JP2542572B2 - Hollow fiber - Google Patents

Hollow fiber

Info

Publication number
JP2542572B2
JP2542572B2 JP60255017A JP25501785A JP2542572B2 JP 2542572 B2 JP2542572 B2 JP 2542572B2 JP 60255017 A JP60255017 A JP 60255017A JP 25501785 A JP25501785 A JP 25501785A JP 2542572 B2 JP2542572 B2 JP 2542572B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
pores
spinning
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60255017A
Other languages
Japanese (ja)
Other versions
JPS62117812A (en
Inventor
文夫 木田
政司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP60255017A priority Critical patent/JP2542572B2/en
Publication of JPS62117812A publication Critical patent/JPS62117812A/en
Application granted granted Critical
Publication of JP2542572B2 publication Critical patent/JP2542572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高分子化合物からなる新規な中空繊維、特に
高い透水性と優れた分離能とを有する膜濾過型の中空繊
維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel hollow fiber made of a polymer compound, particularly to a membrane filtration type hollow fiber having high water permeability and excellent separation ability.

〔従来の技術〕[Conventional technology]

従来から工業、医療分野などにおいては、支持層上に
均一かつ極めて薄い緻密な活性層を設けた非対称構造の
中空繊維が製造され、逆浸透膜や限外濾過膜などとして
使用されている。しかしながら、この種の中空繊維は蛋
白質などの比較的分子量の大きい物質を通すことができ
ず、したがって細孔の寸法が0.01μm以上であるような
膜濾過型の中空繊維が切望されていた。
Conventionally, in the industrial and medical fields, hollow fibers having an asymmetric structure in which a uniform and extremely thin dense active layer is provided on a support layer have been produced and used as a reverse osmosis membrane or an ultrafiltration membrane. However, this type of hollow fiber cannot pass a substance having a relatively large molecular weight such as protein, and therefore, a membrane filtration type hollow fiber having a pore size of 0.01 μm or more has been desired.

この要望に応じて、0.05〜1.0μmの孔径を有しかつ
活性点が均一に分散した三次元網目状組織を有する均質
膜が最近報告されている〔特公昭57−49248号〕。しか
しながら、この膜は均一な活性点を有する均質構造であ
るため、抵抗がかなり大きくなりまた透水量も1/
m2、hr.mmHgと低く、たとえば血液から血漿を分離する
場合には血漿分離速度が小さいなどの難点がある。
In response to this demand, a homogeneous membrane having a pore size of 0.05 to 1.0 μm and a three-dimensional network structure in which active points are uniformly dispersed has been recently reported [Japanese Patent Publication No. 57-49248]. However, since this membrane has a homogeneous structure with uniform active sites, the resistance is considerably high and the water permeability is 1 /
As low as m 2 and hr.mmHg, there are drawbacks such as a low plasma separation rate when separating plasma from blood.

したがって、当業界においては用途範囲が広くかつ目
詰りの少ない、高い透水性と優れた分離能とを備えた膜
濾過型中空繊維の開発が依然として要望されている。
Therefore, there is still a need in the art to develop a membrane filtration type hollow fiber having a wide range of applications and less clogging, having high water permeability and excellent separation ability.

他方、特開昭54−15476号公報は、凝固性液体を使用
しかつ紡糸工程で巻取速度と紡糸原液吐出速度との比を
1.5〜6.0に設定することにより中空繊維膜における内表
面のフィブリルを配向させたセルロースアセテートの血
漿分離用膜を開示している。この膜は透水量2.3〜2.9
/m2.hr.mmHgかつ血漿分離速度40〜55ml/min.のようにか
なり改善されているが、内表面のフィブリル形成により
凹凸が存在するため一般の濾過膜として使用する際目詰
りが発生するなどの難点を有するためその用途は血漿分
離膜のみに限られている。さらに、この中空繊維の製造
においては芯液と凝固浴との両方から中空糸条を凝固さ
せて細孔形成を行なうので、紡糸原液,芯液および/ま
たは凝固浴の変動などにより細孔寸法が変化するなど、
製造工程の面からも難点がある。
On the other hand, JP-A-54-15476 discloses the use of a coagulating liquid and the ratio of the take-up speed to the spinning dope discharge speed in the spinning process.
Disclosed is a plasma separation membrane of cellulose acetate in which the fibrils on the inner surface of the hollow fiber membrane are oriented by setting it to 1.5 to 6.0. This membrane has a water permeability of 2.3 to 2.9.
/ m 2 .hr.mmHg and plasma separation rate of 40 to 55 ml / min., but it is clogged when used as a general filtration membrane due to the presence of irregularities due to the formation of fibrils on the inner surface. Its use is limited only to the plasma separation membrane because of the drawbacks such as Further, in the production of this hollow fiber, since the hollow fiber is coagulated from both the core liquid and the coagulation bath to form the pores, the pore size may be changed due to the fluctuation of the spinning stock solution, the core liquid and / or the coagulation bath. Change,
There are also difficulties in terms of the manufacturing process.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

