11-29 1982-11-29 Single objective binocular stereoscopic microscope

Publications (2)

Publication Number Publication Date
JPS5984513U JPS5984513U (en) 1984-06-07
JPH046005Y2 true JPH046005Y2 (en) 1992-02-19

Family

ID=30388450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17898782U Granted JPS5984513U (en) 1982-11-29 1982-11-29 Single objective binocular stereoscopic microscope

Country Status (1)

Country Link
JP (1) JPS5984513U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144410A (en) * 1980-04-12 1981-11-10 Tokyo Optical Co Ltd Binocular microscope permitting simultaneous observation by plural persons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144410A (en) * 1980-04-12 1981-11-10 Tokyo Optical Co Ltd Binocular microscope permitting simultaneous observation by plural persons

Also Published As

Publication number Publication date
JPS5984513U (en) 1984-06-07

Similar Documents

Publication Publication Date Title
US4711541A (en) Slit lamp and accessory device thereof
US4515445A (en) Optical system for transmitted-light microscopy with incident illumination
US5539572A (en) Microscope illumination and stereo viewing
US4657357A (en) Illumination system for single objective lens binocular microscope
US5351152A (en) Direct-view stereoscopic confocal microscope
US5371557A (en) Stereoscopic retinal camera
US6020993A (en) 3-D photo attachment for a 2-D light microscope
US5701198A (en) Confocal incident light microscope
JPH046005Y2 (en)
US20060291048A1 (en) Multi-axis imaging system with single-axis relay
CA1270131A (en) Method and apparatus for simultaneously observing a transparent object from two directions
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
JPS57197511A (en) Focusing device for binocular stereoscopic microscope
JPH03188408A (en) Scanning type optical microscope
JPS62166310A (en) Stereomicroscope using solid-state image pickup element
JPH0297910A (en) Attachment optical device for stereoscopic microscope
JPH0756113A (en) Stereoscopic optical device
JPS5999412A (en) Stereoscopic microscope for single object
JP3217395B2 (en) Optical system for discussion microscope
JPS60263918A (en) Microscope
CA2208091C (en) Improvements in microscope illumination and stereo viewing
JP2837492B2 (en) Stereoscopic photography equipment
JPH049913A (en) Coaxial vertical illuminating device for binocular stereomicroscope
JP2583465B2 (en) Stereo microscope
JPH02230210A (en) Single objective stereoscopic microscope