JPH0457915A - Production of polyether sulfone hollow fiber membrane having large diameter - Google Patents

Production of polyether sulfone hollow fiber membrane having large diameter

Info

Publication number
JPH0457915A
JPH0457915A JP16800090A JP16800090A JPH0457915A JP H0457915 A JPH0457915 A JP H0457915A JP 16800090 A JP16800090 A JP 16800090A JP 16800090 A JP16800090 A JP 16800090A JP H0457915 A JPH0457915 A JP H0457915A
Authority
JP
Japan
Prior art keywords
hollow fiber
weight
fiber membrane
dope
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16800090A
Other languages
Japanese (ja)
Other versions
JP2794610B2 (en
Inventor
Kiyoshi Ishii
清 石井
Koichi Masuda
耕一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2168000A priority Critical patent/JP2794610B2/en
Publication of JPH0457915A publication Critical patent/JPH0457915A/en
Application granted granted Critical
Publication of JP2794610B2 publication Critical patent/JP2794610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the title hollow fiber having high fractionated molecular weight, high permeability flow velocity and excellent mechanical strength, by using a spinning dope containing a polyester sulfone and a non-solvent of polymer and a uniform solution of water, etc., as an inner coagulating solution. CONSTITUTION:(A) A spinning dope having >=80 poise viscosity at 25 deg.C comprising 15-20wt.% polyester sulfone and at least one nonsolvent of polymer selected from >=6C ether alcohol, polyhydric alcohol and a derivative thereof, liquid at normal temperature and (B) a uniform solution containing at least one of <=5C ether alcohol, polyhydric alcohol and a derivative thereof as an inner coagulating solution are used to give the objective hollow fiber membrane composed of a polymer material with a repeating unit shown by the formula, having >=0.7mm inner diameter and >=1,800 l/m<2>. h.atm pure water permeability flow velocity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリエーテルスルホン中空糸膜の製造法に関
するものである。さらに詳細には分画分子量と透過流束
が高く、機械的強度にも優れた大径ポリエーテルスルホ
ン中空糸膜の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a polyethersulfone hollow fiber membrane. More specifically, the present invention relates to a method for producing a large-diameter polyethersulfone hollow fiber membrane that has a high molecular weight cutoff, high permeation flux, and excellent mechanical strength.

[従来の技術] エンジニアリングプラスチックスの一つであるポリエー
テルスルホンは、熱的、機械的特性に優れており、また
酸、アルカリ等に対する耐薬品性も兼ね備えているとこ
ろから、成形品あるいはフィルムとして電子工業用部品
に広く使用されている。
[Prior art] Polyether sulfone, which is a type of engineering plastic, has excellent thermal and mechanical properties as well as chemical resistance against acids and alkalis, so it is used as molded products or films. Widely used in electronic industrial parts.

また、ポリエーテルスルホンは中空糸への紡糸が容易で
あるため、気体、液体分離用の中空糸膜として使用する
ことができる。特に高温領域や強酸あるいは強アルカリ
性条件下での使用が要求される限外濾過膜や精密濾過膜
として極めて有用である。
Furthermore, since polyether sulfone can be easily spun into hollow fibers, it can be used as a hollow fiber membrane for gas and liquid separation. It is particularly useful as ultrafiltration membranes and precision filtration membranes that are required to be used in high-temperature regions and under strong acid or alkaline conditions.

ポリエーテルスルホン中空糸膜のいわゆる相変換法によ
る製造方法は以下の様である。
The method for manufacturing polyethersulfone hollow fiber membranes using the so-called phase conversion method is as follows.

紡糸原液(以下ドープと言う)はポリエーテルスルホン
を良溶剤又は良溶剤と混和する非溶剤との混合溶媒に1
0〜30重量%溶解して調製する。
The spinning dope (hereinafter referred to as dope) is made by adding polyether sulfone to a mixed solvent of a good solvent or a non-solvent that is miscible with the good solvent.
Prepared by dissolving 0 to 30% by weight.

このドープを二重同心ノズルの外周オリフィスから押し
出し、同時に中心オリフィスから気体、またはポリエー
テルスルホンに対して非溶剤の性質をもつ液体を押し出
して、このドープを中空円筒状に成形し、直接或は一定
の気相空間を距でて凝固液内に進入させ、ドープを固相
に変態させて中空糸膜を得る。
This dope is extruded through the outer circumferential orifice of a double concentric nozzle, and at the same time a gas or a liquid having non-solvent properties for polyethersulfone is extruded through the central orifice to form the dope into a hollow cylinder, which can be directly or The dope is introduced into the coagulation liquid through a certain gas phase space, and the dope is transformed into a solid phase to obtain a hollow fiber membrane.

凝固液はポリエーテルスルホンに対して非溶剤の性質を
もち、ドープ溶媒と相互に混和する液体であるが、主と
して経済的な理由から、水または水溶液が多く使用され
る。
The coagulating liquid is a liquid that has non-solvent properties for polyether sulfone and is mutually miscible with the dope solvent, but mainly for economic reasons, water or an aqueous solution is often used.

産業プロセスでの分離精製対象の拡大に伴って、透過流
束の一層の向上と共に、分画分子量が10万以上の膜の
開発も要求される様になってきた。
With the expansion of targets for separation and purification in industrial processes, there has been a demand for further improvements in permeation flux and the development of membranes with a molecular weight cutoff of 100,000 or more.

透過流束の増大と分画分子量の高分子量化を実現するに
は、ドープ中のポリマー濃度を低下させることが特に有
効である。しかし、ドープの粘度低下による紡糸安定性
の低下と製品の膜厚当りの強度低下をもたらすため、限
度かある。そこて、ドープのポリマー濃度を下げる他に
ドープの溶媒組成(溶剤と非溶剤の種類及び混合比)を
変えることによって水通過流束を大きくする工夫が従来
より行われ、種々の方法が公表されてきている。
In order to increase the permeation flux and increase the molecular weight cut-off, it is particularly effective to lower the polymer concentration in the dope. However, there is a limit to this because it causes a decrease in spinning stability due to a decrease in the viscosity of the dope and a decrease in strength per film thickness of the product. Therefore, in addition to lowering the polymer concentration in the dope, efforts have been made to increase the water flux by changing the dope's solvent composition (type and mixing ratio of solvent and non-solvent), and various methods have been published. It's coming.