したがって、本発明は上記従来の問題点を解決すべ
く、 (1) 分離能を良好ならしめるため細孔径分布を狭く
し、 (2) 使用中の目詰りによる分離能や透水性の低下を
防止するため処理対象物質に対し吸着作用を示さない素
材を選択すると共に、濾過面を平滑とし、 (3) 透水性を大きくするために空孔率を高くし、か
つ (4) 機械的強度を高くし、かつ圧密化が殆んど生じ
ない構造にした、 中空繊維の開発に成功し、本発明に到った。
Therefore, in order to solve the above-mentioned conventional problems, the present invention (1) narrows the pore size distribution in order to improve the separation performance, and (2) prevents the separation performance and water permeability from decreasing due to clogging during use. Therefore, select a material that does not have an adsorption effect on the substance to be treated, smooth the filtration surface, (3) increase porosity to increase water permeability, and (4) increase mechanical strength. The present invention succeeded in developing a hollow fiber having a structure that hardly causes consolidation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、高い透水性と優れた分離能とを有す
る中空繊維は、細孔径が内側から外側に向って小さくな
っている網目構造の非対称膜に対し内表面上に多数の細
孔を有する薄い平滑な壁膜を設けることにより達成され
る。すなわち、中空繊維膜の厚み方向での大部分の細孔
径を、外表面の濾別対象によって決める孔径よりも大き
くしたので、同一目的の均一孔径の網目組織のものに較
べて高い透水量を付与することができ、また、内表面上
の薄い多孔性の壁膜、およびそれと孔径がほぼ等しい網
目構造外表面を持たせたことによる二重濾過構造によ
り、優れた分離能を付与することができる。
According to the present invention, the hollow fiber having high water permeability and excellent separation ability has a large number of pores on the inner surface with respect to the asymmetric membrane having a network structure in which the pore diameter is reduced from the inside to the outside. This is accomplished by providing a thin smooth wall membrane having. That is, most of the pore diameters in the thickness direction of the hollow fiber membrane were made larger than the pore diameter determined by the object of filtration on the outer surface, so that a higher water permeation amount was given compared to a mesh structure of uniform pore diameter for the same purpose. In addition, due to the thin porous wall membrane on the inner surface and the double filtration structure due to having the network outer surface having a pore diameter almost equal to that of the membrane, excellent separation ability can be imparted. .

さらに詳細には、高い透水性を得るには空孔率60%以
上(好ましくは70%以上)を必要とする一方、圧密化を
生ぜしめないためには内表面の壁膜を支持する構造を大
きな欠損部のない網目状にするのが好ましい。さらに、
中空繊維の内部から外部へ濾過する場合、内面の壁膜は
汚染や目詰りを少なくすべく平滑にするのが好ましい。
内面の壁膜および外面の網目構造における細孔の寸法
は、分離すべき物質に応じて自由に選択しうるが、濾過
においては平均0.01〜3μmの範囲が一般的である。ま
た内面の壁膜の圧さは使用上破れなどの問題を生じない
範囲で薄いほど良く、1μm以下が好ましい。分離能を
より向上させるには、内面壁膜の細孔を円形に近づける
ことにより細孔の寸法を均一にすることが好ましい。材
料として使用する高分子化合物は、溶剤に溶けて繊維形
成能を示す重合体であれば特に限定はないが、使用中に
吸着などによる目詰りのため分離能、透水性の低下を惹
起しないものが望ましく、高い透水性と優れた分離能と
を有する膜が容易に製造されうる点でセルロース誘導
体、特にセルロースアセテートが有利である。
More specifically, a porosity of 60% or more (preferably 70% or more) is required to obtain high water permeability, while a structure that supports the wall film on the inner surface is required to prevent compaction. It is preferable to form a mesh with no large defects. further,
When filtering from the inside to the outside of the hollow fiber, it is preferable that the wall film on the inner surface is smooth to reduce contamination and clogging.
The size of the pores in the inner wall membrane and the outer mesh structure can be freely selected according to the substance to be separated, but in filtration, an average range of 0.01 to 3 μm is general. Further, the pressure of the wall film on the inner surface is preferably as thin as possible within a range that does not cause problems such as breakage during use, and is preferably 1 μm or less. In order to further improve the separability, it is preferable to make the pores of the inner wall membrane closer to a circular shape so that the pores have a uniform size. The polymer compound used as a material is not particularly limited as long as it is a polymer which is soluble in a solvent and has a fiber-forming ability, but does not cause a decrease in separability and water permeability due to clogging due to adsorption during use. However, a cellulose derivative, particularly cellulose acetate, is advantageous in that a membrane having high water permeability and excellent separation ability can be easily produced.

