JPH0450707B2 - - Google Patents

Info

Publication number
JPH0450707B2
JPH0450707B2 JP59057772A JP5777284A JPH0450707B2 JP H0450707 B2 JPH0450707 B2 JP H0450707B2 JP 59057772 A JP59057772 A JP 59057772A JP 5777284 A JP5777284 A JP 5777284A JP H0450707 B2 JPH0450707 B2 JP H0450707B2
Authority
JP
Japan
Prior art keywords
paste
glue
cathode plate
thin film
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057772A
Other languages
Japanese (ja)
Other versions
JPS60202666A (en
Inventor
Tsukane Ito
Tokuyuki Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59057772A priority Critical patent/JPS60202666A/en
Priority to US06/680,817 priority patent/US4614696A/en
Priority to CN85101119A priority patent/CN1011648B/en
Publication of JPS60202666A publication Critical patent/JPS60202666A/en
Publication of JPH0450707B2 publication Critical patent/JPH0450707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は極板の取り扱いが容易であり、高率放
電特性及び酸素ガス吸収性能が改良されたアルカ
リ蓄電池用ペースト式カドミウム陰極板に関す
る。 (ロ) 従来技術 従来、アルカリ蓄電池用ペースト式カドミウム
陰極板は、特開昭58−80268号公報に示される様
に予備充電量の一部に相当する金属カドミウムと
主活物質である酸化カドミウムからなる活物質粉
末に、バインダーとしてのヒドロキシプロピルセ
ルロース等の糊料及び補強材としてのポリプロピ
レン繊維等を加えてペーストを得、このペースト
をパンチング芯体の両面に塗着・乾燥して作製さ
れており、糊料に加えて添加されたポリプロピレ
ン繊維等により極板強度の増加及びガス吸収性能
の向上を行なつている。 しかしながら、前述のように極板を構成しても
活物質の脱落を完全に防止することはできず、バ
インダーとしての糊料の添加量を増すことで活物
質の保持力を大きくし極板強度を大きくすること
ができるが、糊料の増加は活物質粒子間の電子伝
導性を阻害する。したがつて、その添加量には限
度があり、電池組立工程に於いて極板表面部の活
物質粉末の脱落が生じることはある程度避けられ
ず、極板容量の減少が起こると共に作業環境を悪
化させるという問題点がある。また前述のように
化成工程を省略するために予め予備充電量として
の充電生成物である金属カドミウムを添加した極
板では、化成を行なつた極板のように金属カドミ
ウムの導電マトリツクスが生成していないため、
特に陽極から発生する酸素ガスと接触し易い極板
表面に金属カドミウムが生成され難く、酸素ガス
吸収性能が劣るという問題があつた。 (ハ) 発明の目的 本発明はかかる点に鑑みてなされたものであつ
て、酸化カドミウムを主活物質とするペーストを
導電性芯体に塗着してある極板の表面に、アルカ
リ電解液と接してゲル層を形成する水溶性の糊料
薄膜層を形成し、前記糊料薄膜層にはカーボン粉
末が分散されていることを特徴とするものである
から、極板表面の活物質粒子の脱落を完全に防止
すると共に、電池構成後の電池内部抵抗の減少及
び酸素ガス吸収性能の向上が計られたアルカリ蓄
電池用ペースト式カドミウム陰極板を提供せんと
するものである。 (ニ) 発明の構成 本発明のアルカリ蓄電池用ペースト式カドミウ
ム陰極板は、酸化カドミウムを主活物質とするペ
ーストを導電性芯体に塗着してなる極板の表面
に、アルカリ電解液と接してゲル層を形成する水
溶性の糊料薄膜層を有し、前記糊料薄膜層にはカ
ーボン粉末が分散されていることを特徴とするも
のである。 また、前記糊料薄膜層の厚みとしては、2〜20
ミクロンの範囲が望ましい。 そして、前記糊料としては、ポリビニルアルコ
ールが最適であり、前記糊料薄膜層における前記
カーボン粉末の添加量としては、前記糊料に対す
る重量比で、50〜150%とするのが好ましい。 (ホ) 実施例 以下に本発明の実施例を示し説明する。 〔実施例〕 主活物質たる酸化カドミウム粉末900gに平均
粒径3ミクロンの金属カドミウム粉末100gを混
合した後、この混合粉末に糊料としてメチルセル
ロース6gを加え、更に補強材として長さ約2
mm、太さ2デニールのポリプロピレン繊維10gを
加えて充分に混練することによつて活物質ペース
トを作製する。こうして得られたペーストをパン
チングメタルからなる電極芯体に塗着、乾燥し、
次いでその表面にポリビニルアルコールの10%水
溶液を均一に噴霧し乾燥して活物質層表面に約8
ミクロンの糊料薄膜層を有するマスター極板を得
た。このマスター極板を縦33mm、横200mmに切断
してカドミウム陰極板とする。 この陰極板と周知の方法で作製された陽極板
(縦33mm、横160mm、厚さ0.7mm)及びナイロン不
織布セパレータとを組み合わせ、アルカリ電解液
を加えて公称容量1.2AHの密閉型ニツケル−カド
ミウム電池Aを作製した。 また、前記電池Aに於いてカドミウム陰極板表
面に形成した薄膜層に糊料として用いた前述のポ
リビニルアルコールにかえて、カルボキシメチル
セルロース、メチルセルロース、ヒドロキシプロ
ピルセルローズを糊料として用い、その他は同一
でニツケル−カドミウム電池を作製した。この電
池を夫々B,C,Dとする。尚、これら電池の陰
極板表面に用いた糊料は、前述のポリビニルアル
コールの水溶液と同一粘度が得られる様に調整し
て使用している。 そして、前述の電池A,B,C,Dに於いてカ
ドミウム陰極板表面に薄膜層を形成する際に用い
た糊料の水溶液に、電池Aで使用したポリビニル
アルコールに対する重量比で1対1に相当する量
のアセチレンブラツクを夫々懸濁させて使用し、
前記陰極板表面にアセチレンブラツクを含有する
薄膜層を形成し、その他は前述と同一のニツケル
−カドミウム電池を作製した。こうして作製され
た電池を前記電池A,B,C,Dに対応させて
夫々本発明電池A′,B′,C′,D′とする。 〔比較例〕 実施例に於ける電池に於いてカドミウム陰極板
表面に糊料薄膜層を設けず、その他は同一で比較
電池Eを作製した。 下表はこれら電池及びこれらの電池に用いられ
たカドミウム陰極板の特性比較図である。表中電
極の粉末脱落とは電池製造工程に於ける陰極板か
らの活物質脱落状態を示し、×は製造の際に極板
に手が触れると多くの活物質粉末が手に付着した
もの、〇は活物質粉末がわずかながら手に付着し
たもの、◎は活物質粉末が付着しなかつたものを
表わし、電池容量とは1200mAで放電を行ない電
池電圧が1.0Vになつた時点で放電を終了したと
きの電池の容量、内部抵抗とは放電状態での電池
の内部抵抗、内部圧力とは0℃に於いて360mA
で18時間充電する過充電時の電池内部ガス圧を
夫々示す。
(a) Industrial Application Field The present invention relates to a paste-type cadmium cathode plate for alkaline storage batteries, which is easy to handle and has improved high rate discharge characteristics and oxygen gas absorption performance. (b) Prior art Paste-type cadmium cathode plates for alkaline storage batteries have conventionally been made from metal cadmium, which corresponds to a part of the precharge amount, and cadmium oxide, which is the main active material, as shown in Japanese Patent Application Laid-Open No. 58-80268. A paste is obtained by adding a glue such as hydroxypropyl cellulose as a binder and polypropylene fiber as a reinforcing material to the active material powder, and this paste is applied to both sides of the punching core and dried. In addition to the paste, polypropylene fibers and the like are added to increase the strength of the electrode plate and improve gas absorption performance. However, even if the electrode plate is configured as described above, it is not possible to completely prevent the active material from falling off, and by increasing the amount of glue added as a binder, the retention force of the active material is increased and the electrode plate strength is increased. can be increased, but an increase in the size inhibits electronic conductivity between active material particles. Therefore, there is a limit to the amount that it can be added, and it is unavoidable to some extent that the active material powder on the surface of the electrode plate will fall off during the battery assembly process, resulting in a decrease in the capacity of the electrode plate and deteriorating the working environment. There is a problem with making it happen. Furthermore, as mentioned above, in order to omit the chemical formation process, in the case of electrode plates to which metal cadmium, which is a charged product, is added in advance as a precharge amount, a conductive matrix of metal cadmium is generated as in electrode plates that have undergone chemical formation. Because it is not
In particular, there was a problem in that metal cadmium was difficult to form on the surface of the electrode plate, which easily came into contact with oxygen gas generated from the anode, resulting in poor oxygen gas absorption performance. (c) Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and it is possible to apply an alkaline electrolyte to the surface of an electrode plate on which a paste containing cadmium oxide as the main active material is applied to a conductive core. The active material particles on the surface of the electrode plate are characterized by forming a water-soluble glue thin film layer that forms a gel layer in contact with the electrode plate, and carbon powder is dispersed in the glue thin film layer. It is an object of the present invention to provide a paste-type cadmium cathode plate for an alkaline storage battery that completely prevents the falling off of the battery, reduces internal battery resistance after battery construction, and improves oxygen gas absorption performance. (d) Structure of the Invention The paste-type cadmium cathode plate for alkaline storage batteries of the present invention is made by applying a paste containing cadmium oxide as the main active material to a conductive core, and the surface of the plate is in contact with an alkaline electrolyte. The present invention is characterized in that it has a water-soluble thin film layer of glue that forms a gel layer, and carbon powder is dispersed in the thin film layer of glue. Further, the thickness of the thin glue layer is 2 to 20 mm.
A range of microns is preferred. As the glue, polyvinyl alcohol is most suitable, and the amount of the carbon powder added in the thin film layer of the glue is preferably 50 to 150% by weight relative to the glue. (e) Examples Examples of the present invention will be shown and explained below. [Example] After mixing 100 g of metallic cadmium powder with an average particle size of 3 microns with 900 g of cadmium oxide powder as the main active material, 6 g of methyl cellulose was added as a glue to this mixed powder, and a length of about 2 mm was added as a reinforcing material.
An active material paste is prepared by adding 10 g of polypropylene fibers of mm and thickness of 2 denier and thoroughly kneading the fibers. The paste thus obtained is applied to an electrode core made of punched metal, dried,
Next, a 10% aqueous solution of polyvinyl alcohol is uniformly sprayed onto the surface and dried to coat the surface of the active material layer with about 8% polyvinyl alcohol.
A master plate with a micron glue thin film layer was obtained. This master electrode plate is cut into pieces of 33 mm in length and 200 mm in width to obtain cadmium cathode plates. This cathode plate is combined with an anode plate (length: 33 mm, width: 160 mm, thickness: 0.7 mm) prepared by a known method and a nylon nonwoven fabric separator, and an alkaline electrolyte is added to form a sealed nickel-cadmium battery with a nominal capacity of 1.2 AH. A was created. In addition, in place of the aforementioned polyvinyl alcohol used as a glue for the thin film layer formed on the surface of the cadmium cathode plate in the battery A, carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose were used as the glue, and the rest was the same, but nickel was used as the glue. -A cadmium battery was produced. These batteries are designated as B, C, and D, respectively. The glue used on the surface of the cathode plate of these batteries was adjusted to have the same viscosity as the aqueous solution of polyvinyl alcohol described above. Then, in the aforementioned batteries A, B, C, and D, a 1:1 weight ratio of the glue to the polyvinyl alcohol used in battery A was added to the aqueous solution of the glue used to form a thin film layer on the surface of the cadmium cathode plate. Using a corresponding amount of acetylene black suspended in each case,
A nickel-cadmium battery was fabricated in the same manner as described above except that a thin film layer containing acetylene black was formed on the surface of the cathode plate. The batteries thus produced are referred to as batteries A', B', C', and D' of the present invention, corresponding to the batteries A, B, C, and D, respectively. [Comparative Example] Comparative battery E was prepared using the same battery as in Example except that no glue thin film layer was provided on the surface of the cadmium cathode plate. The table below compares the characteristics of these batteries and the cadmium cathode plates used in these batteries. Powder falling off from electrodes in the table refers to active material falling off from the cathode plate during the battery manufacturing process. 〇 indicates that a small amount of active material powder has adhered to the hand, ◎ indicates that no active material powder has attached to the hand, and the battery capacity is 1200 mA, and the discharge ends when the battery voltage reaches 1.0 V. The battery capacity and internal resistance are the internal resistance of the battery in the discharge state, and the internal pressure is 360mA at 0℃
The figures show the internal gas pressure of the battery during overcharging for 18 hours.

【表】 上記表から本発明極板は比較極板に比し明らか
に活物質の脱落が少ないことがわかる。したがつ
て、本発明のカドミウム陰極板は電池製造工程に
於ける作業環境をそこなうことを防止することが
できると共に活物質の脱落による電池容量の低下
を抑制することができるものである。 また、本発明の陰極板を用いた電池は、電池内
部抵抗並びに電池内部圧力が共に比較電池より優
れており、ハイレート放電時の作動電圧を見ても
8.0C電流(電池容量分の電気量を1時間で流す電
流値が1Cであり8Cは8倍の電流)で放電した際
に平均作動電圧でセルあたり比較電池より50mV
程度高くなつている。これは陰極板表面に形成さ
れたゲル層によつて陰陽極板間に保持される電解
液量が増加したため電池内部抵抗が減少し、それ
に伴ないハイレート放電による作動電圧が高くな
つたと推測される。また、糊料薄膜層にカーボン
粉末を分散させた陰極板を用いた本発明電池
A′〜D′の内部ガス圧が、電池A〜D及び比較電
池に比し、大幅に低減され良好であるのは、陰極
板表面の糊料薄膜層に分散されたカーボン粉末に
よつて陰極板表面が導電層で覆われたことになる
ため、充電の際に充電生成物である電子伝導性の
良好な金属カドミウムが導電芯体付近から徐々に
生成して前記カーボン粉末を含有する薄膜層に到
達すると、この薄膜層と導電芯体は電気的に接続
された形となり酸素ガスと接触し易い陰極板表面
に酸素ガスを消失させる金属カドミウムを生成す
ることができるためと考えられる。 上述したペースト式カドミウム陰極板表面の糊
料薄膜層は、カーボン粉末を含有する場合もカー
ボン粉末を含有しない場合もその厚みは2〜20ミ
クロンが好ましく、2ミクロン以下では活物質脱
落防止の効果が少なく、20ミクロン以上ではかえ
つて電池反応抵抗を増大させて内部抵抗を大きく
することになる。また、この糊料薄膜層に使用さ
れる糊料はアルカリ電解液中でゲル化する水溶性
糊料なら何れもほぼ同一の効果を得ることができ
るが、中でもポリビニルアルコールは造膜性が優
れ、電池に有害な成分、たとえばCl-などの不純
物の含有量が少ない、ゲル化の程度がより適当、
アルカリ電解液との親和性が大きいという利点を
有するので好ましい。 また、前記糊料薄膜層に分散せしめるカーボン
量は、糊料に対する重量比で50〜150%が適当で
あり、これ以下では導電性が劣るため充分な効果
が得られず、150%以上では糊料の粘度が増大し
均一なコーテイングが困難となる。尚、カーボン
粉末としては不純物が少ないという理由でアセチ
レンブラツクを用いることがより好ましい。 (ヘ) 発明の効果 本発明のアルカリ蓄電池用ペースト式カドミウ
ム陰極板は、酸化カドミウムを主活物質とするペ
ーストを導電性芯体に塗着してなる極板の表面
に、アルカリ電解液と接してゲル層を形成する水
溶性の糊料薄膜層を有し、前記糊料薄膜層にはア
セチレンブラツク、グラフアイト、活性炭などの
カーボン粉末が分散されていることを特徴とする
ものであるから、活物質の脱落が防止できるため
電池製造時における作業環境を改善すると共に容
量低下を抑制でき、電池構成後の電池内部抵抗が
改善される。そして特に、かかる電極を備えたア
ルカリ蓄電池は、酸素ガス吸収性能が大幅に向上
し、電池内ガス圧の上昇を低く抑えることが可能
であり、その工業的価値は極めて大きい。
[Table] From the above table, it can be seen that the electrode plate of the present invention clearly has less active material falling off than the comparative electrode plate. Therefore, the cadmium cathode plate of the present invention can prevent damage to the working environment in the battery manufacturing process, and can also suppress a decrease in battery capacity due to shedding of the active material. In addition, the battery using the cathode plate of the present invention is superior to comparative batteries in both battery internal resistance and battery internal pressure, and even in terms of operating voltage during high-rate discharge.
When discharging at 8.0C current (the current value that flows the amount of electricity equivalent to the battery capacity in 1 hour is 1C, 8C is 8 times the current), the average operating voltage is 50mV per cell compared to the comparison battery.
It is becoming more and more serious. It is assumed that this is because the gel layer formed on the surface of the cathode plate increases the amount of electrolyte held between the cathode and anode plates, which reduces the internal resistance of the battery, and as a result, the operating voltage increases due to high-rate discharge. . In addition, a battery of the present invention using a cathode plate in which carbon powder is dispersed in a thin glue layer
The reason why the internal gas pressure of A' to D' is significantly lower than that of Batteries A to D and comparative batteries is that the carbon powder dispersed in the thin glue film layer on the surface of the cathode plate Since the plate surface is covered with a conductive layer, during charging, metal cadmium with good electronic conductivity, which is a charging product, is gradually generated from near the conductive core, resulting in a thin film layer containing the carbon powder. This is thought to be because, when reaching , the thin film layer and the conductive core become electrically connected, and metal cadmium, which dissipates oxygen gas, can be generated on the surface of the cathode plate, which easily comes into contact with oxygen gas. The thickness of the above-mentioned paste thin film layer on the surface of the paste-type cadmium cathode plate is preferably 2 to 20 microns, whether it contains carbon powder or not, and a thickness of 2 microns or less is not effective in preventing the active material from falling off. If it is less than 20 microns, it will actually increase the battery reaction resistance and increase the internal resistance. In addition, as for the glue used in this glue thin film layer, any water-soluble glue that gels in an alkaline electrolyte can achieve almost the same effect, but polyvinyl alcohol has excellent film-forming properties, The content of impurities harmful to batteries, such as Cl -, is low, the degree of gelation is more appropriate,
It is preferred because it has the advantage of high affinity with alkaline electrolytes. Furthermore, the appropriate amount of carbon to be dispersed in the thin film layer of the glue is 50 to 150% by weight relative to the glue; if it is less than this, the conductivity will be poor and a sufficient effect will not be obtained, and if it is more than 150%, the glue will The viscosity of the material increases, making uniform coating difficult. Note that it is more preferable to use acetylene black as the carbon powder because it contains fewer impurities. (F) Effects of the Invention The paste-type cadmium cathode plate for alkaline storage batteries of the present invention is made by applying a paste containing cadmium oxide as the main active material to a conductive core, and the surface of the plate is in contact with an alkaline electrolyte. The present invention is characterized in that it has a thin water-soluble glue layer that forms a gel layer, and carbon powder such as acetylene black, graphite, or activated carbon is dispersed in the thin glue layer. Since the active material can be prevented from falling off, the working environment during battery manufacturing can be improved, capacity reduction can be suppressed, and the internal resistance of the battery after battery construction can be improved. In particular, an alkaline storage battery equipped with such an electrode has greatly improved oxygen gas absorption performance and can suppress the increase in gas pressure inside the battery, and has extremely great industrial value.

Claims (1)

【特許請求の範囲】 1 酸化カドミウムを主活物質とするペーストを
導電性芯体に塗着してなる極板の表面に、アルカ
リ電解液と接してゲル層を形成する水溶性の糊料
薄膜層を有し、前記糊料薄膜層にはカーボン粉末
が分散されていることを特徴とするアルカリ蓄電
池用ペースト式カドミウム陰極板。 2 前記糊料薄膜層の厚みが2〜20ミクロンであ
る特許請求の範囲第1項記載のアルカリ蓄電池用
ペースト式カドミウム陰極板。 3 前記糊料がポリビニルアルコールである特許
請求の範囲第1項記載のアルカリ蓄電池用ペース
ト式カドミウム陰極板。 4 前記糊料薄膜層における前記カーボン粉末の
添加量は、前記糊料に対する重量比で、50〜150
%である特許請求の範囲第1項記載のアルカリ蓄
電池用ペースト式カドミウム陰極板。
[Scope of Claims] 1. A water-soluble glue thin film that forms a gel layer in contact with an alkaline electrolyte on the surface of an electrode plate made by applying a paste containing cadmium oxide as the main active material to a conductive core. 1. A paste-type cadmium cathode plate for an alkaline storage battery, characterized in that the paste-type cadmium cathode plate has a layer, and carbon powder is dispersed in the paste thin film layer. 2. The paste-type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the thickness of the paste thin film layer is 2 to 20 microns. 3. A paste-type cadmium cathode plate for an alkaline storage battery according to claim 1, wherein the glue is polyvinyl alcohol. 4 The amount of the carbon powder added in the thickening thin film layer is 50 to 150 in terms of weight ratio to the thickening material.
% of the paste-type cadmium cathode plate for an alkaline storage battery according to claim 1.
JP59057772A 1983-12-20 1984-03-26 Paste type cadmium anode plate for alkaline storage battery Granted JPS60202666A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59057772A JPS60202666A (en) 1984-03-26 1984-03-26 Paste type cadmium anode plate for alkaline storage battery
US06/680,817 US4614696A (en) 1983-12-20 1984-12-12 Negative electrode plate for alkaline storage cells of sealed type
CN85101119A CN1011648B (en) 1984-03-26 1985-04-01 Negative plate electrode of closed alkaline accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057772A JPS60202666A (en) 1984-03-26 1984-03-26 Paste type cadmium anode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS60202666A JPS60202666A (en) 1985-10-14
JPH0450707B2 true JPH0450707B2 (en) 1992-08-17

Family

ID=13065158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057772A Granted JPS60202666A (en) 1983-12-20 1984-03-26 Paste type cadmium anode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS60202666A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158664A (en) * 1984-12-28 1986-07-18 Japan Storage Battery Co Ltd Cadmium plate for alkaline battery
JPS61203559A (en) * 1985-03-06 1986-09-09 Japan Storage Battery Co Ltd Manufacture of alkaline storage battery
JPS62294829A (en) * 1986-06-13 1987-12-22 Matsushita Electric Ind Co Ltd Smoke discharging device
JPH0677450B2 (en) * 1986-06-13 1994-09-28 松下電器産業株式会社 Sealed nickel-hydrogen battery
JPS63138651A (en) * 1986-11-28 1988-06-10 Matsushita Electric Ind Co Ltd Paste type cadmium negative electrode
JPH03159065A (en) * 1989-11-17 1991-07-09 Matsushita Electric Ind Co Ltd Nickel-cadmium storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028644A (en) * 1973-07-17 1975-03-24
JPS5386442A (en) * 1977-01-10 1978-07-29 Matsushita Electric Ind Co Ltd Negative electrode for alkaline storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028644A (en) * 1973-07-17 1975-03-24
JPS5386442A (en) * 1977-01-10 1978-07-29 Matsushita Electric Ind Co Ltd Negative electrode for alkaline storage battery

Also Published As

Publication number Publication date
JPS60202666A (en) 1985-10-14

Similar Documents

Publication Publication Date Title
US4407915A (en) Secondary zinc electrode
US4614696A (en) Negative electrode plate for alkaline storage cells of sealed type
JP3373751B2 (en) Secondary battery and manufacturing method thereof
JPH0450707B2 (en)
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
CN1211089A (en) Alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JPS5935359A (en) Zinc electrode
JP4436464B2 (en) Lithium ion battery
US4765799A (en) Latex coated electrodes for rechargeable cells
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP7397155B2 (en) Aluminum battery negative electrode structure
EP4276943A1 (en) Battery cathode material and method of preparing the same
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0763004B2 (en) Sealed alkaline storage battery
JP2867458B2 (en) Alkaline battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
KR100300327B1 (en) A composition for a positive electrode of a nickel-metal hydride battery, a positive electrode using the same and a nickel-metal hydride battery using the same
CA1263437A (en) Cadmium negative electrode
JPH0715815B2 (en) Method for producing paste type cadmium cathode plate for alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH03159064A (en) Nickel-cadmium storage battery
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH0251874A (en) Alkaline zinc lead-acid battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term