それらのうちではポリスルホン系ドープに添加する非溶
剤として多価アルコールを添加する方法が特に優れてお
り、添加量はドープが紡糸温度において透明な均−溶液
を保つ限度内で大きくすることが有効であることが従来
より知られている。
Among these, the method of adding polyhydric alcohol as a non-solvent to the polysulfone dope is particularly effective, and it is effective to increase the amount to the extent that the dope remains a transparent homogeneous solution at the spinning temperature. It has been known for some time that there is.

更に膜処理対象の拡大は、中空糸膜内径の大径化も要求
する様になり、高透過流束或いは高透過流束かつ高分画
分子量で、しかも、大径の中空糸膜製造技術が研究され
てきている。
Furthermore, the expansion of membrane treatment targets has also led to demands for larger inner diameters of hollow fiber membranes, and the manufacturing technology for hollow fiber membranes with high permeation flux, high permeation flux and high molecular weight cut-off, and large diameter has become necessary. It has been studied.

中空糸膜を安定して紡糸するためにはドープの粘度が成
る程度以上高いことが必要であり、望ましい粘度は径が
太くなる程高くなる傾向が認められる。ドープの粘度は
ポリマー濃度に最も大きく依存するが、高透過流束或い
は高分画分子量の要請も同時に充たすためには上述の様
にドープ中のポリマー濃度を可能な限り低く抑えること
が必要である。このディレンマはポリマーの溶媒(溶剤
、非溶剤混合系)自身の粘度を高くするか、及び/また
は溶剤の性質をポリマーを溶解した溶液の粘度が高くな
る様にすることによって解決することができる。この様
な観点からもポリスルホン系ドープの添加非溶剤として
多価アルコールが特に優れている。
In order to stably spin a hollow fiber membrane, it is necessary that the viscosity of the dope be as high as possible, and it is recognized that the desirable viscosity tends to increase as the diameter increases. The viscosity of the dope is most dependent on the polymer concentration, but in order to simultaneously satisfy the requirements of high permeation flux and high molecular weight cut-off, it is necessary to keep the polymer concentration in the dope as low as possible, as described above. . This dilemma can be solved by increasing the viscosity of the polymer solvent (solvent/non-solvent mixed system) itself and/or by changing the properties of the solvent so that the viscosity of the solution in which the polymer is dissolved becomes high. From this point of view, polyhydric alcohols are particularly excellent as non-solvents for adding polysulfone dopes.

ポリスルホン系中空糸膜製膜に関する従来技術を上記の
観点から評価して、ドープ中ポリマー濃度が15重量%
以上、かつ、添加非溶剤が多価アルコールでその濃度が
20重量%以上のドープから紡糸するものを選び出すと
、高透過流束の例として特公昭63−56802号公報
には繰り返し単位が Ha で表現されるポリスルホン(以下PSFと言う)−20
重量%、ポリエチレングリコール(以下PEGと言う)
600−36重量%、N、N−ジメチルホルムアミド(
以下DMFと言う)−44重量%のドープから紡糸して
、水通過流束−10004)/rrr ・h−ate及
び1350g/rTf−h−at■の中空糸限外濾過膜
(以下中空糸UF膜と言う)を得た実施例と比較例が記
載されている。また、特開平1−94902号公報には
PSF−20重量%、PE0600−36重量%、N、
N−ジメチルアセトアミド(以下DMAcと言う)−4
4重量%のドープから水通過流束−8401)/d・h
・ateの中空糸UF膜を得た実施例が記載されている
。特開昭62−201602号公報にはPSF−17重
量%、テトラエチレングリコール(以下TEGと言う)
−25重量%、N−メチルピロリドン(以下NMPと言
う)−58重量%のドープから水通過流束−970j1
) /rrr・h−atsの中空糸UF膜を得た実施例
が記載されている。特開昭61−200805号公報に
は繰り返し単位が で表現されるポリエーテルスルホン(以下PESと言う
)−25重量%、PEG40O−25重量%、ジメチル
スルホキシド(以下DMSOと言う)50重量%のドー
プから水道過流束−390j!/イ・h−atlの中空
糸UF膜を得た実施例が記載されている。特開昭59−
228017号公報にはPSF−17重量%、ジエチレ
ングリコール(以下DEGと言う)−25重量%、NM
P−58重量%のドープから水通過流束−13701/
ゴ・h ” atlの中空糸UF膜を得た実施例が記載
されている。
Evaluating the conventional technology related to polysulfone hollow fiber membrane production from the above viewpoint, the polymer concentration in the dope was 15% by weight.
In addition to the above, when selecting a dope for spinning in which the added non-solvent is a polyhydric alcohol and its concentration is 20% by weight or more, as an example of a high permeation flux, Japanese Patent Publication No. 63-56802 has a repeating unit of Ha. Expressed polysulfone (hereinafter referred to as PSF)-20
Weight%, polyethylene glycol (hereinafter referred to as PEG)
600-36% by weight, N,N-dimethylformamide (
Hollow fiber ultrafiltration membrane (hereinafter referred to as UF Examples and comparative examples in which membranes (referred to as membranes) were obtained are described. In addition, JP-A-1-94902 discloses PSF-20% by weight, PE0600-36% by weight, N,
N-dimethylacetamide (hereinafter referred to as DMAc)-4
Water flux from 4% by weight dope -8401)/d・h
- An example in which a hollow fiber UF membrane of ate was obtained is described. JP-A-62-201602 discloses PSF-17% by weight, tetraethylene glycol (hereinafter referred to as TEG)
-25% by weight, N-methylpyrrolidone (hereinafter referred to as NMP) -58% by weight dope to water flux -970j1
) /rrr·h-ats hollow fiber UF membranes are obtained. JP-A-61-200805 discloses a dope containing 25% by weight of polyether sulfone (hereinafter referred to as PES), 25% by weight of PEG40O, and 50% by weight of dimethyl sulfoxide (hereinafter referred to as DMSO), the repeating units of which are expressed by JP-A-61-200805. From water supply overflux-390j! An example in which a hollow fiber UF membrane of /i/h-atl was obtained is described. Unexamined Japanese Patent Publication 1987-
No. 228017 discloses PSF-17% by weight, diethylene glycol (hereinafter referred to as DEG)-25% by weight, NM
Water flux from P-58 wt% dope-13701/
Examples are described in which hollow fiber UF membranes of Go.h''atl were obtained.