したがって、本発明による中空繊維は、空孔率が60%
以上の高分子膜から形成された中空繊維であり、その中
空繊維は、その中空内表面に存在する、厚さ1μm以
下、孔径0.01〜3μmの多数の細孔を備えた平滑膜から
なる壁膜と、その壁膜を外側から支持する三次元網目状
組織とにより構成され、前記壁膜の細孔の形状をほぼ円
形とすると共に、前記網目状組織が内側から外側に向っ
て密になる構造を有し、前記網目状組織の孔径が、前記
壁膜のすぐ外側では壁膜の細孔の直径より大きく、かつ
その外表面では0.01〜3μmであり、かつ、芯液として
紡糸原液および凝固液に対して溶解性が小さいかほとん
どない液体を使用し、凝固浴温度を紡糸原液のゲル化温
度以下として紡糸することによって得られる構造を有す
ることを特徴とする組織的に二重構造よりなっている。
Therefore, the hollow fiber according to the present invention has a porosity of 60%.
A hollow fiber formed from the above polymer film, the hollow fiber being a wall film made of a smooth film having a large number of pores having a thickness of 1 μm or less and a pore diameter of 0.01 to 3 μm existing on the inner surface of the hollow fiber. And a three-dimensional mesh structure that supports the wall membrane from the outside, and the shape of the pores of the wall membrane is substantially circular, and the mesh structure is dense from the inside to the outside. The pore size of the mesh structure is larger than the diameter of the pores of the wall membrane immediately outside the wall membrane and 0.01 to 3 μm on the outer surface thereof, and the spinning solution and coagulation solution are used as core fluid. It has a systematically double structure characterized by having a structure obtained by spinning using a liquid having little or little solubility with respect to the coagulation bath temperature below the gelation temperature of the spinning dope. There is.

上記のように、内表面側が粗で外表面側が密な網目構
造からなる非対称的構造でかつ内面平滑な中空繊維は本
発明によれば次のように製造される。すなわち、高分子
化合物を溶剤に溶解させた紡糸原液を環状紡糸口から吐
出すると共に環状紡糸口の中央から芯液を吐出させ、次
いで凝固浴中で凝固させる中空繊維の製造方法におい
て、−10〜+40℃でゲル化する紡糸原液をゲル化温度よ
り高い温度にて吐出させ、かつ芯液として紡糸原液と凝
固液との両者に対し凝固性、溶解性が小さいかまたは殆
んど凝固性、溶解性のない液体を使用し、かつ凝固浴温
度を紡糸原液のゲル化温度以下とすることにより製造さ
れる。
As described above, according to the present invention, a hollow fiber having an asymmetric structure and a smooth inner surface having a mesh structure in which the inner surface side is rough and the outer surface side is dense is manufactured as follows. That is, in the method for producing a hollow fiber in which a spinning solution prepared by dissolving a polymer compound in a solvent is discharged from an annular spinning port and a core liquid is discharged from the center of the annular spinning port, and then coagulated in a coagulating bath, -10 to The spinning dope that gels at + 40 ° C is discharged at a temperature higher than the gelation temperature, and the coagulation and solubility of the spinning dope and coagulation liquid as core liquid are small or almost all It is produced by using a liquid having no property and setting the coagulation bath temperature to be equal to or lower than the gelling temperature of the spinning dope.

このように芯液として紡糸原液および凝固液の両者に
対し凝固性、溶解性が小さいかまたは殆んど凝固性、溶
解性のない液体を使用すれば、殆んど外表面からのみ凝
固して中空繊維の内面には平滑な細孔を有する薄い壁膜
が形成されることが判明した。ここで、「凝固性、溶解
性が小さいかまたは殆んど凝固性、溶解性のない」と
は、20℃で該当する二液を等量混合した後、静置した場
合に2層に分かれるような溶け具合でしかも殆んど凝固
を示さない状態を云う(なお、20℃で既にゲル化してい
るものについては適宜温度を上げてテストすることは勿
論である)。したがって、殆んど外面からの凝固だけに
よって中空繊維を形成させるので、製造上および細孔形
成上、紡糸原液はゲル化し易いように有機もしくは無機
溶剤の他に凝固剤や膨潤剤などを含有するのが好まし
い。また、環状紡糸口より吐出させる際、ゲル化温度よ
り高い温度(好ましくは+5〜+50℃の範囲)で吐出さ
せ、紡糸原液のゲル化温度より低い温度の凝固浴中に迅
速に導入してゲル化させるのが好適である。紡糸原液と
凝固液との両者に対し凝固性、溶解性が小さいかまたは
殆んど凝固性、溶解性のない芯液としては、特に限定し
ないが炭化水素,ハロゲンァ化炭化水素およびカルボン
酸誘導体のうち少なくとも1種を使用するのが内表面の
壁膜形成上およびその壁膜の細孔形成上好ましい。な
お、この種の芯液に少量(好ましくは10重量%以下の
量)のアルコール類を添加すれば、細孔が円形化かつ均
一化されて分離性能が向上するので有利である。紡糸原
液中の高分子化合物の濃度は10〜40重量%、好ましくは
15〜30重量%の範囲が良く、40%以上では粘度が高くな
り過ぎて紡糸が極めて困難となる一方、10%以下では製
造される中空繊維が著しく弱くなり、使用に耐え難くな
る。
As described above, when a liquid having little coagulability or solubility or almost no coagulability or solubility with respect to both the spinning solution and the coagulating liquid is used as the core liquid, the coagulation is almost exclusively from the outer surface. It was found that a thin wall membrane having smooth pores was formed on the inner surface of the hollow fiber. Here, the phrase "coagulability and solubility are small or almost no coagulability and solubility" means that when two equivalents of the corresponding two liquids are mixed in equal amounts and then allowed to stand, they are separated into two layers. It means such a melting state and shows almost no solidification (it is needless to say that the gelation at 20 ° C. is appropriately raised and tested). Therefore, since the hollow fibers are formed almost only by solidification from the outer surface, the spinning dope contains a coagulant, a swelling agent, etc. in addition to the organic or inorganic solvent in order to facilitate gelation in terms of production and formation of pores. Is preferred. In addition, when it is discharged from the annular spinning port, it is discharged at a temperature higher than the gelation temperature (preferably in the range of +5 to + 50 ° C) and rapidly introduced into the coagulation bath at a temperature lower than the gelation temperature of the spinning dope. It is preferable to make it. The core liquid which has little or almost no coagulability or solubility in both the spinning dope and the coagulating liquid is not particularly limited, but is not limited to hydrocarbons, halogenated hydrocarbons and carboxylic acid derivatives. It is preferable to use at least one of them from the viewpoint of forming a wall film on the inner surface and forming pores of the wall film. It is advantageous to add a small amount (preferably an amount of 10% by weight or less) of alcohol to this type of core liquid because the pores are circularized and uniformized, and the separation performance is improved. The concentration of the polymer compound in the spinning dope is 10 to 40% by weight, preferably
A preferable range is 15 to 30% by weight, and when it is 40% or more, the viscosity becomes too high and spinning becomes extremely difficult, while when it is 10% or less, the hollow fiber produced becomes extremely weak and it becomes difficult to use.

紡糸方式は湿式または乾湿式のいずれでもよいが、高
速紡糸が可能となる乾湿式法がより好適である。
The spinning method may be either wet or dry, but the dry-wet method that enables high-speed spinning is more preferable.

乾湿式紡糸の場合、空間滞留時間は延伸点の安定化の
ため、0.01〜5秒が好ましい。この空間域は、空気,炭
酸ガス,窒素などの気体なら何でも良く、また加温した
り調湿することも可能である。
In the case of dry-wet spinning, the space residence time is preferably 0.01 to 5 seconds in order to stabilize the stretching point. This space area may be any gas such as air, carbon dioxide gas, nitrogen, etc., and can be heated or regulated in humidity.

凝固浴は紡糸原液から高分子化合物を凝固させうる限
り当業界に周知された任意の液体としうるが、中空繊維
の管理上、紡糸原液と同一の溶剤もしくは水を使用する
ことができ、無機塩などの塩類或いは細孔形成剤として
少なくとも1種のアルコール類を共存させてもよい。
The coagulation bath may be any liquid known in the art as long as it can coagulate the polymer compound from the spinning dope, but for the management of the hollow fibers, the same solvent or water as the spinning dope can be used. At least one alcohol may be allowed to coexist as a salt or a pore-forming agent.

〔作用〕[Action]

本発明による中空繊維は組織的に二重構造を有しかつ
非対称な網目構造を有するので、特公昭57−49248号の
均質膜や特開昭54−15476号の内面に0〜50゜で配向し
たフィブリルを備えた膜とは全く異なり、高い透水性と
2段濾過構造に基づく優れた分離能を有するだけでな
く、使用時においてはその特殊構造のため圧密化も少な
く、また芯液として紡糸原液および凝固液の両者に対し
凝固性、溶解性が小さいかまたは殆んど凝固性、溶解性
のない液体を使用すれば、殆んど外表面からのみ凝固し
て中空繊維の内面には平滑な細孔を有する薄い壁膜が形
成され、内面から外面への濾過に使用すれば内面が平滑
であるため汚れや目詰りが少なく、膜濾過型の中空繊維
として理想的である。
Since the hollow fiber according to the present invention has a systematically double structure and an asymmetric network structure, it is oriented at 0 to 50 ° on the homogeneous membrane of JP-B-57-49248 or the inner surface of JP-A-54-15476. Unlike membranes with fibrils, it not only has high water permeability and excellent separation performance based on a two-stage filtration structure, but also has little special consolidation during use, and is also spun as a core liquid. If a liquid that has little or no coagulability or solubility in both the stock solution and the coagulation liquid is used, it will almost only solidify from the outer surface and the inner surface of the hollow fiber will be smooth. A thin wall membrane having fine pores is formed, and when used for filtration from the inner surface to the outer surface, the inner surface is smooth, so that dirt and clogging are reduced and it is ideal as a membrane filtration type hollow fiber.

〔実施例〕〔Example〕

以下、本発明を一層良く理解するため幾つかの実施例
により説明するが、これらのみに限定されるものではな
い。
Hereinafter, the present invention will be described with reference to some examples for better understanding, but the present invention is not limited thereto.

実施例1 酢化度55%のセルロースアセテート18重量部をジメチ
ルスルホキシド72重量部および20重量%塩化カルシウム
水溶液10重量部よりなる混液に70℃にて溶解し、濾過脱
泡して紡糸原液を作成した。この紡糸原液は20℃でゲル
化する。この紡糸原液を40℃にて慣用の環状紡糸口から
吐出させると共に、環状紡糸口の中央からイソプロピル
ミリステート80重量部とジフルオロテトラクロルエタン
15重量部とエタノール5重量部との混液よりなる芯液を
吐出させ、次いで空間中を0.05秒間走らせた後、5℃に
保たれたジメチルスルホキシドとグリセリンとエタノー
ルと水との容量比4:2:3:1の凝固浴に導入して凝固せし
め、20m/min.の速度で巻取り、次いで後処理にて充分洗
浄して溶剤などを除去した。得られた中空繊維は内径30
0μm、膜厚70μmを有し、その断面は第1図に走査型
電子顕微鏡写真で示したように内側(写真向かって右
側)から外側に向って密な網目構造を持っている。内表
面は、第2図に同様な写真で示したように、ほぼ円形に
近い細孔の壁膜を形成している。同様な写真として示し
た第3図は、配向したフィブリル構造の外表面を示して
いる。細孔の寸法は、走査型電子顕微鏡で検査した結
果、内表面において平均0.3μmかつ外表面において平
均0.5μmであった(ただし、細孔の形状が楕円形であ
る場合は、短径の寸法を採用した)。
Example 1 18 parts by weight of cellulose acetate having a degree of acetylation of 55% was dissolved in a mixed solution of 72 parts by weight of dimethyl sulfoxide and 10 parts by weight of a 20% by weight aqueous solution of calcium chloride at 70 ° C., and degassed by filtration to prepare a spinning dope. did. This spinning dope gels at 20 ° C. This spinning dope was discharged from a conventional annular spinning port at 40 ° C, and 80 parts by weight of isopropyl myristate and difluorotetrachloroethane were discharged from the center of the annular spinning port.
A core liquid consisting of a mixture of 15 parts by weight of ethanol and 5 parts by weight of ethanol was discharged, followed by running in space for 0.05 seconds, and then the volume ratio of dimethyl sulfoxide, glycerin, ethanol and water kept at 5 ° C was 4: 2. It was introduced into a coagulation bath of: 3: 1 for coagulation, wound at a speed of 20 m / min., And then sufficiently washed in a post-treatment to remove the solvent and the like. The hollow fiber obtained has an inner diameter of 30.
It has a thickness of 0 μm and a film thickness of 70 μm, and its cross section has a dense mesh structure from the inside (right side toward the photo) toward the outside as shown in the scanning electron micrograph in FIG. As shown in a similar photograph in FIG. 2, the inner surface forms a wall film of pores that are almost circular. Figure 3, shown as a similar photograph, shows the outer surface of an oriented fibril structure. As a result of inspecting with a scanning electron microscope, the size of the pores was 0.3 μm on average on the inner surface and 0.5 μm on the outer surface (however, if the shape of the pores was elliptical, the dimension of the minor axis was It was adopted).

空孔率は、セルロースアセテートの比重を1.35とし、
中空繊維の膜厚を光学顕微鏡で実測し、試料長を20cmと
しかつ試料の絶乾重量(105℃、2hrs.)を実測すること
により決定した。すなわち、空孔率は、実測重量を断面
積と長さとの積により割算して算出した結果、83%であ
った。
Porosity, the specific gravity of cellulose acetate is 1.35,
The film thickness of the hollow fiber was measured by an optical microscope, the sample length was set to 20 cm, and the absolute dry weight (105 ° C., 2 hrs.) Of the sample was measured. That is, the porosity was 83% as a result of dividing the measured weight by the product of the cross-sectional area and the length.

この中空繊維の両端をウレタンで固定して、有効面積
0.5m2の小型モジュールを作成した。蒸留水を50mmHgに
て1時間透過した際の透水量は5.2/m2.hr.mmHgの高い
値を示した。さらに、牛血清のγ−グロブリンは99%透
過し、かつ4600Åのポリスチレンラテックス粒子の阻止
率は100%であった。
Fix both ends of this hollow fiber with urethane to make effective area
A small module of 0.5m 2 was created. The amount of water permeated through distilled water at 50 mmHg for 1 hour was as high as 5.2 / m 2 .hr.mmHg. Further, γ-globulin of bovine serum permeated 99%, and the inhibition rate of 4600Å polystyrene latex particles was 100%.

次に、前記モジュールを使用して牛血液の血漿分離を
実施した。中空糸内側にヘマトクリット41%の牛血液を
100ml/minにて流し、膜厚圧力差(中空糸内側と外側の
圧力差)20mmHgの圧力にて血漿の濾過量を測定した。開
始30分後の濾過量は28ml/minであり、開始4時間後の濾
過量は25ml/minで、濾過量の低下率は10.7%であった。
Next, plasma separation of bovine blood was performed using the module. 41% hematocrit cow blood inside the hollow fiber
Flowing at 100 ml / min, the plasma filtration rate was measured at a membrane pressure difference (pressure difference between the inside and outside of the hollow fiber) of 20 mmHg. The filtration rate 30 minutes after the start was 28 ml / min, the filtration rate 4 hours after the start was 25 ml / min, and the reduction rate of the filtration rate was 10.7%.

比較例1 芯液としてジメチルスルホキシドとグリセリンとエタ
ノールと水との容量比3:33:1の混液を使用した以外は、
実施例1と同じ条件下で中空繊維を作成した。
Comparative Example 1 except that a mixed solution of dimethyl sulfoxide, glycerin, ethanol, and water in a volume ratio of 3: 33: 1 was used as the core liquid.
Hollow fibers were prepared under the same conditions as in Example 1.

得られた中空繊維は内径290μm、膜厚68μmを有
し、その断面と内表面と外表面とをそれぞれ走査型電子
顕微鏡写真として第4,5および6図に示す。細孔の平均
寸法は内表面において0.8μmかつ外表面において0.6μ
mであった。これら写真から判るように、断面はほぼ均
一な網目構造を有し、内外表面は配向したフィブリル構
造を示し、空孔率は81%であった。第4図の断面写真に
おいて、向かって左分が内側で、第1図の内側よりも粗
面であることが分かる。実施例1におけると同様に性能
を検査した結果、透水量は1.1/m2.hr.mmHgであり、牛
血清γ−グロブリンは97%透過しかつ4600Åのポリスチ
レンラテックス粒子の阻止率は100%であった。
The obtained hollow fiber has an inner diameter of 290 μm and a film thickness of 68 μm, and its cross section, inner surface and outer surface are shown in FIGS. 4, 5 and 6 as scanning electron micrographs, respectively. The average size of the pores is 0.8μm on the inner surface and 0.6μ on the outer surface.
It was m. As can be seen from these photographs, the cross section had a substantially uniform network structure, the inner and outer surfaces had an oriented fibril structure, and the porosity was 81%. In the cross-sectional photograph of FIG. 4, it can be seen that the left side is the inner side and the surface is rougher than the inner side of FIG. As a result of examining the performance as in Example 1, the water permeability was 1.1 / m 2 .hr.mmHg, bovine serum γ-globulin was 97% permeated, and the inhibition rate of polystyrene latex particles of 4600Å was 100%. there were.

実施例1の牛血液の血漿分離に従って、比較例1の膜
につき同様の試験を実施して、開始30分後32ml/minであ
ったが開始4時間後の濾過量は21ml/minであり、濾過量
の低下率は34.3%であった。
A similar test was performed on the membrane of Comparative Example 1 according to the plasma separation of bovine blood of Example 1 and was 32 ml / min 30 minutes after the start but the filtration rate after 4 hours was 21 ml / min. The reduction rate of the filtration amount was 34.3%.

実施例2 ポリスルホン(P−1800,UCC社製)15重量部およびポ
リビニルピロリドン(平均分子量40,000)30重量部をN
−メチル−2−ピロリドン55重量部に60℃で溶解させ、
濾過脱泡して紡糸原液を作成した。この紡糸原液は21℃
でゲル化する。この紡糸原液を55℃で環状紡糸口から吐
出させると共に、環状紡糸口の中央からn−トリデカン
を芯液として吐出させ、次いで空間中を0.03秒間走らせ
た後、0℃に保たれたN−メチル−2−ピロリドンと水
との容量比8:2の凝固浴に導入して凝固せしめ、15m/mi
n.の速度で巻取った。次いで、後処理により充分洗浄し
て溶剤などを除去した。
Example 2 15 parts by weight of polysulfone (P-1800, UCC) and 30 parts by weight of polyvinylpyrrolidone (average molecular weight 40,000) were added to N.
Dissolve 55 parts by weight of methyl-2-pyrrolidone at 60 ° C.,
Filtration and defoaming were performed to prepare a spinning dope. This spinning solution is 21 ℃
To gel. This spinning dope was discharged from the annular spinning port at 55 ° C, and n-tridecane was discharged from the center of the annular spinning port as the core liquid, which was then run in the space for 0.03 seconds and then kept at 0 ° C in N-methyl. -2-Pyrrolidone and water are introduced into a coagulation bath with a volume ratio of 8: 2 to coagulate, and 15m / mi
Winded at a speed of n. Then, the post-treatment was sufficiently washed to remove the solvent and the like.

得られた中空繊維は内径400μm、膜厚50μmを有
し、実施例1におけるとほぼ同様な構造を示した。空孔
率(ポリスルホンの比重を1.25とする)は86%であっ
た。透水量は4.1/m2.hr.mmHgであり、牛血清γ−グロ
ブリンは100%透過しかつ4600Åのポリスチレンラテッ
クス粒子の阻止率は99.5%であった。
The obtained hollow fiber had an inner diameter of 400 μm and a film thickness of 50 μm, and showed a structure similar to that in Example 1. The porosity (assuming the specific gravity of polysulfone to be 1.25) was 86%. The water permeation rate was 4.1 / m 2 .hr.mmHg, 100% bovine serum γ-globulin was permeated, and the inhibition rate of 4600Å polystyrene latex particles was 99.5%.

比較例2 芯液としてN−メチル−2−ピロリドンと水との容量
比75:25の混液を使用した以外は、実施例2と同様にし
て中空繊維を作成した。得られた中空繊維は内径390μ
m、膜厚48μmを有しかつ比較例1と同様な構造を有し
て、その空孔率は85%であった。
Comparative Example 2 A hollow fiber was prepared in the same manner as in Example 2 except that a mixed liquid of N-methyl-2-pyrrolidone and water having a volume ratio of 75:25 was used as the core liquid. The hollow fiber obtained has an inner diameter of 390μ.
m, the film thickness was 48 μm, and the structure was the same as in Comparative Example 1, and the porosity was 85%.

実施例1におけると同様に、性能を検査した結果、透
水量は1.8/m2.hr.mmHg、牛血清γ−グロブリンの透過
は99%かつ4600Åのポリスチレンラテックス粒子の阻止
率は100%であった。
As in Example 1, the performance was tested to find that the water permeation rate was 1.8 / m 2 .hr.mmHg, bovine serum γ-globulin permeation was 99% and the 4600Å polystyrene latex particle rejection was 100%. It was

〔発明の効果〕〔The invention's effect〕

本発明による膜濾過型の中空繊維は単位容積当りの膜
面積が増大し、しかも膜の透水率が高いため、低価格に
て多量処理が可能である。さらに、膜の製造条件に応じ
て広範囲の細孔寸法を有するものが得られ、内面が平滑
で使用中の目詰まりが小さく使用寿命が長く、膜の分離
能が優れている点から醸造,食品工業,医療,医薬品工
業,化学工業など多くの分野で幅広く使用することがで
きる。たとえば、醸造,食品工業分野ではビール,清
酒,ワイン,炭酸飲料,糖液などの製造工程における酵
母,カビ類,雑菌,濁りなどの除去、また医療分野にお
いては無菌水の製造,血液濾過における血漿分離,血漿
中の蛋白分画,製剤の濾過精製などに、或いは化学工業
において水,溶剤,作動油など各種液体からの微粒子,
油,エマルジョンの除去など広汎な用途に使用すること
ができる。
Since the membrane filtration type hollow fiber according to the present invention has an increased membrane area per unit volume and has a high membrane water permeability, it can be processed in large quantities at a low cost. In addition, a wide range of pore sizes can be obtained according to the manufacturing conditions of the membrane, the inner surface is smooth, the clogging during use is small, the service life is long, and the separation ability of the membrane is excellent. It can be widely used in many fields such as industry, medical care, pharmaceutical industry, and chemical industry. For example, in the fields of brewing and food industry, removal of yeasts, molds, germs, and turbidity in the manufacturing process of beer, sake, wine, carbonated drinks, sugar solutions, etc., and in the medical field, production of sterile water, plasma for blood filtration. For separation, protein fractionation in plasma, filtration purification of pharmaceuticals, etc., or fine particles from various liquids such as water, solvents, hydraulic oils in the chemical industry.
It can be used for a wide range of applications such as removal of oil and emulsion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1で得られた中空繊維の組織構
造を示す走査型電子顕微鏡による断面写真、 第2図は本発明の実施例1で得られた中空繊維の組織構
造を示す走査型電子顕微鏡による内表面写真、 第3図は本発明の実施例1で得られた中空繊維の組織構
造を示す走査型電子顕微鏡による外表面写真、 第4図は比較例1で得られた中空繊維の同様な断面写
真、 第5図および第6図は比較例1で得られた中空繊維のそ
れぞれ同様な内表面および外表面写真である。
FIG. 1 is a cross-sectional photograph by a scanning electron microscope showing the structure of the hollow fibers obtained in Example 1 of the present invention, and FIG. 2 shows the structure of the hollow fibers obtained in Example 1 of the present invention. Inner surface photograph by a scanning electron microscope, FIG. 3 is an outer surface photograph by a scanning electron microscope showing the structure of the hollow fiber obtained in Example 1 of the present invention, and FIG. 4 is obtained in Comparative Example 1. Similar cross-sectional photographs of the hollow fibers, FIGS. 5 and 6 are similar inner surface and outer surface photographs of the hollow fibers obtained in Comparative Example 1, respectively.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−216804(JP,A) 特開 昭60−241904(JP,A) 特開 昭49−31912(JP,A) 特開 昭54−138615(JP,A) 特開 昭53−78323(JP,A) 特開 昭56−49010(JP,A) 特開 昭55−122010(JP,A) 特開 昭59−16503(JP,A) 特開 昭52−84183(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-216804 (JP, A) JP-A-60-241904 (JP, A) JP-A-49-31912 (JP, A) JP-A-54- 138615 (JP, A) JP 53-78323 (JP, A) JP 56-49010 (JP, A) JP 55-122010 (JP, A) JP 59-16503 (JP, A) JP-A-52-84183 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空孔率が60%以上の高分子膜から形成され
た中空繊維であり、その中空繊維は、この中空内表面に
存在する、厚さ1μm以下、孔径0.01〜3μmの多数の
細孔を備えた平滑膜からなる壁膜と、その壁膜を外側か
ら支持する三次元網目状組織とにより構成され、前記壁
膜の細孔の形状をほぼ円形とすると共に、前記網目状組
織が内側から外側に向って密になる構造を有し、前記網
目状組織の孔径が、前記壁膜のすぐ外側では壁膜の細孔
の直径より大きく、かつその外表面では0.01〜3μmで
あり、かつ、芯液として紡糸原液および凝固液に対して
溶解性が小さいかほとんどない液体を使用し、凝固浴温
度を紡糸原液のゲル化温度以下として紡糸することによ
って得られる構造を有することを特徴とする組織的に二
重構造よりなる中空繊維。
1. A hollow fiber formed from a polymer membrane having a porosity of 60% or more, and the hollow fiber is present on the inner surface of the hollow and has a thickness of 1 μm or less and a pore diameter of 0.01 to 3 μm. A wall membrane composed of a smooth membrane having pores, and a three-dimensional mesh structure supporting the wall membrane from the outside, and the pores of the wall membrane have a substantially circular shape, and the mesh structure Has a structure that becomes denser from the inner side to the outer side, and the pore size of the mesh structure is larger than the diameter of the pores of the wall membrane immediately outside the wall membrane, and 0.01 to 3 μm on the outer surface thereof. And having a structure obtained by using as a core liquid a liquid having little or little solubility in a spinning stock solution and a coagulation solution, and spinning at a coagulation bath temperature not higher than the gelation temperature of the spinning stock solution. A hollow fiber with an organizationally dual structure .
JP60255017A 1985-11-15 1985-11-15 Hollow fiber Expired - Fee Related JP2542572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255017A JP2542572B2 (en) 1985-11-15 1985-11-15 Hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255017A JP2542572B2 (en) 1985-11-15 1985-11-15 Hollow fiber

Publications (2)

Publication Number Publication Date
JPS62117812A JPS62117812A (en) 1987-05-29
JP2542572B2 true JP2542572B2 (en) 1996-10-09

Family

ID=17273035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255017A Expired - Fee Related JP2542572B2 (en) 1985-11-15 1985-11-15 Hollow fiber

Country Status (1)

Country Link
JP (1) JP2542572B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480552A (en) * 1992-01-10 1996-01-02 Baxter International Inc. Method for concentrating a solute with an oscillating filtration device
US5240614A (en) * 1992-01-10 1993-08-31 Baxter International Inc. Process for removing unwanted materials from fluids and for producing biological products
CA2202969C (en) * 1996-04-19 2001-07-24 Shingo Emi Selectively permeable hollow fiber membrane and process for producing same
EP1027899B1 (en) 1998-08-27 2013-03-06 Toray Industries, Inc. Blood processing device
JP4748350B2 (en) * 2004-12-27 2011-08-17 東洋紡績株式会社 Method for producing polysulfone-based hollow fiber membrane
US8669200B2 (en) 2005-07-08 2014-03-11 The University Of Bath Hollow fibres
JP2007245107A (en) * 2006-03-20 2007-09-27 Daicel Chem Ind Ltd Hollow fiber porous membrane
PL1875957T3 (en) * 2006-07-07 2010-09-30 Gambro Lundia Ab Plasma separation membrane
US9795932B2 (en) 2008-12-25 2017-10-24 Toyo Boseki Kabushiki Kaisha Porous hollow fiber membrane and a porous hollow fiber membrane for the treatment of a protein-containing liquid
JP6590396B2 (en) * 2015-03-20 2019-10-16 国立大学法人信州大学 Method for producing cellulose porous thread-shaped article
CN113019159B (en) * 2019-12-24 2022-11-22 中化(宁波)润沃膜科技有限公司 Method for producing hollow fiber membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216804A (en) * 1984-04-13 1985-10-30 Teijin Ltd Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof
JPS60241904A (en) * 1984-04-13 1985-11-30 Teijin Ltd Hollow fiber-seaped porous membrane

Also Published As

Publication number Publication date
JPS62117812A (en) 1987-05-29

Similar Documents

Publication Publication Date Title
US4808315A (en) Porous hollow fiber membrane and a method for the removal of a virus by using the same
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
US5474680A (en) Polysulfone porous hollow fiber
US4874522A (en) Polysulfone hollow fiber membrane and process for making the same
JP2542572B2 (en) Hollow fiber
JPS58114702A (en) Polysulfone hollow fiber membrane and its production
EP0801973A1 (en) Selectively permeable hollow fiber membrane and process for producing same
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
US4857196A (en) Porous hollow fiber membrane and a method for the removal of a virus by using the same
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH025132B2 (en)
JPH0420649B2 (en)
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPS59166208A (en) Manufacture of gas separating membrane
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JPS6287204A (en) Polyvinyl chloride hollow yarn filter and its production
JP3224307B2 (en) Manufacturing method of hollow fiber membrane
JPS6350513A (en) Production of hollow fiber
JPS59169510A (en) Anisotropic hollow yarn membrane
JP2710711B2 (en) Cellulose diacetate hollow fiber
JPH0221930A (en) Polysulfone-based hollow yarn membrane
JPH0670155B2 (en) Manufacturing method of polytetrafluoroethylene resin porous membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees