JPH045754B2 - - Google Patents

Info

Publication number
JPH045754B2
JPH045754B2 JP2845786A JP2845786A JPH045754B2 JP H045754 B2 JPH045754 B2 JP H045754B2 JP 2845786 A JP2845786 A JP 2845786A JP 2845786 A JP2845786 A JP 2845786A JP H045754 B2 JPH045754 B2 JP H045754B2
Authority
JP
Japan
Prior art keywords
copper
oxide film
potential
copper oxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2845786A
Other languages
Japanese (ja)
Other versions
JPS62185884A (en
Inventor
Akishi Nakaso
Haruo Ogino
Toshiro Okamura
Juko Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2845786A priority Critical patent/JPS62185884A/en
Publication of JPS62185884A publication Critical patent/JPS62185884A/en
Publication of JPH045754B2 publication Critical patent/JPH045754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は導体金属による内層回路が形成された
配線板をプリプレグを介して多層とする多層プリ
ント配線板等のような金属と樹脂層との積層体の
製造法に関する。 (従来の技術) 多層プリント配線板は、次のようにして製造さ
れる。すなわち、通常の銅張積層板の銅箔を加工
してプリント配線を形成することにより内層用銅
張積層板をつくり、この銅箔を過硫酸アンモニウ
ム水溶液、塩化第2銅と塩酸を含む水溶液等の薬
液で処理して銅箔表面を粗面化した後、更に亜塩
素酸ナトリウム系処理液で処理することによつて
酸化銅皮膜を形成した後、この内層用銅張積層板
にプリプレグを介して外層用銅張積層板を積層接
着し、スルーホールをあけ、スルーホール壁面に
無電解めつきを行うことによつて製造していた。 (発明が解決しようとする問題点) この方法は次の問題点があつた。 この多層プリント配線板はスルーホールめつき
のためのスルーホール壁面へのめつき触媒付与の
工程での酸性溶液によつて、またドリル穴明け時
に内層銅の切削断面に付着する樹脂状物の除去工
程で用いる酸性溶液によつてまた、無電解銅めつ
き液などによつて、これらの溶液が酸化銅皮膜形
成層と絶縁樹脂層の間にしみ込み、接着性や導体
間の絶縁抵抗が低下するという問題があつた。本
発明は上記した酸化銅皮膜の耐薬品性が低いこと
によつておこる問題を解決できる金属と樹脂層と
の接着力に優れる金属と樹脂層との積層体の製造
法を提供するものである。 (問題点を解決するための手段) 本発明は、銅表面を酸化剤を含む水溶液と接触
させて銅表面に酸化銅皮膜を形成させ、次に酸化
銅皮膜をpHが9以上であるホルムアルデヒド供
給源を含む水溶液と接触させ酸化銅皮膜の電位が
Ag−AgCl電極に対して−400mVよりも卑な電位
に少くとも一時的に保持するようにして酸化銅皮
膜を還元した後、樹脂層と接着することを特徴と
するものである。 酸化剤を含む水溶液(以下処理液Aという)と
しては、亜塩素酸ナトリウムなどの酸化剤を含む
もので、更にOH-イオン源およびリン酸三ナト
リウムなどの緩衝剤を含むものが好ましい。この
処理液Aの処理によつて銅酸化物からなる微細な
凹凸をもつ皮膜が形成される。次にホルムアルデ
ヒド供給源を含む水溶液(以下処理液Bという)
によつて、銅酸化物からなる微細な凹凸皮膜を還
元して金属銅からなる微細な凹凸表面に変化させ
る。処理液Bはアルカリ性でホルムアルデヒド供
給源、例えばホルムアルデヒド、パラホルムアル
デヒド、芳香族アルデヒド化合物を添加した水溶
液である。pHは9以上、望ましくは10.5以上で
ある。pHの高い方が還元力が大きくなる。pH調
整剤としては水溶液アルカリなどが用いられる。
ホルムアルデヒド供給源の添加量は0.01モル/
以上、好ましくは0.02モル/以上である。但
し、高濃度になると作業環境を悪化させるので好
ましくない。処理液Bの温度は水溶液が保たれる
温度であればどの温度でもかまわない。一般に低
温になると活性が低下するので成分濃度を上昇さ
せる必要がある。この処理液B中での酸化銅皮膜
の電位はAg−AgCl電極に対して約−150±
100mVである。しかし、この処理液B中で酸化
銅皮膜の電位をAg−AgCl電極に対して−400mV
よりも卑な電位に少なくとも一時的に保持する操
作を行うと、この操作を行わない場合と比べて著
しく速やかに還元反応を開始させられることを見
い出した。−400mVよりも卑な電位の保持時間
は、1秒間以下という短時間でも還元反応を開始
させることが可能である。保持する電位が大きく
卑である程、還元反応が速やかに終わる。したが
つてその電位は好ましくは−500mVよりも卑で
ある。卑な電位に保持する方法は処理液BでAg
−AgCl電極に対する電位が−500mVよりも卑で
ある銅、Pt、Pdなどの貴金属と酸化銅皮膜とを
処理液B中で接触させることによつて行うことが
できる。又は定電圧電源を用いて−400mVより
も卑の電位を与えることができる。この場合電位
を与えることが目的であり電流は小さくて良い。
処理液Bで処理する時間は卑な電位に保持するた
めの操作を除いた状態で、処理液B中での処理面
の電位がAg−AgCl電極に対して−500mVよりも
卑な電位になるまでの時間である。通常約120秒
であるがそれ以上でもかまわない。処理液B中で
の金属銅のAg−AgCl電極に対する電位は約−
800±200mVの範囲である。したがつて−500mV
よりも卑であれば酸化銅の少なくとも一部分は還
元されている。 本発明において処理される銅の1例である内層
配線付積層板の配線パターンの導体は銅張積層板
をエツチングして得たもの、銅電気めつき、無電
解銅めつきおよびこれらを組み合せて得たものの
いずれであつても良い。上記の銅の表面処理の前
工程として、内層配線付積層板の配線パターン等
の表面の“粗し”を目的として水、塩酸、硫酸、
硝酸、リン酸、さく酸、塩化第2銅、硫酸銅など
の銅化合物、塩化第2鉄、硫酸第2鉄などの鉄化
合物、アルカリ金属塩化物、過硫酸アンモンなど
から選ばれる化合物の組み合せからなる水溶液で
処理しても良い。またこれらの化学的な方法の
“粗し”ではなく、液体ホーニング、研磨などの
機械的な方法で行つてもよい。 内層回路が形成された配線板を処理液A,Bで
処理した後、その必要枚数を、紙、ガラス布等の
基材に熱硬化性樹脂を含浸、乾燥したプリプレグ
を重ね合せて加熱加圧一体化して多層プリント配
線板を製造する。 以上、金属と樹脂層との積層体として内層用配
線板とプリプレグを接着した多層プリント配線板
について説明したが、金属と樹脂層との積層体と
して、銅張積層板とその銅箔面に形成されるエツ
チング、めつきレジスタとの積層体導体回路が形
成された配線板とその表面に形成される半田レジ
スタとの積層体、銅箔とプリプレグとを積層した
銅張積層板、銅箔とフレキシブルフイルムを積層
したフレキシブル配線板用基板等がある。 内装回路をエツチング法やアデイテイブ法で形
成したのち、処理液A,Bの処理を行い、スクリ
ーン印刷、カーテンコート法やホツトロールラミ
ネート法で絶縁性樹脂例えばレジストインクや接
着剤を塗布または付着させることにより銅回路を
上記材料との間の密着力を確保することができ
る。このようにして得られたものの外層に従来法
で導体を形成すれば多層板をプレス工程なしで製
造することができる。 樹脂層としては、プリプレグ、フイルム、カー
テンコート層等の形状で、材質としてはフエノー
ル、エポキシ、ポリエステル、ポリイミドなどの
熱硬化性樹脂およびテフロン、ポリサルフオン、
ポリエーテルカルフオン、ポルエーテルイミドな
どの熱可塑性樹脂も使用出来る。 実施例 あらかじめ内層回路を形成した内層用銅張積層
板を過硫酸アンモニウム水溶液で粗化処理した
後、次の処理液Aの条件で処理し、酸化銅皮膜を
形成した。 水酸化ナトリウム=0.5% リン三ナトリウム=1.5% 亜塩素酸ナトリウム=3% 純 水=95% 温 度=75℃ 処理時間=2分 更に次の処理液Bに浸漬した。 pH=12.5(NaOHを用いて調整) 37%CH2O=0.06モル/ 純 水=1になる量 温 度=60℃ 処理液Bに浸漬した酸化銅皮膜の表面に金属銅