[発明が解決しようとする課題] しかしながら、いづれの例においても、得られたポリス
ルホン中空糸UF膜は水通過流束が高いとは言っても1
400i1 /rf・h−at■以下である。
[Problems to be Solved by the Invention] However, in each example, although the obtained polysulfone hollow fiber UF membrane has a high water flux, it has a
400i1/rf·h-at■ or less.

膜分離技術の用途を従来から行われてきた比較的高価な
溶質、例えば電着塗料や酵素等の回収や精製等の用途か
らより広範な産業プロセスや排水処理にまで拡大するに
は未だ不充分である。また、中空糸内径も0.6mmを
超える例は記載されておらず、高粘度流体の懸濁液への
用途拡大に制約を受ける。
It is still insufficient to expand the use of membrane separation technology from traditional uses such as recovery and purification of relatively expensive solutes, such as electrodeposition paints and enzymes, to a wider range of industrial processes and wastewater treatment. It is. Further, there is no description of an example in which the inner diameter of the hollow fiber exceeds 0.6 mm, which limits the expansion of the application to suspensions of high viscosity fluids.

[課題を解決するための手段] 内径0,7關以上の大径中空糸UF膜の水通過流束の一
層の向上及び分画分子量の高分子量化には、ドープ組成
の工夫に加えて凝固液の工夫も必要である。中空糸膜の
内表面に分離機能層を形成させる場合、紡糸時に二重同
心ノズルの中心オリフィスから吐出する内部凝固液の凝
固価が高い(凝固力が弱い)程、水通過流束は一般に多
くなることが知られている。内部凝固液は水、或いは非
溶剤及び/又は溶剤の水溶液が多く用いられているが、
水溶液では水の含量が少ない捏水透過流束は一般に多く
なる。しかしながら、内部凝固液の凝固力を弱くするに
従って、紡糸安定性が低下し、その度合は中空糸径が大
きくなる程大きくなる。このため内部凝固液の凝固力を
弱くしていくと紡糸条件に制約を受ける様になり、ひい
ては、好ましい非対称膜構造を形成できなくなり、更に
は内表面の膜構造が崩壊するという問題がある。
[Means for solving the problem] In order to further improve the water flux and increase the molecular weight cut-off of large-diameter hollow fiber UF membranes with an inner diameter of 0.7 mm or more, in addition to improving the dope composition, it is necessary to It is also necessary to devise ways to use the liquid. When forming a separation functional layer on the inner surface of a hollow fiber membrane, the higher the coagulation value (weaker coagulation force) of the internal coagulation liquid discharged from the center orifice of the double concentric nozzle during spinning, the higher the water passing flux. It is known that The internal coagulation liquid is often water or an aqueous solution of non-solvent and/or solvent.
In an aqueous solution, the water permeation flux generally increases when the water content is low. However, as the coagulation power of the internal coagulation liquid is weakened, the spinning stability decreases, and the degree of this decreases as the hollow fiber diameter increases. For this reason, if the coagulation power of the internal coagulation liquid is weakened, the spinning conditions will be restricted, and as a result, it will become impossible to form a preferable asymmetric membrane structure, and furthermore, the membrane structure on the inner surface will collapse.

本発明者はこの様な問題を解決して、中空糸膜内径0.
7龍以上、引張破断強度25)cg/cJ以上、水通過
流束150047 /rd −h−at−(25℃)以
上のポリエーテルスルホン中空糸膜を得るために、ドー
プ組成と内部凝固液との関係について鋭意研究した。そ
の結果、下記の方法を見出すことによって目的とする高
透過流束、高分画分子量の太径ポリエーテルスルホン中
空糸膜を得、本発明に到った。
The inventor of the present invention solved these problems and reduced the inner diameter of the hollow fiber membrane to 0.
In order to obtain a polyethersulfone hollow fiber membrane with a tensile strength of at least 7 yen, a tensile strength at break of 25) cg/cJ or more, and a water flux of at least 150,047 /rd-h-at-(25°C), the dope composition and internal coagulation liquid were We conducted intensive research on the relationship between As a result, by discovering the method described below, the desired large-diameter polyethersulfone hollow fiber membrane with high permeation flux and high molecular weight cut-off was obtained, leading to the present invention.

すなわち素材ポリマーの繰り返し単位がからなり、内径
が0.7■璽以上の大径中空糸膜の製造方法であって、
紡糸原液が15〜20重量%のポリエーテルスルホンと
、40重量%以上の炭素数5以上でかつ常温で液体のエ
ーテルアルコール、多価アルコール及びそれらの誘導体
から選ばれる少くとも一種の該ポリマーの非溶剤を含有
し、25℃で80ポアズ以上の粘度を有し、内部凝固液
が5〜20重量%の水と、炭素数6以下のエーテルアル
コール、多価アルコール及びそれらの誘導体から選ばれ
る少くとも一種を含有する均一溶液であることを特徴と
する大径ポリエーテルスルホン中空糸膜の製造方法であ
る。
That is, a method for producing a large-diameter hollow fiber membrane consisting of repeating units of a material polymer and having an inner diameter of 0.7 cm or more,
The spinning stock solution contains 15 to 20% by weight of polyether sulfone and 40% by weight or more of at least one polymer selected from ether alcohols, polyhydric alcohols, and derivatives thereof, which have 5 or more carbon atoms and are liquid at room temperature. Contains a solvent, has a viscosity of 80 poise or more at 25°C, and has an internal coagulation liquid of 5 to 20% by weight of water, and at least one selected from ether alcohols having 6 or less carbon atoms, polyhydric alcohols, and derivatives thereof. This is a method for producing a large-diameter polyethersulfone hollow fiber membrane, characterized in that it is a homogeneous solution containing one type of polyethersulfone hollow fiber membrane.

ドープ組成と内部凝固液組成をこの様な範囲に選定する
ことによって、水通過流束180ON /rrf・h−
at■以上の高透過流束で内径0.7關以上の太径の中
空糸UF膜を安定に製造することができる様になった。
By selecting the dope composition and the internal coagulation liquid composition within these ranges, the water passing flux can be increased to 180ON/rrf・h-
It has become possible to stably produce hollow fiber UF membranes with a large diameter of 0.7 mm or more and an internal diameter of 0.7 mm or more with a high permeation flux of at■ or more.

ドープ中のポリエーテルスルホンの濃度は15〜20重
量%が好ましく、該ポリエーテルスルホンの濃度が20
重量%を超えると、得られる中空糸膜の透水速度が低下
するため好ましくない。
The concentration of polyether sulfone in the dope is preferably 15 to 20% by weight, and the concentration of polyether sulfone is 20% by weight.
If it exceeds % by weight, the water permeation rate of the resulting hollow fiber membrane decreases, which is not preferable.

方、濃度が15重量%未病になると、得られる中空糸膜
の機械的強度が低下するため好ましくない。
On the other hand, if the concentration is 15% by weight, the mechanical strength of the hollow fiber membrane obtained will decrease, which is not preferable.

PESの良溶剤としてはDMSO12−ピロリドン(以
下2−PNと言う)及びこれらの混合物が好ましいが、
DMF、DMAc、NMP等の水と自由に混合する極性
有機溶剤を使用することもできる。
As a good solvent for PES, DMSO12-pyrrolidone (hereinafter referred to as 2-PN) and mixtures thereof are preferred;
It is also possible to use polar organic solvents that are freely miscible with water, such as DMF, DMAc, NMP.

ドープに添加する非溶剤としては炭素数5以上のエーテ
ルアルコール、常温で流体の多価アルコール及びその誘
導体が好ましく、テトラヒドロフルフリルアルコール、
トリエチレングリコール、テトラエチレングリコール、
PEG、ジプロピレングリコール、トリプロピレングリ
コール、ジエチレングリコールモノメチルエーテル等の
単独またはこれらの混合物を使用する。
As the non-solvent to be added to the dope, ether alcohols having 5 or more carbon atoms, polyhydric alcohols that are fluid at room temperature, and derivatives thereof are preferred, such as tetrahydrofurfuryl alcohol,
triethylene glycol, tetraethylene glycol,
PEG, dipropylene glycol, tripropylene glycol, diethylene glycol monomethyl ether, etc. may be used alone or in mixtures thereof.

PEGは分子量が大きい程、ドープの増粘効果も大きい
が、紡糸したドープの凝固速度が低くなり、生成する膜
構造を乱す作用が強くなる。このためPEG300以上
の単独使用は好ましくない。
The larger the molecular weight of PEG, the greater the effect of thickening the dope, but the coagulation rate of the spun dope becomes lower and the effect of disturbing the formed film structure becomes stronger. For this reason, it is not preferable to use PEG of 300 or more alone.

PEGは一般にPESの非溶剤とされているが、実際に
は分子量300以上のPEGはPESの良溶剤であり(
特開平2−105854号公報参照)これが上述の現象
の主原因と考えられる。
PEG is generally considered to be a non-solvent for PES, but in reality, PEG with a molecular weight of 300 or more is a good solvent for PES (
(See Japanese Unexamined Patent Publication No. 2-105854) This is considered to be the main cause of the above-mentioned phenomenon.

なお、上記の添加非溶剤に炭素数を限定しない多価アル
コール及びその誘導体、例えばエチレングリコール、ジ
エチレングリコール、グリセリン及びこれらのモノエー
テルまたはモノエステル等を少量加えることもできる。
It is also possible to add a small amount of polyhydric alcohols and derivatives thereof, such as ethylene glycol, diethylene glycol, glycerin, and their monoethers or monoesters, to the above-mentioned non-solvent.

非溶剤の添加量については、内部凝固液組成や紡糸条件
との関係で定まる第1の閾値以上を添加することによっ
て中空糸内径0.7■1以上、水通過流束IHON /
 rd−h−at1以上の中空糸膜を安定して紡糸する
のに好ましい80ボアズ以上の高いドープ粘度を実現す
ることができる。更に、第1の閾値よりも高い第2の閾
値以上を添加することによって膜断面に相当直径20μ
m以上のマクロボイドを持たない非対称多孔質構造を形
成することができる。
Regarding the amount of non-solvent added, by adding more than the first threshold value determined by the relationship with the internal coagulation liquid composition and spinning conditions, the hollow fiber inner diameter is 0.7 x 1 or more and the water passing flux IHON /
A high dope viscosity of 80 boads or more, which is preferable for stably spinning hollow fiber membranes with rd-h-at of 1 or more, can be achieved. Furthermore, by adding a second threshold value higher than the first threshold value, an equivalent diameter of 20μ is added to the membrane cross section.
It is possible to form an asymmetric porous structure that does not have macrovoids of m or more.

非溶剤の好ましい添加量の範囲は内部凝固液組成や紡糸
条件によって異るが、ドープ全量の35重量%以上更に
は40重量%以上が好ましい。しかし、ドープが紡糸温
度で透明均一溶液であることを維持できなくなる程の多
量を添加することは好ましくない。
The preferred range of the amount of non-solvent added varies depending on the internal coagulation liquid composition and spinning conditions, but it is preferably 35% by weight or more, more preferably 40% by weight or more, based on the total amount of the dope. However, it is not preferable to add such a large amount that the dope cannot maintain a transparent homogeneous solution at the spinning temperature.

内部凝固液は5〜20重量%の水と炭素数6以下のエー
テルアルコール、常温で液体の多価アルコール及びその
誘導体、又はこれらの混合物を含むことが好ましい。例
えば、テトラヒドロフルフリルアルコール、エチレング
リコール、ジエチレングリコール、トリエチレングリコ
ール、エチレングリコールモノアルキルエーテル、ジエ
チレングリコールモノメチルエーテル等を単独でまたは
これらを混合して使用できるが、いづれの場合も水酸基
に対するエーテル基の比率が2未満の範囲、特に0.5
〜1.5の範囲にあることが好ましい。
The internal coagulating liquid preferably contains 5 to 20% by weight of water, an ether alcohol having 6 or less carbon atoms, a polyhydric alcohol that is liquid at room temperature and its derivatives, or a mixture thereof. For example, tetrahydrofurfuryl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monomethyl ether, etc. can be used alone or in combination, but in any case, the ratio of ether groups to hydroxyl groups is In the range less than 2, especially 0.5
It is preferably in the range of 1.5 to 1.5.

0.5以下では水通過流束が1800ff /ゴ・h−
at■を下廻る場合があり、1.5以上では中空糸内表
面の分離機能層の構造が破壊される場合がある。
Below 0.5, the water passing flux is 1800ff/goh-
If it is more than 1.5, the structure of the separation functional layer on the inner surface of the hollow fiber may be destroyed.

炭素数8以上のPEGは炭素数6以下のPEGを含む多
価アルコールに比し、中空糸内表面の分離機能層を粗雑
化乃至破壊する危険が大きく、好ましくない。なお、上
記多価アルコール及びその誘導体の一部を、ドープに使
用している良溶剤で置換することは可能である。
PEG having 8 or more carbon atoms is not preferable because it has a greater risk of roughening or destroying the separation functional layer on the inner surface of the hollow fiber than a polyhydric alcohol containing PEG having 6 or less carbon atoms. Note that it is possible to replace a part of the polyhydric alcohol and its derivatives with a good solvent used in the dope.

[実施例] 以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの実施例に同等限定されるものではない
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not equally limited to these examples.

実施例l PE5 (IC1社製、商品名Vjctrex 520
0P )18重量部を42重量部のDMSO(和光純薬
製、試薬)と40重量部のPEG200 (和光純薬製
、試薬)からなる混合溶媒に60℃で溶解して、透明均
一で粘度86ボアズ(25℃)のドープを調製した。
Example 1 PE5 (manufactured by IC1, trade name: Vjctrex 520
0P) was dissolved in a mixed solvent consisting of 42 parts by weight of DMSO (manufactured by Wako Pure Chemical Industries, Ltd., reagent) and 40 parts by weight of PEG200 (manufactured by Wako Pure Chemical Industries, Ltd., reagent) at 60°C to obtain a transparent, uniform product with a viscosity of 86. A Boaz (25°C) dope was prepared.

このドープをエチレングリコールモノメチルエーテル(
和光純薬製、試薬)60vt%、トリエチレングリコー
ル(和光純薬製、試薬)30vt%、水10wt%から
なり、エーテル基と水酸基の比率が1.0の内部凝固液
と共に、チューブ・イン・オリフィス型の同心二重ノズ
ルから押し出し、ノズルから10cm離れた70℃の水
中に浸漬して、内径的0.8mm5外径約1.3關の中
空糸膜を得た。
This dope is mixed with ethylene glycol monomethyl ether (
It consists of 60 vt% triethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., reagent), 30 vt% triethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., reagent), and 10 wt% water, together with an internal coagulating liquid with an ether group to hydroxyl group ratio of 1.0. It was extruded through an orifice-type concentric double nozzle and immersed in 70°C water 10 cm away from the nozzle to obtain a hollow fiber membrane with an inner diameter of 0.8 mm and an outer diameter of about 1.3 mm.

得られた中空糸膜は純水透過流束22801 /rd・
h−atl (25℃)、牛血清アルブミン(分子量6
,5万、以下BSAと言う)透過率的100%、牛血清
γ−グロブリン(分子量15万、以下BγGと言う)透
過率44%と高木透過流束、高分画分子量であった。溶
質透過率は、溶質濃度0.01wt%の燐酸緩衝溶液を
中空糸内腔に平均膜面剪断速度3×103SeC−1以
上、平均隔膜差圧0.8at*(7)条件で供給し、得
られた透過液中の溶質濃度を供給液中の平均濃度に対す
る百分率で表わした。
The obtained hollow fiber membrane has a pure water permeation flux of 22801/rd・
h-atl (25°C), bovine serum albumin (molecular weight 6
, 50,000, hereinafter referred to as BSA), and bovine serum γ-globulin (molecular weight 150,000, hereinafter referred to as BγG) transmittance of 44%, Takagi permeation flux, and high molecular weight cut-off. The solute permeability was determined by supplying a phosphate buffer solution with a solute concentration of 0.01 wt% to the hollow fiber lumen under conditions of an average membrane surface shear rate of 3 x 103 SeC-1 or more and an average diaphragm differential pressure of 0.8 at* (7). The solute concentration in the permeate obtained was expressed as a percentage of the average concentration in the feed solution.

また、この中空糸膜の引張破断強度は36kg/C−5
破断伸度30%、破裂圧力17kg/c−と機械強度も
優れていた。得られた中空糸の内表面を走査型電子顕微
鏡(SEM)で倍率1万倍で観察した結果を第1図に示
した。
In addition, the tensile breaking strength of this hollow fiber membrane is 36 kg/C-5
The mechanical strength was also excellent, with a breaking elongation of 30% and a bursting pressure of 17 kg/c-. The inner surface of the obtained hollow fiber was observed with a scanning electron microscope (SEM) at a magnification of 10,000 times, and the results are shown in FIG.

比較例1 18重量部のPESを60重量部のDMSOと22重量
部のPEG200からなる混合溶媒に60℃で溶解して
、25℃における粘度が41ポアズの透明均一なドープ
を調製した。
Comparative Example 1 A transparent and uniform dope having a viscosity of 41 poise at 25°C was prepared by dissolving 18 parts by weight of PES in a mixed solvent consisting of 60 parts by weight of DMSO and 22 parts by weight of PEG200 at 60°C.

このドープを紡糸原液として使用した他は実施例1と同
等にして内径0 、8 am、外径1 、3 mmの中
空糸膜を紡糸したところ、ノズルから押し出した中空糸
膜は凝固浴(70℃の水)中で揺れて進路が安定せず、
時々糸切れを起したため、中空糸膜を安定して製造する
ことができなかった。
Hollow fiber membranes with inner diameters of 0 and 8 am and outer diameters of 1 and 3 mm were spun in the same manner as in Example 1 except that this dope was used as the spinning dope. The course is unstable as it sways in the water at a temperature of ℃
Since the fibers sometimes broke, it was not possible to stably produce hollow fiber membranes.

参考のため、この組み合わせで内径0゜5wo*s外径
0.81の中空糸膜を紡糸したところ、揺れは小さくな
り、糸切れは起らなかった。得られた内径0.5關中空
糸膜の純水透過流束は1930g/%・h・atlと大
きかったが、第2図に示すように中空糸内表面を走査型
電子顕微鏡(SEM)で倍率1万倍で観察したところ、
孔径0.5μm以下の孔が多数不均一に散在して、膜表
面は荒れていた。
For reference, when a hollow fiber membrane with an inner diameter of 0°5wo*s and an outer diameter of 0.81 was spun using this combination, the shaking was small and no fiber breakage occurred. The pure water permeation flux of the obtained hollow fiber membrane with an inner diameter of 0.5 mm was as large as 1930 g/% h atl, but as shown in Figure 2, the inner surface of the hollow fiber was examined using a scanning electron microscope (SEM). When observed at a magnification of 10,000 times,
A large number of pores with a pore diameter of 0.5 μm or less were unevenly scattered, and the membrane surface was rough.

実施例2 90重量部のトリエチレングリコールと10重量部の水
を混合してエーテル基対水酸基の比率が1.0の内部凝
固液を調製して使用した他は実施例1と同等にして内径
0.81111%外径1.3+*mの中空糸膜を紡糸し
た。得られた中空糸膜は純水透過流束1820fI/コ
・h−atl、BSA透過率100%、BγG透過率0
%と高性能であった。
Example 2 The internal diameter was the same as in Example 1 except that 90 parts by weight of triethylene glycol and 10 parts by weight of water were mixed to prepare an internal coagulation liquid with a ratio of ether groups to hydroxyl groups of 1.0. A hollow fiber membrane of 0.81111% and an outer diameter of 1.3+*m was spun. The obtained hollow fiber membrane had a pure water permeation flux of 1820 fI/coh-atl, a BSA permeability of 100%, and a BγG permeability of 0.
% and high performance.

また得られた中空糸の内表面を走査型電子顕微鏡(SE
M)で倍率1万倍で観察した結果を第3図に示した。
The inner surface of the hollow fibers obtained was also examined using a scanning electron microscope (SE).
FIG. 3 shows the results observed with M) at a magnification of 10,000 times.

比較例2 90vt%のPEG200水溶液(水酸基に対するエー
テル基の比率が1.5)を内部凝固液に使用した他は実
施例1と同等にして内径0.8111%外径1.3■l
の中空糸膜を紡糸したところ、ノズルから押し出した中
空糸膜は凝固洛中で揺れて、稍不安定ではあったが、糸
切れは起さなかった。
Comparative Example 2 Same as Example 1 except that 90vt% PEG200 aqueous solution (ratio of ether group to hydroxyl group is 1.5) was used as the internal coagulation liquid, inner diameter: 0.8111%, outer diameter: 1.3μl
When the hollow fiber membrane was spun, the hollow fiber membrane extruded from the nozzle swayed during the coagulation process and was a little unstable, but no fiber breakage occurred.

得られた中空糸膜の純水透過流束は1970ff /d
・h−atlと大きかったが、第4図に示すように中空
糸内表面を走査型電子顕微鏡(SEM)で倍率1万倍で
観察したところ、孔径0.3μm以下の穴が多数散在し
ていた。
The pure water permeation flux of the obtained hollow fiber membrane was 1970ff/d
・Although it was large (h-atl), as shown in Figure 4, when the inner surface of the hollow fiber was observed using a scanning electron microscope (SEM) at a magnification of 10,000 times, there were many scattered holes with a pore diameter of 0.3 μm or less. Ta.

比較例3 90vt%のジエチレングリコールモノメチルエーテル
(水酸基に対するエーテル基の比率が2.O)水溶液を
内部凝固液に使用した他は実施例1と同等にして内径0
 、8 ll11、外径1.3mmの中空糸膜を紡糸し
たところ、ノズルから押し出した中空糸膜は凝固浴中で
揺れて、稍不安定ではあったが、糸切れは起さなかった
Comparative Example 3 Same as Example 1 except that 90vt% diethylene glycol monomethyl ether (ratio of ether group to hydroxyl group is 2.0) aqueous solution was used as the internal coagulation liquid, but the inner diameter was 0.
, 8 ll11, when a hollow fiber membrane with an outer diameter of 1.3 mm was spun, the hollow fiber membrane extruded from the nozzle shook in the coagulation bath and was a little unstable, but no fiber breakage occurred.

得られた中空糸膜の純水透過流束は217ON /r#
・h ’ atlと大きかったが、中空糸内表面を走査
型電子顕微鏡(SEM)で倍率1万倍で観察したところ
、第5図に示す様に孔径05μm以下の崩れかけた多孔
質構造であった。
The pure water permeation flux of the obtained hollow fiber membrane was 217ON/r#
- h' atl, but when the inner surface of the hollow fiber was observed with a scanning electron microscope (SEM) at a magnification of 10,000 times, it was found to be a crumbling porous structure with a pore diameter of 05 μm or less, as shown in Figure 5. Ta.

実施例3〜5 内部凝固液として表1に示す3種を調製した。Examples 3-5 Three types of internal coagulation liquids shown in Table 1 were prepared.

これらを内部凝固液に使用した他は実施例1と同等にし
て内径0 、8 mm、外径1.3關の中空糸膜を紡糸
した。
Hollow fiber membranes with an inner diameter of 0.8 mm and an outer diameter of 1.3 mm were spun in the same manner as in Example 1 except that these were used as the internal coagulation liquid.

得られた中空糸膜の膜性能を評価した結果、表1に示す
様にすべて高性能であった。
As a result of evaluating the membrane performance of the obtained hollow fiber membranes, all were found to have high performance as shown in Table 1.

実施例6〜9 18重量部のPESを37重量部のDMSOと45重量
部のPE0200の混合溶媒に60℃で溶解して粘度1
05ポアズの透明均一ドープを調製した。
Examples 6 to 9 18 parts by weight of PES was dissolved in a mixed solvent of 37 parts by weight of DMSO and 45 parts by weight of PE0200 at 60°C to obtain a viscosity of 1.
A transparent uniform dope of 0.05 poise was prepared.

内部凝固液として、表2に示す4種を調製した。Four types of internal coagulation liquids shown in Table 2 were prepared.

これらのドープ及び内部凝固液を使用した以外は実施例
1と同等にして内径0.8us、外径1.3龍の中空糸
膜を紡糸した。
A hollow fiber membrane with an inner diameter of 0.8 us and an outer diameter of 1.3 mm was spun in the same manner as in Example 1 except that these dopes and internal coagulation liquid were used.

得られた中空糸膜の膜性能を評価した結果、表2に示す
様にすべて高性能であった。
As a result of evaluating the membrane performance of the obtained hollow fiber membranes, all were found to have high performance as shown in Table 2.

実施例10 18重量部のPESを40重量部のDMSo。Example 10 18 parts by weight of PES and 40 parts by weight of DMSo.

40重量部のPE0200及び2重量部・のグリセリン
からなる混合溶媒に60℃で溶解して粘度110ポアズ
の透明均一なドープを調製した。
A transparent and uniform dope having a viscosity of 110 poise was prepared by dissolving it in a mixed solvent consisting of 40 parts by weight of PE0200 and 2 parts by weight of glycerin at 60°C.

このドープを紡糸原液として使用した他は実施例1と同
等にして内径1.0關、外径1.5w+mの中空糸膜を
紡糸した。
A hollow fiber membrane having an inner diameter of 1.0 mm and an outer diameter of 1.5 w+m was spun in the same manner as in Example 1 except that this dope was used as the spinning dope.

得られた中空糸膜は純水透過流束21804) /rr
r・h−atl、BSA透過率100%、87G透過率
0%と高性能であった。
The obtained hollow fiber membrane has a pure water permeation flux of 21804) /rr
It had high performance with r/h-atl, BSA transmittance of 100%, and 87G transmittance of 0%.

実施例11 20重量部のPESを40重量部のDMSOと40重量
部のPE0200からなる混合溶媒に60℃で溶解して
粘度112ボイズの透明均一なドープを調製した。
Example 11 A transparent and uniform dope having a viscosity of 112 voids was prepared by dissolving 20 parts by weight of PES in a mixed solvent consisting of 40 parts by weight of DMSO and 40 parts by weight of PE0200 at 60°C.

このドープを紡糸原液とし87wt%のエチレングリコ
ール水溶液(水酸基に対するエーテル基の比率が1.0
)を内部凝固液に使用した他は実施例1と同等にして内
径0.8龍、外径1,3龍の中空糸膜を紡糸した。
This dope was used as a spinning stock solution and an 87 wt% ethylene glycol aqueous solution (the ratio of ether groups to hydroxyl groups was 1.0
) was used as the internal coagulation liquid, but in the same manner as in Example 1, a hollow fiber membrane with an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was spun.

得られた中空糸膜は純水透過流束21BOff /rr
r・h−at■、BSA透過率100%、87G透過率
0%と高性能であった。
The obtained hollow fiber membrane has a pure water permeation flux of 21BOff/rr
It had high performance with r.h-at■, BSA transmittance of 100%, and 87G transmittance of 0%.

[発明の効果コ 本発明によれば繰返単位が からなるポリエーテルスルホンを膜素材として、中空糸
内径が0.7■m以上の大径で、水道過流束が1800
11 /d −h −at1以上、分画分子量7万以上
の、熱的、機械的特性に優れた高透過流束、高分画分子
量の中空糸UF膜を安定して製造することが出来る。
[Effects of the invention] According to the present invention, polyether sulfone consisting of repeating units is used as the membrane material, the hollow fiber has a large inner diameter of 0.7 μm or more, and the water permeability is 1800 μm.
It is possible to stably produce a hollow fiber UF membrane having a high permeation flux and a high molecular weight cut-off with excellent thermal and mechanical properties, such as 11 /d-h-at1 or more and a molecular weight cut-off of 70,000 or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1、第2図は比較例1、第3図は実施例
2、第4図は比較例2、第5図は比較例3でそれぞれ得
られた繊維状の中空糸内表面の形状を示す倍率1万倍の
走査型電子顕微鏡写真である。 特許出願人  ダイセル化学工業株式会社シμ 図 床 図 暑コ 図
Figure 1 shows the interior of the fibrous hollow fibers obtained in Example 1, Figure 2 in Comparative Example 1, Figure 3 in Example 2, Figure 4 in Comparative Example 2, and Figure 5 in Comparative Example 3. This is a scanning electron micrograph at a magnification of 10,000 times showing the shape of the surface. Patent applicant: Daicel Chemical Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)素材ポリマーの繰り返し単位が ▲数式、化学式、表等があります▼ からなり、内径が0.7mm以上の太径中空糸膜の製造
方法であって、紡糸原液が15〜20重量%のポリエー
テルスルホンと、40重量%以上の炭素数5以上でかつ
常温で液体のエーテルアルコール、多価アルコール及び
それらの誘導体から選ばれる少くとも一種の該ポリマー
の非溶剤を含有し、25℃で80ポアズ以上の粘度を有
し、内部凝固液が5〜20重量%の水と、炭素数6以下
のエーテルアルコール、多価アルコール及びそれらの誘
導体から選ばれる少くとも一種を含有する均一溶液であ
ることを特徴とする太径ポリエーテルスルホン中空糸膜
の製造方法。
(1) A method for producing a large-diameter hollow fiber membrane with an inner diameter of 0.7 mm or more, in which the repeating unit of the material polymer is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and the spinning dope is 15 to 20% by weight. Contains polyether sulfone and at least one non-solvent for the polymer selected from ether alcohols, polyhydric alcohols, and derivatives thereof, which have carbon atoms of 5 or more and are liquid at room temperature in an amount of 40% by weight, and It has a viscosity of Poise or higher, and the internal coagulating liquid is a homogeneous solution containing 5 to 20% by weight of water and at least one member selected from ether alcohols having 6 or less carbon atoms, polyhydric alcohols, and derivatives thereof. A method for producing a large diameter polyethersulfone hollow fiber membrane, characterized by:
(2)純水透過流束が、1800l/m^2・h・at
m以上である請求項1記載の太径ポリエーテルスルホン
中空糸膜の製造方法。
(2) Pure water permeation flux is 1800l/m^2・h・at
The method for producing a large-diameter polyethersulfone hollow fiber membrane according to claim 1, wherein the diameter is at least m.
JP2168000A 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane Expired - Fee Related JP2794610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168000A JP2794610B2 (en) 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168000A JP2794610B2 (en) 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH0457915A true JPH0457915A (en) 1992-02-25
JP2794610B2 JP2794610B2 (en) 1998-09-10

Family

ID=15859946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168000A Expired - Fee Related JP2794610B2 (en) 1990-06-26 1990-06-26 Method for producing large-diameter polyethersulfone hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2794610B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07868A (en) * 1993-06-18 1995-01-06 Nifco Inc Shower head
JP2006212622A (en) * 2005-01-04 2006-08-17 Mitsubishi Rayon Co Ltd Method for deciding rupture resistant membrane thickness of hollow fiber membrane and method for manufacturing hollow fiber membrane
JP2009536090A (en) * 2006-05-06 2009-10-08 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Ultrafiltration membrane
JP2016140802A (en) * 2015-01-30 2016-08-08 ダイセン・メンブレン・システムズ株式会社 Hollow fiber type semipermeable membrane and production method for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228017A (en) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd Preparation of hollow yarn membrane of aromatic polysulfone
JPS61200806A (en) * 1985-03-01 1986-09-05 Teijin Ltd Polyether sulfone porous hollow yarn membrane and its production
JPH0194902A (en) * 1987-06-12 1989-04-13 Kuraray Co Ltd Polysulfone hollow fibrous membrane and production thereof
JPH02164424A (en) * 1988-12-20 1990-06-25 Asahi Chem Ind Co Ltd Manufacture of hollow fiber membrane of synthetic polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228017A (en) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd Preparation of hollow yarn membrane of aromatic polysulfone
JPS61200806A (en) * 1985-03-01 1986-09-05 Teijin Ltd Polyether sulfone porous hollow yarn membrane and its production
JPH0194902A (en) * 1987-06-12 1989-04-13 Kuraray Co Ltd Polysulfone hollow fibrous membrane and production thereof
JPH02164424A (en) * 1988-12-20 1990-06-25 Asahi Chem Ind Co Ltd Manufacture of hollow fiber membrane of synthetic polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07868A (en) * 1993-06-18 1995-01-06 Nifco Inc Shower head
JP2006212622A (en) * 2005-01-04 2006-08-17 Mitsubishi Rayon Co Ltd Method for deciding rupture resistant membrane thickness of hollow fiber membrane and method for manufacturing hollow fiber membrane
JP2009536090A (en) * 2006-05-06 2009-10-08 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Ultrafiltration membrane
JP2016140802A (en) * 2015-01-30 2016-08-08 ダイセン・メンブレン・システムズ株式会社 Hollow fiber type semipermeable membrane and production method for the same

Also Published As

Publication number Publication date
JP2794610B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US4481260A (en) Aromatic polysulfone type resin hollow fiber membrane and process for producing the same
US7267872B2 (en) Braid-reinforced hollow fiber membrane
US5232597A (en) Polysulfone porous hollow fiber
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
US4612119A (en) Hollow fiber filter medium and process for preparing the same
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
US4822489A (en) Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
CN106731897B (en) High-pollution-resistance polyvinylidene fluoride hollow fiber ultrafiltration membrane, and preparation method and device thereof
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
JP2542572B2 (en) Hollow fiber
JPH0569571B2 (en)
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JPH0457915A (en) Production of polyether sulfone hollow fiber membrane having large diameter
KR100321459B1 (en) Polyacrylonitrile-Based Filtration Membrane in a Hollow Fiber State
JPH0420649B2 (en)
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JP3224307B2 (en) Manufacturing method of hollow fiber membrane
KR100200040B1 (en) Sponge-like polysulphone hollow fibre membrane and manufacturing method thereof
JP3318251B2 (en) Method for producing polyacrylonitrile-based hollow fiber membrane
JPS63100902A (en) Aromatic polysulfone hollow yarn membrane and its manufacture
JPS63218213A (en) Production of semipermeable membrane composed of polysulfone hollow fiber
JPH05337343A (en) Production of hollow fiber membrane

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees