JPH01124292A - Manufacture of insulating substrate having metal thin layer - Google Patents

Manufacture of insulating substrate having metal thin layer

Info

Publication number
JPH01124292A
JPH01124292A JP28263187A JP28263187A JPH01124292A JP H01124292 A JPH01124292 A JP H01124292A JP 28263187 A JP28263187 A JP 28263187A JP 28263187 A JP28263187 A JP 28263187A JP H01124292 A JPH01124292 A JP H01124292A
Authority
JP
Japan
Prior art keywords
copper
copper oxide
copper foil
oxide
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28263187A
Other languages
Japanese (ja)
Other versions
JPH0724333B2 (en
Inventor
Yoshiaki Tsubomatsu
良明 坪松
Akishi Nakaso
昭士 中祖
Yorio Iwasaki
順雄 岩崎
Kazuyasu Minagawa
一泰 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28263187A priority Critical patent/JPH0724333B2/en
Publication of JPH01124292A publication Critical patent/JPH01124292A/en
Publication of JPH0724333B2 publication Critical patent/JPH0724333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-density wiring part having a line/space ratio of about 30/30mum by a method wherein copper foil is brought into contact with a treatment liquid containing an oxidizing agent, copper oxide is formed on a copper oxide face, an insulating organic material is laminated on a copper oxide face, the copper foil is brought into contact with an etching liquid and is removed, and this assembly is brought into contact with a solution of a reducing agent. CONSTITUTION:Copper oxide 2 is formed on the surface of copper foil 1 of 35mum to be used for a copper-pasted laminated sheet; then, an insulating organic glass cloth is pressure-laminated to an epoxy prepreg material 3. Then, the copper foil 1 is etched and removed by using a polyvalent ammonium salt-based etching liquid. During this process, the copper oxide 2 is not etched and is left on the surface of the organic base material 3. After a washing operation, this assembly is immersed in an aqueous solution of a reducing agent for 10 minutes; said copper oxide layer 2 is reduced and is transformed into cuprous oxide or metallic copper 4. Because a thickness of a metal layer is thin at 0.1-5mum, an etching operation in a manufacturing process of a printed-circuit board by an unclad method enhances accuracy of a line width remarkably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、印刷配線板の製造に使用される。[Detailed description of the invention] (Industrial application field) The invention is used in the manufacture of printed wiring boards.

金属薄層付絶縁基板の製造法に関する。This invention relates to a method for manufacturing an insulating substrate with a thin metal layer.

(従来の技術) 印刷配線板の製造に使用される。銅張り積層板としては
、ステンレス・スチールの回転ドラム上に電解析出させ
た銅箔と紙やガラス基材に熱硬化性樹脂を含浸させたプ
リプレグとを積層したものがあった。また、フレキシブ
ル配線板及び多層フレキシブル配線板用銅箔付きフィル
ムとしては2例えば、ポリイミドフィルムと圧延y4Y
iとを接着剤を介して熱圧着したものがあった。この場
合、銅層の厚さとしては18μm、35μm、50μm
程度と厚いものが主流であった。
(Prior Art) Used in the manufacture of printed wiring boards. Copper-clad laminates were made by laminating electrolytically deposited copper foil on a rotating stainless steel drum and prepreg, which is a paper or glass substrate impregnated with a thermosetting resin. In addition, as a film with copper foil for flexible wiring boards and multilayer flexible wiring boards, for example, polyimide film and rolled Y4Y
There was one that was thermocompression-bonded with an adhesive. In this case, the thickness of the copper layer is 18 μm, 35 μm, 50 μm.
Medium and thick ones were the mainstream.

上記のような銅張りを積層板あるいは銅層付フィルムを
使った印刷配線板の製造法としては、銅張積層板等をエ
ツチングして回路加工を行うエツチドフォイル法や、レ
ジスト形成用表面処理をした後、レジスト形成−めっき
→めっきレジスト除去→クイックエツチングによる回路
加工を行うアンクラッド法等がある。
Methods for producing printed wiring boards using copper-clad laminates or films with copper layers as described above include the etched foil method in which circuit processing is performed by etching copper-clad laminates, etc., and surface treatment for resist formation. After that, there is an unclad method in which circuit processing is performed by resist formation, plating, removal of plating resist, and quick etching.

エツチドフォイル法は、サイドエツチングの問題があり
高密度配線板の製造は困難である。アンクランド法では
、5〜9μmの銅を占を用いた銅張り積層板をベースに
している。
The etched foil method has the problem of side etching, making it difficult to manufacture high-density wiring boards. The Unkland method is based on a copper-clad laminate made of copper with a thickness of 5 to 9 μm.

この方法に於ける配線の微細・高密度化は下地金属層の
厚さに依存している。すなわち。
The fineness and high density of wiring in this method depend on the thickness of the underlying metal layer. Namely.

エツチングする下地金属層の厚さが薄い程エツチング精
度が高くなる。そこで、高密度配線を形成する場合は5
〜9μmと薄いw4箔を用いた銅張り積層板をベースと
しているが。
The thinner the underlying metal layer to be etched, the higher the etching accuracy. Therefore, when forming high-density wiring,
It is based on a copper-clad laminate using W4 foil, which is as thin as ~9 μm.

銅箔のキャリアーであるアルミ箔を積層後物理的あるい
は化学的に除去する必要があること、及びキャリアーを
除去後9例えばレジストなどに対して接着性が良い粗面
処理が必要であることなど欠点がある。
Disadvantages include the need to physically or chemically remove the aluminum foil, which is the carrier for the copper foil, after lamination, and the need to roughen the surface to ensure good adhesion to, for example, resist after removing the carrier. There is.

薄い下地金属層を形成する方法としては他に無電解めっ
き法、真空蒸着法、スパッタリング法などがある。無電
解めっき法は絶縁基板表面を物理的又は化学的な方法で
処理してその基板表面を親水化、粗面化をする工程を必
要とし、生成した金属層〜基板間の接着力も低い。なお
、耐熱性をあまり要求されないものについては、ゴム系
樹脂に無電解めっき用の触媒”を混入させた接着剤層を
粗面化した後無電解めっきを行う方法もあるが、後工程
で形成された回路間及び接着剤層中に残存する金属触媒
のため、特性上の欠点がある。
Other methods for forming a thin base metal layer include electroless plating, vacuum evaporation, and sputtering. The electroless plating method requires a step of physically or chemically treating the surface of an insulating substrate to make the substrate surface hydrophilic and rough, and the adhesive force between the generated metal layer and the substrate is also low. For products that do not require much heat resistance, there is a method in which electroless plating is performed after roughening the adhesive layer by mixing a rubber resin with a catalyst for electroless plating. There are property drawbacks due to the metal catalyst remaining between the bonded circuits and in the adhesive layer.

真空蒸着法及びスパッタリング法において。In vacuum evaporation method and sputtering method.

例えば、ガラス布−エポキシ積層板やガラス布−ポリイ
ミド積層板を用いる場合、ガラス布に吸着している水分
及び樹脂層に残存している溶剤分のために、蒸着やスパ
ッタなどで必要となる高真空下では水分、溶剤がガス化
し、ガラス布〜樹脂界面での剥離やボイドが生じてしま
う。更にスルーブツトが低いという欠点ある。
For example, when using a glass cloth-epoxy laminate or a glass cloth-polyimide laminate, the high temperature required for vapor deposition or sputtering is required due to the moisture adsorbed to the glass cloth and the solvent remaining in the resin layer. Under vacuum, water and solvent gasify, resulting in peeling and voids at the glass cloth-resin interface. Furthermore, it has the disadvantage of low throughput.

本発明は、高密度配線を可能とする金属薄層付絶縁基板
の製造法を提供するものである。
The present invention provides a method for manufacturing an insulating substrate with a thin metal layer that enables high-density wiring.

(問題点を解決するための手段) 本発明の方法は、まず銅箔表面に酸化銅を形成後、酸化
銅層に面して絶縁性有機材料を積層し、銅箔部分をエツ
チング除去する。次に絶縁性有機材料表面に残存してい
る酸化銅層に還元処理を施し、金属銅および/または亜
酸化銅とするものである。なお9次いで無電解銅めっき
、あるいは無電解銅めっきと電気銅めっきの併用によっ
て金属層を所望の厚さまでめっき成形しても良い。
(Means for Solving the Problems) In the method of the present invention, copper oxide is first formed on the surface of a copper foil, then an insulating organic material is laminated facing the copper oxide layer, and the copper foil portion is removed by etching. Next, the copper oxide layer remaining on the surface of the insulating organic material is subjected to a reduction treatment to form metallic copper and/or cuprous oxide. Note that the metal layer may then be plated and formed to a desired thickness by electroless copper plating or a combination of electroless copper plating and electrolytic copper plating.

第1図(a)〜(d)は本発明の実施例を示すものであ
る。
FIGS. 1(a) to 1(d) show embodiments of the present invention.

銅張り積層板用35μm銅箔1の表面に酸化銅2を形成
する(第1図(a)、  (b))。
Copper oxide 2 is formed on the surface of 35 μm copper foil 1 for copper-clad laminates (FIGS. 1(a) and 1(b)).

酸化銅処理条件は例えば1次の通りである。 。The copper oxide treatment conditions are as follows, for example. .

NaOH=15g/l N a P Oa ・12H2O=30g/ρN a 
C10z    =808/ R純 水      =
11になる遺 戒 温      =85±2℃ この他、銅箔表面に酸化銅を形成する方法としては、亜
塩素酸ナトリウム、次亜塩素酸ナトリウム、過硫酸カリ
ウム、塩素酸カリウム、過塩素酸カリウムなどの酸化剤
を含む処理液で処理する方法がある。酸化銅処理の前処
理として銅箔は例えばシラプレー社製の脱脂液であるニ
エートラルクリーンに5分間浸漬し、流水洗いて、更に
10%硫酸水に2分浸清し、流水洗後80℃で30分間
乾燥する。
NaOH=15g/l N a P Oa ・12H2O=30 g/ρN a
C10z =808/R pure water =
Temperature = 85±2℃ Other methods for forming copper oxide on the surface of copper foil include sodium chlorite, sodium hypochlorite, potassium persulfate, potassium chlorate, and potassium perchlorate. There is a method of processing with a processing solution containing an oxidizing agent such as As a pretreatment for the copper oxide treatment, the copper foil is immersed for 5 minutes in Nietral Clean, a degreasing liquid manufactured by Silapray, for example, washed with running water, further immersed in 10% sulfuric acid water for 2 minutes, and after washing with running water, heated to 80°C. Dry for 30 minutes.

この場合使用するw4箔としては、他の金属箔、金属板
や有機質フィルムなどの支持体の上に銅層が形成された
ものでも良い。銅のみから成る箔を用いる場合は、厚さ
に技術上の制限はないが、取り扱い上及び価格の点から
18〜70μmが好ましい。
The W4 foil used in this case may be another metal foil, or one in which a copper layer is formed on a support such as a metal plate or an organic film. When using a foil made only of copper, there is no technical limit to the thickness, but from the viewpoint of handling and cost, it is preferably 18 to 70 μm.

また、樹脂基材〜金属層間の接着力を高めるためには、
銅箔表面が予め粗面化されたものが良好である。その粗
面化の方法としては研磨、ホーニング、エツチング、電
気めっき。
In addition, in order to increase the adhesive strength between the resin base material and the metal layer,
The copper foil surface is preferably roughened in advance. Methods for roughening the surface include polishing, honing, etching, and electroplating.

無電解めっきなどがある。Examples include electroless plating.

次に、絶縁製有機ガラス布−エポキシプリプレグ3と加
圧積層する(第1図(C))。
Next, the insulating organic glass cloth-epoxy prepreg 3 is laminated under pressure (FIG. 1(C)).

積層条件は成形圧力35kg/ad、 170℃で60
分間である。酸化銅2を形成した後積層する絶縁性有機
材料としては他に、変性ポリイミド。
Lamination conditions are molding pressure 35kg/ad, 170℃ and 60℃.
It is a minute. Another example of the insulating organic material to be laminated after forming the copper oxide 2 is modified polyimide.

ポリイミド、フェノールなど一般の銅張り積層板に用い
られる熱硬化性樹脂を含浸させたガラス布、樹脂シート
等を用いることができ又、ポリエチレン、テフロン、ポ
リエーテルサルフォン、ポリエーテルイミドなどの熱可
塑性材料も用いられる。
Glass cloth, resin sheets, etc. impregnated with thermosetting resins commonly used for copper-clad laminates such as polyimide and phenol can be used, and thermoplastics such as polyethylene, Teflon, polyethersulfone, and polyetherimide can be used. Materials are also used.

次に、多層アンモニウム塩系エツチング液を用いて、銅
箔1をエツチング除去する。この場合、酸化w42はエ
ツチングされずに有機基材3表面に残存する。
Next, the copper foil 1 is etched away using a multilayer ammonium salt etching solution. In this case, the oxide w42 remains on the surface of the organic base material 3 without being etched.

水洗後、還元剤水溶液(水素化ホウ素ナトリウム2 g
/ It 、 N a OH12,5g/ j! 、液
温55’c)に10分間浸漬して該酸化銅層2を還元し
After washing with water, add a reducing agent aqueous solution (sodium borohydride 2 g
/ It, N a OH12,5g/j! , the copper oxide layer 2 was reduced by immersing it in a solution at a temperature of 55'c) for 10 minutes.

亜酸化銅あるいは金属銅4とする。この場合。Use cuprous oxide or metallic copper 4. in this case.

還元水溶液としてホルマリン、次亜リン酸。Formalin and hypophosphorous acid as reduced aqueous solutions.

次亜リン酸ナトリウム、抱水ヒドラジン、塩酸ヒドラジ
ン、硫酸ヒドラジン、N、N′−トリメチルボラザン、
N、N′−ジメチルボラゼンなどの一種又は二種以上を
溶解させたものでも良い。
Sodium hypophosphite, hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate, N,N'-trimethylborazane,
It may also be one in which one or more of N,N'-dimethylborazene and the like are dissolved.

なお、上記工程に加えて、下記組成及び条件の無電解銅
めっき、あるいは無電解銅と電気銅めっきの併用によっ
て金属層を所望の厚さまでめっきしても良い。
In addition to the above steps, the metal layer may be plated to a desired thickness by electroless copper plating with the composition and conditions described below, or by a combination of electroless copper and electrolytic copper plating.

Cu S Oa ・5 HzO=10g/ IEDTA
−4Na   =40g#! pH=12.3 37%HCHO=3  /# めっき液添加量   =少量 めっき液温度    =70℃ めっき膜厚      −3μm 以上のような本発明の銅張り積層板は、配線板用内層回
路板としての用途のみならず。
Cu S Oa ・5 HzO=10g/IEDTA
-4Na =40g#! pH=12.3 37%HCHO=3 /# Plating solution addition amount = small amount Plating solution temperature = 70°C Plating film thickness -3 μm The copper-clad laminate of the present invention as described above can be used as an inner layer circuit board for wiring boards. Not only for its uses.

多層配線板の最外層としての使用も可能である。It can also be used as the outermost layer of a multilayer wiring board.

本発明においては、銅箔に形成される酸化銅は大きさが
サブミクロン以下の繊維状〜柱状あるいは粒状結晶であ
る。そのために、酸化銅処理した銅箔と樹脂等の有機絶
縁材料を積層して銅箔を除去した樹脂基板表面には。
In the present invention, the copper oxide formed on the copper foil is in the form of fibrous to columnar or granular crystals with a size of submicron or less. For this purpose, copper foil treated with copper oxide is laminated with an organic insulating material such as resin, and the copper foil is removed from the surface of the resin substrate.

高い接着力をもった酸化銅が残存する。Copper oxide with high adhesive strength remains.

また、還元処理により樹脂基板に生成する銅および/ま
たは亜酸化銅層の厚さ及び形状は、酸化銅形成工程ある
いは還元処理工程での条件を適宜変更することにより調
整できる。
Further, the thickness and shape of the copper and/or cuprous oxide layer formed on the resin substrate by the reduction treatment can be adjusted by appropriately changing the conditions in the copper oxide forming step or the reduction treatment step.

(発明の効果) 本発明に於ては、金属層の厚さが0.1〜5μmと薄い
ため、アンクラッド法による配線板製造工程におけるエ
ツチングによるライン巾精度が著しく向上し、高解像の
ポジ型液状レジストを適用すればライン/スペースが3
0/30μ−程度の高密度配線を可能にする。
(Effects of the Invention) In the present invention, since the thickness of the metal layer is as thin as 0.1 to 5 μm, the line width accuracy by etching in the wiring board manufacturing process using the uncladding method is significantly improved, and high resolution If a positive liquid resist is applied, the line/space can be reduced to 3
Enables high-density wiring of about 0/30μ.

また、絶縁基板と金属層の接着力も高く、信頼性も向上
する。なお、還元生成した銅あるいは亜酸化銅表面及び
樹脂基板表面には微細な凸凹があるため、レジストパタ
ーン形成用あるいは多層化接着用の粗化処理が不要であ
ること、更に無電解めっき用の触媒処理工程も不要であ
るため、スルーブツトが著しく向上した。
Furthermore, the adhesive strength between the insulating substrate and the metal layer is high, and reliability is also improved. In addition, since there are fine irregularities on the surface of copper or cuprous oxide produced by reduction and on the surface of the resin substrate, roughening treatment for resist pattern formation or multilayer adhesion is unnecessary, and catalysts for electroless plating. Since no processing steps are required, throughput has been significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の方法を示す断面図であ
る。 符号の説明 1 銅 箔 2 酸化銅 3 プリプレグ(絶縁基材)
FIGS. 1(a) to 1(d) are cross-sectional views showing the method of the present invention. Explanation of symbols 1 Copper foil 2 Copper oxide 3 Prepreg (insulating base material)

Claims (1)

【特許請求の範囲】[Claims] 1.銅箔を酸化剤を有する処理液に接触さ せて、その銅箔面に酸化銅を形成した後、酸化銅面に絶
縁性有機材料を積層し、エッチング液を接触させること
によって銅箔を除去し、次に還元剤溶液を接触させるこ
とを特徴とする金属薄層付絶縁基板の製造法。
1. After bringing the copper foil into contact with a treatment solution containing an oxidizing agent to form copper oxide on the copper foil surface, an insulating organic material is layered on the copper oxide surface, and the copper foil is removed by contacting with an etching solution. A method for producing an insulating substrate with a thin metal layer, the method comprising: , then contacting with a reducing agent solution.
JP28263187A 1987-11-09 1987-11-09 Manufacturing method of insulating substrate with thin metal layer Expired - Lifetime JPH0724333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28263187A JPH0724333B2 (en) 1987-11-09 1987-11-09 Manufacturing method of insulating substrate with thin metal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28263187A JPH0724333B2 (en) 1987-11-09 1987-11-09 Manufacturing method of insulating substrate with thin metal layer

Publications (2)

Publication Number Publication Date
JPH01124292A true JPH01124292A (en) 1989-05-17
JPH0724333B2 JPH0724333B2 (en) 1995-03-15

Family

ID=17655032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28263187A Expired - Lifetime JPH0724333B2 (en) 1987-11-09 1987-11-09 Manufacturing method of insulating substrate with thin metal layer

Country Status (1)

Country Link
JP (1) JPH0724333B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088543A (en) * 2006-09-08 2008-04-17 Hitachi Chem Co Ltd Copper surface treatment liquid set, surface treatment method for copper using the same, copper, wiring board and semiconductor package
JP2017224758A (en) * 2016-06-16 2017-12-21 日本化薬株式会社 Substrate for double-sided circuit suitable for high-frequency circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088543A (en) * 2006-09-08 2008-04-17 Hitachi Chem Co Ltd Copper surface treatment liquid set, surface treatment method for copper using the same, copper, wiring board and semiconductor package
JP2017224758A (en) * 2016-06-16 2017-12-21 日本化薬株式会社 Substrate for double-sided circuit suitable for high-frequency circuit
WO2017217392A1 (en) * 2016-06-16 2017-12-21 日本化薬株式会社 Double-sided circuit board suitable for high-frequency circuit
TWI720206B (en) * 2016-06-16 2021-03-01 日商大金工業股份有限公司 Double-sided circuit substrate suitable for high-frequency circuits

Also Published As

Publication number Publication date
JPH0724333B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
US4868071A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
US3767538A (en) Method of coating plastic films with metal
JPH0114858B2 (en)
TW462210B (en) Composite material used in making printed wiring boards
US3884771A (en) Process of producing resinous board having a rough surface usable for firmly supporting thereon a printed circuit
JPS63259083A (en) Polyimide film having surface pattern
US4894124A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
JPS63168077A (en) Manufacture of printed wiring board
JPH01124292A (en) Manufacture of insulating substrate having metal thin layer
JP2000340948A (en) Method of improving adhesion between copper and resin, and multilayered wiring board manufactured using the same
JPH05259611A (en) Production of printed wiring board
JP2000151096A (en) Manufacture of printed wiring board
JPH032354B2 (en)
JPS58206635A (en) High molecular product radiation stress removal
JPH07114312B2 (en) Manufacturing method of printed wiring board
JPH05320928A (en) Electroless plating liquid and plating method for molded product
JPS6182497A (en) Manufacture of printed circuit board
JPH0636470B2 (en) Method for treating copper circuit of circuit board for inner layer
JPH01124286A (en) Manufacture of printed-circuit board
JPH01297883A (en) Manufacture of printed wiring board
JPH01124287A (en) Manufacture of printed-circuit board
JPH02122593A (en) Manufacture of printed wiring board
JPH04155993A (en) Manufacture of multilayer printed wiring board
JPH045754B2 (en)