板を3秒間接触させた。この金属銅板は予め脱脂
および脱錆処理したものを用いた。この後120秒
間処理液B中に浸漬した。処理された面のAg−
AgCl電極に対する電位は−900mVであつた。次
にこの内層用銅張積層板の両面をエポキシ樹脂プ
リプレグではさみ、更にその両面を銅箔ではさみ
加圧、加熱(圧力60Kg/cm2、温度170℃、時間120
分)を行い多層化接着し、内層回路入銅張積層板
を作成した。 以上の如くして得た内層回路入銅張積層板の諸
特性を表1に示す。諸特性の評価方法は次の通り
である。 ・ 内層銅箔引き剥し試験;JIS−C6481 ・ 耐塩酸性試験130×30mmに切断し、表面銅箔
を除去した試験片に直径1mmの穴を36穴あけ、
19%塩酸に浸漬させて塩酸が内層面に浸み込む
までの時間を計測する。 ・ 耐無電解銅めつき液性試験;130×30mmに切
断し、表面銅箔を除去した試験片に直径1mmの
穴を36穴あけ、次の条件のめつき液に浸漬させ
てめつき液が内層面に浸み込むまで時間を計測
する。 CuSO4・5H2O=10g/ EDTA/2Na=30g/ pH=12.5(NaOHを用いて調整) 37%CH2O=5m/ 純 水=全量が1になる量 比較例 実施例と同様にして酸化銅皮膜を形成した後、
実施例の処理液Bに60分間浸漬した。60分後の酸
化銅皮膜のAg−AgCl電極に対する電位は−
180mVであつた。 次にこの内層用銅張積層板を用いて実施例と同
じ方法で内層回路入銅張積層板を作成した。 諸特性を表1に示す。
(Industrial Application Field) The present invention relates to a method for manufacturing a laminate of metal and resin layers, such as a multilayer printed wiring board, in which a wiring board on which an inner layer circuit made of conductive metal is formed is made into multiple layers via prepreg. (Prior Art) A multilayer printed wiring board is manufactured as follows. That is, a copper-clad laminate for the inner layer is made by processing the copper foil of a normal copper-clad laminate to form printed wiring, and this copper foil is treated with an aqueous solution of ammonium persulfate, cupric chloride, and hydrochloric acid, etc. After roughening the surface of the copper foil by treating it with a chemical solution, and forming a copper oxide film by further treating it with a sodium chlorite-based treatment solution, the inner layer copper-clad laminate is coated with prepreg. It was manufactured by laminating and bonding copper-clad laminates for the outer layer, drilling through holes, and performing electroless plating on the walls of the through holes. (Problems to be solved by the invention) This method had the following problems. This multilayer printed wiring board is manufactured by using an acidic solution during the process of applying a plating catalyst to the through-hole wall surface for through-hole plating, and during the process of removing resinous substances that adhere to the cut cross section of the inner copper layer during drilling. Due to the acidic solutions used in this process, as well as electroless copper plating solutions, these solutions seep into the gap between the copper oxide film forming layer and the insulating resin layer, reducing adhesiveness and insulation resistance between conductors. There was a problem. The present invention provides a method for producing a laminate of a metal and resin layer that has excellent adhesive strength between the metal and resin layer and can solve the problems caused by the low chemical resistance of the copper oxide film described above. . (Means for Solving the Problems) The present invention involves forming a copper oxide film on the copper surface by bringing the copper surface into contact with an aqueous solution containing an oxidizing agent, and then supplying the copper oxide film with formaldehyde having a pH of 9 or more. The potential of the copper oxide film increases when it comes into contact with an aqueous solution containing a source.
This method is characterized in that the copper oxide film is reduced by at least temporarily maintaining a potential lower than -400 mV with respect to the Ag-AgCl electrode, and then adhered to the resin layer. The aqueous solution containing an oxidizing agent (hereinafter referred to as treatment solution A) preferably contains an oxidizing agent such as sodium chlorite, and further contains an OH - ion source and a buffering agent such as trisodium phosphate. By this treatment with treatment liquid A, a film made of copper oxide and having fine irregularities is formed. Next, an aqueous solution containing a formaldehyde source (hereinafter referred to as treatment solution B)
The finely uneven film made of copper oxide is reduced to a finely uneven surface made of metallic copper. Treatment liquid B is an alkaline aqueous solution containing a formaldehyde source, such as formaldehyde, paraformaldehyde, and aromatic aldehyde compounds. The pH is 9 or higher, preferably 10.5 or higher. The higher the pH, the greater the reducing power. As the pH adjuster, an aqueous alkali or the like is used.
The amount of formaldehyde source added is 0.01 mol/
The amount is preferably 0.02 mol/or more. However, high concentrations are not preferable because they worsen the working environment. The temperature of the treatment liquid B may be any temperature as long as it maintains an aqueous solution. Generally, the activity decreases at low temperatures, so it is necessary to increase the component concentration. The potential of the copper oxide film in this treatment solution B is approximately -150± with respect to the Ag-AgCl electrode.
It is 100mV. However, in this treatment solution B, the potential of the copper oxide film was set to -400 mV with respect to the Ag-AgCl electrode.
It has been found that by performing an operation of at least temporarily holding the potential at a more base potential than that, the reduction reaction can be started significantly more quickly than when this operation is not performed. The reduction reaction can be started even if the holding time of a potential more base than -400 mV is as short as 1 second or less. The greater and more base the potential held, the more quickly the reduction reaction ends. The potential is therefore preferably less than -500 mV. The method to maintain a base potential is to use processing solution B to
This can be carried out by bringing the copper oxide film into contact with a noble metal such as copper, Pt, or Pd whose potential relative to the -AgCl electrode is less than -500 mV in treatment solution B. Alternatively, a potential more base than -400mV can be applied using a constant voltage power supply. In this case, the purpose is to apply a potential, and the current may be small.
During the treatment time with treatment solution B, the potential of the treated surface in treatment solution B becomes more base than -500 mV with respect to the Ag-AgCl electrode, excluding the operation to maintain the base potential. This is the time until. Usually it is about 120 seconds, but it can be longer. The potential of metallic copper in treatment solution B with respect to the Ag-AgCl electrode is approximately -
The range is 800±200mV. Therefore −500mV
If the copper oxide is baser than the copper oxide, at least a portion of the copper oxide has been reduced. The conductor of the wiring pattern of the laminate with inner layer wiring, which is an example of the copper treated in the present invention, is obtained by etching a copper-clad laminate, copper electroplating, electroless copper plating, or a combination thereof. It can be anything you get. As a pre-process for the above-mentioned copper surface treatment, water, hydrochloric acid, sulfuric acid,
From a combination of compounds selected from nitric acid, phosphoric acid, citric acid, copper compounds such as cupric chloride and copper sulfate, iron compounds such as ferric chloride and ferric sulfate, alkali metal chlorides, ammonium persulfate, etc. It may be treated with an aqueous solution. Moreover, instead of these chemical methods of "roughening", mechanical methods such as liquid honing and polishing may be used. After treating the wiring boards on which inner layer circuits have been formed with treatment liquids A and B, the required number of boards are stacked with prepregs that have been impregnated with thermosetting resin and dried into a base material such as paper or glass cloth, and then heated and pressed. It is integrated to produce a multilayer printed wiring board. Above, we have described a multilayer printed wiring board in which an inner layer wiring board and a prepreg are bonded together as a laminate of metal and resin layers. A laminate of a wiring board with a conductor circuit formed thereon and a solder resistor formed on its surface, a copper-clad laminate made of a laminate of copper foil and prepreg, a laminate of copper foil and a flexible material. There are substrates for flexible wiring boards, etc., which are laminated with films. After forming the internal circuit by an etching method or an additive method, processing with processing liquids A and B is performed, and an insulating resin such as resist ink or adhesive is applied or adhered by screen printing, curtain coating, or hot roll lamination. This makes it possible to ensure adhesion between the copper circuit and the above-mentioned material. If a conductor is formed on the outer layer of the product thus obtained by a conventional method, a multilayer board can be manufactured without a pressing process. The resin layer is in the form of prepreg, film, curtain coat layer, etc., and the material is thermosetting resins such as phenol, epoxy, polyester, polyimide, Teflon, polysulfon, etc.
Thermoplastic resins such as polyether calfon and polyetherimide can also be used. Example A copper-clad laminate for an inner layer on which an inner layer circuit had been formed in advance was roughened with an aqueous ammonium persulfate solution, and then treated under the following conditions of treatment solution A to form a copper oxide film. Sodium hydroxide = 0.5% Trisodium phosphorus = 1.5% Sodium chlorite = 3% Pure water = 95% Temperature = 75°C Treatment time = 2 minutes It was further immersed in the following treatment solution B. pH = 12.5 (adjusted using NaOH) 37% CH 2 O = 0.06 mol / Amount to make pure water = 1 Temperature = 60°C A metal copper plate was brought into contact with the surface of the copper oxide film immersed in treatment solution B for 3 seconds. Ta. This metal copper plate was previously subjected to degreasing and derusting treatment. After that, it was immersed in treatment liquid B for 120 seconds. Ag− of treated surface
The potential to the AgCl electrode was -900 mV. Next, both sides of this copper-clad laminate for the inner layer were sandwiched between epoxy resin prepregs, and then both sides were sandwiched between copper foils, and then pressurized and heated (pressure 60 kg/cm 2 , temperature 170°C, time 120
), and multi-layer bonding was performed to create a copper-clad laminate with inner layer circuitry. Table 1 shows various properties of the copper-clad laminate with inner layer circuitry obtained as described above. The evaluation method of various characteristics is as follows.・ Inner layer copper foil peeling test; JIS-C6481 ・ Hydrochloric acid resistance test Cut 130 x 30 mm, remove surface copper foil, and drill 36 holes with a diameter of 1 mm.
Immerse it in 19% hydrochloric acid and measure the time it takes for the hydrochloric acid to penetrate into the inner surface.・Electroless copper plating liquid resistance test: Cut 130 x 30 mm, remove the surface copper foil, make 36 holes with a diameter of 1 mm, and immerse it in the plating solution under the following conditions. Measure the time until it soaks into the inner surface. CuSO 4・5H 2 O = 10 g / EDTA / 2Na = 30 g / pH = 12.5 (adjusted using NaOH) 37% CH 2 O = 5 m / Pure water = amount that makes the total amount 1 Comparative example Same as the example After forming the copper oxide film,
It was immersed in the treatment solution B of Example for 60 minutes. The potential of the copper oxide film after 60 minutes with respect to the Ag−AgCl electrode is −
It was 180mV. Next, using this inner layer copper clad laminate, a copper clad laminate with an inner layer circuit was created in the same manner as in the example. Various properties are shown in Table 1.

【表】 (発明の効果) 以上説明したように、本発明に於てはプリプレ
グ等の樹脂材料と導体回路等の金属との密着性が
向上し、多層プリント板に於ては、耐塩酸性、耐
無電解銅めつき液性に優れた多層印刷配線板を得
ることができる。
[Table] (Effects of the invention) As explained above, in the present invention, the adhesion between resin materials such as prepreg and metals such as conductor circuits is improved, and in multilayer printed boards, hydrochloric acid resistance, A multilayer printed wiring board with excellent resistance to electroless copper plating liquid can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 銅表面を酸化剤を含む水溶液と接触させて銅
表面に酸化銅皮膜を形成させ、次に酸化銅皮膜を
pHが9以上であるホルムアルデヒド供給源を含
む水溶液と接触させ酸化銅皮膜の電位がAg−
AgCl電極に対して−400mVよりも卑な電位に少
くとも一時的に保持するようにして酸化銅皮膜を
還元した後、樹脂層と接着することを特徴とする
金属と樹脂層との積層体の製造法。
1 A copper oxide film is formed on the copper surface by contacting the copper surface with an aqueous solution containing an oxidizing agent, and then a copper oxide film is formed on the copper surface.
When brought into contact with an aqueous solution containing a formaldehyde source with a pH of 9 or higher, the potential of the copper oxide film changes to Ag-
A laminate of a metal and a resin layer, characterized in that the copper oxide film is reduced by holding at least temporarily at a potential lower than -400 mV with respect to an AgCl electrode, and then bonded to the resin layer. Manufacturing method.
JP2845786A 1986-02-12 1986-02-12 Production of laminate of metal and resin layer Granted JPS62185884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2845786A JPS62185884A (en) 1986-02-12 1986-02-12 Production of laminate of metal and resin layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2845786A JPS62185884A (en) 1986-02-12 1986-02-12 Production of laminate of metal and resin layer

Publications (2)

Publication Number Publication Date
JPS62185884A JPS62185884A (en) 1987-08-14
JPH045754B2 true JPH045754B2 (en) 1992-02-03

Family

ID=12249193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2845786A Granted JPS62185884A (en) 1986-02-12 1986-02-12 Production of laminate of metal and resin layer

Country Status (1)

Country Link
JP (1) JPS62185884A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618466B2 (en) * 2000-10-11 2011-01-26 日立化成工業株式会社 Copper surface treatment
JP2006249519A (en) * 2005-03-11 2006-09-21 Hitachi Chem Co Ltd Surface treatment method for copper and copper

Also Published As

Publication number Publication date
JPS62185884A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
US4902551A (en) Process for treating copper surface
JPS61176192A (en) Adhesion between copper and resin
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
JPS63168077A (en) Manufacture of printed wiring board
JP2000340948A (en) Method of improving adhesion between copper and resin, and multilayered wiring board manufactured using the same
JPH045754B2 (en)
JP4508141B2 (en) Stainless steel transfer substrate, stainless steel transfer substrate with plating circuit layer
JPH05259611A (en) Production of printed wiring board
JPH1187910A (en) Printed wiring board and manufacture therefor
JPH0573359B2 (en)
JP4734875B2 (en) Insulator for additive plating, substrate with additive plating metal film
JPS62218124A (en) Manufacture of laminate of metal and resin layer
JPS63190179A (en) Surface treatment of copper
JPH09321443A (en) Manufacture of multilayer board
JPH0636470B2 (en) Method for treating copper circuit of circuit board for inner layer
JPH0578414B2 (en)
JPS6199700A (en) Structure of copper wiring board
JPH02241087A (en) Treatment of copper circuit of circuit board for internal layer
JPH04155993A (en) Manufacture of multilayer printed wiring board
JP2000216536A (en) Manufacture of laminate board with inner layer circuits
JPS62270780A (en) Method for adhering resin to copper
JPS62169497A (en) Manufacture of laminated unit of metal and resin layer
JPH10173340A (en) Method of manufacturing multilayer printed-wiring board
JPH01297883A (en) Manufacture of printed wiring board
JPH01124292A (en) Manufacture of insulating substrate having metal thin layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees