JPH0450619A - Flow-rate measuring method for low-temperature liquefied gas and flowmeter using same - Google Patents

Flow-rate measuring method for low-temperature liquefied gas and flowmeter using same

Info

Publication number
JPH0450619A
JPH0450619A JP15169490A JP15169490A JPH0450619A JP H0450619 A JPH0450619 A JP H0450619A JP 15169490 A JP15169490 A JP 15169490A JP 15169490 A JP15169490 A JP 15169490A JP H0450619 A JPH0450619 A JP H0450619A
Authority
JP
Japan
Prior art keywords
gas
low
temperature liquefied
liquefied gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15169490A
Other languages
Japanese (ja)
Other versions
JP2758977B2 (en
Inventor
Makoto Chokai
誠 鳥海
Kazurou Koitani
鯉谷 和朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teisan KK
Original Assignee
Teisan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teisan KK filed Critical Teisan KK
Priority to JP15169490A priority Critical patent/JP2758977B2/en
Publication of JPH0450619A publication Critical patent/JPH0450619A/en
Application granted granted Critical
Publication of JP2758977B2 publication Critical patent/JP2758977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect the accurate flow rate of low-temperature liquefied gas in feeding after gas-liquid separation by expanding the low-temperature liquefied gas to intended pressure, vaporizing a part of the liquefied gas, thereafter separating the gas and the liquid, and measuring the flow rate of the separated vaporized gas. CONSTITUTION:Low-temperature liquefied gas in a tank 1 becomes an gas-liquid equilibrium state at pressure P1. The gas is taken out of the tank 1 through a liquid taking-out pipe 5. The gas is sent into a heat-insulated low-temperature liquefied-gas guide pipe 6. The gas is expanded to intended pressure P2 through an expansion valve 7 provided in the guide pipe 6. The liquefied gas is expanded and vaporized through the expansion valve 7. The gas is separated in a gas-liquid separator 8. The vaporized gas is guided out of a vaporized- gas guide pipe 10. The low-ltemperature liquefied gas which remains in the liquid state is sent through a low-tgemperature liquefied-gas feeding pipe 9. The ratio between the gasfied gas and the low-temperature liquefied gas is determined based on the kinds of the low- temperature liquefied gas and the gasified gas, the pressure P1 in the tank 1 and the pressure Pd2 in the gas-liquid separator 8. Therefore, the flow rate of the gas flowing through the low-temperature liquefied-gas feeding pipe 9 can be obtained by computation based on the numerical values measured with a vaporized-gas flowmeter 11.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ある場所へ送給される低温液化ガスの流量
を測定する方法及びその方法を用いた流量計に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for measuring the flow rate of low-temperature liquefied gas delivered to a certain location, and a flowmeter using the method.

(従来技術) 液体酸素、液体窒素、液体アルゴンのような低温液化ガ
スは、例えばその保有する寒冷を利用するためには液体
のまま使用場所へ送給しなければならない。しかしなが
らこれらの低温液化ガスはきわめて気化しやすく、流量
を測定すべき管路中においても気化ガスの気泡を同伴す
る場合が多く、また沸騰によって常に液面が泡立った状
態にあるので、その正確な流量を測定することは非常に
困難であった。
(Prior Art) Low-temperature liquefied gases such as liquid oxygen, liquid nitrogen, and liquid argon must be delivered to the place of use in a liquid state, for example, in order to utilize the coldness they possess. However, these low-temperature liquefied gases are extremely easy to vaporize, and bubbles of vaporized gas are often entrained in the pipeline where the flow rate is to be measured, and the liquid level is always in a bubbling state due to boiling, so it is difficult to accurately measure the flow rate. It was very difficult to measure the flow rate.

そのため、例えば実願昭52−81188号(実開昭5
4−8468号)明細書には、低温液化ガスを熱交換器
において大気又は他の熱媒体で加温して気化し、気化さ
れたガスをガス流量計で正確な流量を測定した後に、熱
交換器において冷媒によって冷却再液化して使用場所へ
送給するという低温液化ガスの流量測定装置が開示され
ている。
Therefore, for example, Utility Application No. 52-81188 (Utility Application No. 52-81188)
No. 4-8468) The specification states that low-temperature liquefied gas is heated in a heat exchanger with the atmosphere or other heat medium to vaporize it, and after measuring the accurate flow rate of the vaporized gas with a gas flow meter, A low-temperature liquefied gas flow rate measuring device is disclosed in which the low-temperature liquefied gas is cooled and re-liquefied using a refrigerant in an exchanger and then sent to a place of use.

しかしながら上記の先行技術は、同明細書にも記されて
いるように(第1頁末尾2行)少量の低温液化ガスの流
量には適しているかもしれないが、工業的用途に用いる
程度の流量の場合には不適当な装置である。何故ならば
、低温液化ガスが気化すると数百倍の体積のガスとなる
ので(例えば液体窒素はO’C,1気圧で648倍)、
全量を気化してガス流量を測定し、さらに再液化するに
は、装置を大型化しなくてはならず、費用もかかるとい
う欠点があった。
However, as stated in the same specification (last two lines of the first page), the above-mentioned prior art may be suitable for the flow rate of a small amount of low-temperature liquefied gas, but it is not suitable for use in industrial applications. In the case of flow rate, it is an inappropriate device. This is because when low-temperature liquefied gas is vaporized, it becomes a gas several hundred times the volume (for example, liquid nitrogen is 648 times the volume at O'C, 1 atmosphere).
In order to vaporize the entire amount, measure the gas flow rate, and then reliquefy the gas, the device must be large and expensive.

(発明が解決しようとする課題) この発明は、上記のような欠点を除去し、気泡の混入し
ない正確な低温液化ガスの流量を簡便に測定することの
できる測定方法及び測定装置(流量計)を提供すること
を目的としている。
(Problems to be Solved by the Invention) The present invention provides a measuring method and a measuring device (flow meter) that eliminates the above-mentioned drawbacks and can easily measure the flow rate of low-temperature liquefied gas accurately and without the inclusion of bubbles. is intended to provide.

(課題を解決するための手段) その目的は、一定圧力下にある低温液化ガスを取出して
所望の圧力まで膨張させて一部分を気化した後に気液分
離し、次いで分離された気化ガスの流量を測定すること
によって、気液分離後の送給低温液化ガスの流量を知る
ことかできるこの発明の方法により達成される。
(Means for solving the problem) The purpose is to extract low-temperature liquefied gas under a constant pressure, expand it to a desired pressure, vaporize a portion, and then separate the gas and liquid, and then control the flow rate of the separated vaporized gas. This is achieved by the method of the present invention, which allows the flow rate of the low-temperature liquefied gas to be fed after gas-liquid separation to be known by measuring it.

また一方、この発明は、上記の方法を実施するために、
一定圧力下にある低温液化ガス供給源からの低温液化ガ
ス導出管に所望の圧力への膨張弁、気液分離器を順次設
け、前記気液分離器下部には低温液化ガス送給管を、上
部にはガス流量計を備えた気化ガス導出管を設けて、前
記低温液化ガス送給管を通る低温液化ガス流量を測定す
る流量計も提供するものである。
On the other hand, in order to carry out the above method, the present invention provides the following steps:
A low-temperature liquefied gas outlet pipe from a low-temperature liquefied gas supply source under constant pressure is sequentially provided with an expansion valve to a desired pressure and a gas-liquid separator, and a low-temperature liquefied gas feed pipe is provided at the bottom of the gas-liquid separator. The present invention also provides a flow meter that is provided with a vaporized gas outlet pipe equipped with a gas flow meter on the upper part and measures the flow rate of the low temperature liquefied gas passing through the low temperature liquefied gas feed pipe.

ある低温液化ガスを膨張させた場合、何%の低温液化ガ
スが気化してガスとなるかは、低温液化ガスの種類ごと
に、膨張前の圧力と膨張後の圧力がわかれば容易に知る
ことかできる。例えば液体窒素の場合、5kg/cJ(
ゲージ圧)から大気圧まで膨張すれば、その20%が気
化して80%が液体として残る。したがって正確な測定
が容易なガス(窒素ガス)の量を測定することにより、
液体として残る液体窒素の量を知ることができる。この
場合、膨張前の低温液化ガスが気液平衡状態にあれば、
−層正確な値が得られる。
When a certain low-temperature liquefied gas is expanded, what percentage of the low-temperature liquefied gas vaporizes and becomes gas can be easily determined by knowing the pressure before expansion and the pressure after expansion for each type of low-temperature liquefied gas. I can do it. For example, in the case of liquid nitrogen, 5 kg/cJ (
When it expands from (gauge pressure) to atmospheric pressure, 20% of it vaporizes and 80% remains as liquid. Therefore, by measuring the amount of gas (nitrogen gas) that is easy to accurately measure,
You can find out how much liquid nitrogen remains as a liquid. In this case, if the low-temperature liquefied gas before expansion is in a vapor-liquid equilibrium state,
- Layer accurate values are obtained.

この発明は上に述べた原理に基いてなされたものであり
、低温液化ガスのガスの種類ごとに、P1圧力のものを
P2圧力にまで膨張すれば、膨張前の低温液化ガスのG
%が気化するかはすでに知られているのでG%に相当す
る気化ガスの流量を正確に測定することにより、(10
0−G )%に相当する液体として残った低温液化ガス
の流量を容易にしかも正確に知ることができるのである
This invention was made based on the above-mentioned principle, and for each type of low-temperature liquefied gas, if a pressure of P1 is expanded to a pressure of P2, the G of the low-temperature liquefied gas before expansion is
Since it is already known whether G% is vaporized, by accurately measuring the flow rate of vaporized gas corresponding to G%, (10
The flow rate of the low-temperature liquefied gas remaining as a liquid corresponding to 0-G)% can be easily and accurately determined.

以下に、この発明による低温液化ガス流量計の一実施態
様を例として示す図を参照しながらこの発明をさらに詳
細に説明する。
In the following, the invention will be explained in more detail with reference to figures showing by way of example one embodiment of a low temperature liquefied gas flowmeter according to the invention.

(実施例) 送給すべき低温液化ガスは、断熱二重容器、例えばコー
ルドエバポレータと呼ばれる供給貯槽1内に収容され、
その一部が加圧用気化器2、圧力調整器3を備えた供給
加圧ライン4を通って一定圧力の気化ガスとなって貯槽
lの気相部に戻される。この場合供給貯槽l内の気相部
の圧力と平衡した液相温度となるように、加圧用気化器
2には通常よりは多くの低温液化ガスを流して一部を気
化し、残部は液体のまま加温して貯槽1内に戻す。
(Example) The low-temperature liquefied gas to be supplied is stored in a heat-insulated double container, for example, a supply storage tank 1 called a cold evaporator,
A part of it passes through a supply pressurization line 4 equipped with a pressurization vaporizer 2 and a pressure regulator 3, becomes vaporized gas at a constant pressure, and is returned to the gas phase portion of the storage tank 1. In this case, a larger amount of low-temperature liquefied gas than usual is flowed into the pressurizing vaporizer 2 to vaporize a part of it, and the rest is a liquid so that the liquid phase temperature is in equilibrium with the pressure of the gas phase in the supply storage tank l. Warm it as it is and return it to storage tank 1.

これにより貯槽1内の低温液化ガスは圧力P1の気液平
衡状態となり、液取出し管5を経て貯槽1外に取出され
、断熱された低温液化ガス導出管(断熱層は図示されて
いない)6に送出される。次いで低温液化ガスは、前記
導出管6に設けられた膨張弁7によって所望圧力(例え
ば使用圧力) P2まで膨張され、導出管6から気液分
離器8内へ気液混合状態で導入される。気液分離器8に
は、下部に低温液化ガス送給管9が、上部には気化ガス
導出管lOが設けられ、気化ガス導出管lOには、公知
の種類のガス流量計11が取付けられている。12は、
低温液化ガス送給管11に設けられた開閉弁である。
As a result, the low-temperature liquefied gas in the storage tank 1 enters a gas-liquid equilibrium state with a pressure P1, and is taken out of the storage tank 1 via the liquid take-out pipe 5, and is insulated into a low-temperature liquefied gas outlet pipe (the heat insulating layer is not shown) 6. will be sent to. Next, the low-temperature liquefied gas is expanded to a desired pressure (for example, working pressure) P2 by an expansion valve 7 provided in the outlet pipe 6, and is introduced from the outlet pipe 6 into the gas-liquid separator 8 in a gas-liquid mixed state. The gas-liquid separator 8 is provided with a low-temperature liquefied gas feed pipe 9 at the lower part and a vaporized gas outlet pipe 10 at the upper part, and a known type of gas flow meter 11 is attached to the vaporized gas outlet pipe 10. ing. 12 is
This is an on-off valve provided in the low-temperature liquefied gas feed pipe 11.

前記したように膨張弁7で膨張されて気化し、気液分離
器8で分離されて気化ガス導出管10から導出される気
化ガスと、液体のまま残り低温液化ガス゛送給管9を通
って送給される低温液化ガスとの比率は、低温液化ガス
のガスの種類と、貯槽l内の圧力P、及び気液分離器8
内の圧力P2とによって定まるので、気化ガス流量計1
1によって測定された数値から、低温液化ガス送給管9
を通る流量は計算によって求めることができる。その計
算は、例えば必要な情報を記憶させておけば、コンピュ
ータによって容易に行うことができるので、きわめて容
易である。
As described above, the vaporized gas is expanded and vaporized by the expansion valve 7, separated by the gas-liquid separator 8, and led out from the vaporized gas outlet pipe 10, and the low-temperature liquefied gas that remains as a liquid is passed through the feed pipe 9. The ratio of the low-temperature liquefied gas to be fed depends on the type of low-temperature liquefied gas, the pressure P in the storage tank 1, and the gas-liquid separator 8.
The vaporized gas flow meter 1
From the values measured by 1, the low temperature liquefied gas feed pipe 9
The flow rate through can be determined by calculation. The calculation is extremely easy because it can be easily performed by a computer, for example, if the necessary information is stored.

気液分離器8は、低温液化ガス送給管9を通る低温液化
ガス流量に見合った大きさのもので、分離器8下部に液
体ができるだけ溜らずに、管7から送入された低温液化
ガスがそのまま管12から流出するようにするのが好ま
しい。例えば管12からの流出量がIOA/minの場
合、気液分離器8の内容積は51程度である。また気液
分離をできるだけ完全に行うために、例えば気液分離器
8内に金網やスパイラルワイヤ片などを充填することも
できる。
The gas-liquid separator 8 is of a size commensurate with the flow rate of the low-temperature liquefied gas passing through the low-temperature liquefied gas feed pipe 9, and is designed to prevent liquid from accumulating at the bottom of the separator 8 as much as possible. Preferably, the gas is allowed to flow directly out of the tube 12. For example, when the flow rate from the pipe 12 is IOA/min, the internal volume of the gas-liquid separator 8 is about 51. Further, in order to perform gas-liquid separation as completely as possible, the gas-liquid separator 8 may be filled with wire mesh, pieces of spiral wire, etc., for example.

気化ガス導出管10で導出された気化ガスは、まだ非常
な低温であるが、一般に用いられるガス流量計は低温ガ
スの測定には不適なので、図示しない熱交換器で、空気
、その他により常温付近まで加温された後にガス流量計
11に導入される。この場合、ガスを常に一定温度で導
入するか、ガス流量計11の表示が温度補正されるよう
にして、所定温度における正確な流量が得られるように
するのが好ましい。
The vaporized gas led out by the vaporized gas outlet pipe 10 is still at a very low temperature, but since commonly used gas flowmeters are not suitable for measuring low-temperature gas, a heat exchanger (not shown) is used to cool the vaporized gas to around room temperature using air or other materials. After the gas is heated to a temperature of 100°C, it is introduced into the gas flow meter 11. In this case, it is preferable to always introduce the gas at a constant temperature or to temperature-compensate the display of the gas flow meter 11 so that an accurate flow rate at a predetermined temperature can be obtained.

(効 果) この発明は、上に述べたような構成を有するものであり
、そこから次のような効果を生じる。
(Effects) This invention has the configuration described above, and the following effects are produced therefrom.

(1)気泡が混入したり、常に沸騰状態にあって正確な
測定が困難な低温液化ガスの流量を、測定が簡単で容易
なガス流量測定値から正しく計算することができる。
(1) The flow rate of low-temperature liquefied gas, which is difficult to accurately measure because it contains bubbles or is always in a boiling state, can be accurately calculated from the gas flow rate measurement value, which is simple and easy to measure.

(2)装置の構成も簡単であり、信頼性が高い。(2) The configuration of the device is simple and highly reliable.

(3)膨張後の低温液化ガス(気化しなかった残部の液
体)は、温度が降下して安定した気液平衡状態となるの
で、これを冷媒として使用する場合には一層有利である
(3) Since the temperature of the expanded low-temperature liquefied gas (remaining liquid that has not been vaporized) falls and a stable vapor-liquid equilibrium state is reached, it is more advantageous when used as a refrigerant.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明による低温液化ガス流量計の一実施態様
を示す図である。 ■・・・低温液化ガス供給貯槽、4・・・1の供給加圧
ライン、6・・・低温液化ガス導出管、7・・・膨張弁
、8・・・気液分離器、9・・・低温液化ガス送給管、
10・・・気化ガス導出管、11・・・ガス流量計。
The figure is a diagram showing one embodiment of a low-temperature liquefied gas flowmeter according to the present invention. ■...Low-temperature liquefied gas supply storage tank, 4...1 supply pressurization line, 6...Low-temperature liquefied gas outlet pipe, 7...Expansion valve, 8...Gas-liquid separator, 9...・Low temperature liquefied gas supply pipe,
10... Vaporized gas outlet pipe, 11... Gas flow meter.

Claims (1)

【特許請求の範囲】 1、一定圧力下にある低温液化ガスのある場所への送給
流量を測定する方法において、前記低温液化ガスを所望
の圧力まで膨張させて一部分を気化した後に気液分離し
、次いで分離された気化ガスの流量を測定することによ
って、前記場所へ送給される気液分離後の低温液化ガス
流量を知る低温液化ガスの流量測定方法。 2、一定圧力下にある低温液化ガス供給源からの低温液
化ガス導出管に所望の圧力への膨張弁、気液分離器を順
次設け、前記気液分離器下部には低温液化ガス送給管を
、上部にはガス流量計を備えた気化ガス導出管を設けて
ある前記低温液化ガス送給管を通る低温液化ガス流量を
測定する流量計。
[Claims] 1. In a method for measuring the flow rate of low-temperature liquefied gas supplied to a location under a constant pressure, the low-temperature liquefied gas is expanded to a desired pressure and partially vaporized, and then gas-liquid separation is performed. and then measuring the flow rate of the separated vaporized gas to determine the flow rate of the low temperature liquefied gas after gas-liquid separation to be sent to the location. 2. A low-temperature liquefied gas outlet pipe from a low-temperature liquefied gas supply source under constant pressure is sequentially provided with an expansion valve to a desired pressure and a gas-liquid separator, and a low-temperature liquefied gas feed pipe is installed at the bottom of the gas-liquid separator. and a flow meter for measuring the flow rate of low-temperature liquefied gas passing through the low-temperature liquefied gas feed pipe, the upper part of which is provided with a vaporized gas outlet pipe equipped with a gas flow meter.
JP15169490A 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method Expired - Lifetime JP2758977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15169490A JP2758977B2 (en) 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15169490A JP2758977B2 (en) 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method

Publications (2)

Publication Number Publication Date
JPH0450619A true JPH0450619A (en) 1992-02-19
JP2758977B2 JP2758977B2 (en) 1998-05-28

Family

ID=15524226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15169490A Expired - Lifetime JP2758977B2 (en) 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method

Country Status (1)

Country Link
JP (1) JP2758977B2 (en)

Also Published As

Publication number Publication date
JP2758977B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US7565811B2 (en) Gaseous fluid production apparatus and method
EP0038673B1 (en) Apparatus and process for delivering liquid cryogen
US3091096A (en) Delivering vapors of low boiling liquids
US11499765B2 (en) Device and process for refueling containers with pressurized gas
US11287087B2 (en) Device and process for refueling containers with pressurized gas
CA2929039C (en) Method and device for regulating the pressure in a liquefied natural gas vessel
US5632295A (en) Method and an apparatus for adding a melodorant to a consumer gas
US3371497A (en) Maintaining constant composition in a volatile multi-component liquid
US3742721A (en) Method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids
US3285719A (en) Ofw xx
JP4194325B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
JPH0450619A (en) Flow-rate measuring method for low-temperature liquefied gas and flowmeter using same
US5778678A (en) Method and apparatus for producing liquid mixtures of oxygen and nitrogen
JP5028117B2 (en) Dilution refrigerator
JP4194324B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
EP3604893B1 (en) Device and process for refuelling containers with pressurized gas
EP3604891B1 (en) Device and process for refuelling containers with pressurized gas
EP3604890A1 (en) Device and process for refuelling containers with pressurized gas
Vinš et al. Investigation of droplet nucleation in CCS relevant systems–Design and testing of a CO2 branch of the mixture preparation device
EP3604892B1 (en) Device and process for refuelling containers with pressurized gas
Weisend II Cryogenic engineering
EP3604978A1 (en) Device and process for refuelling containers with pressurized gas
TAYLOR et al. Comparing the results of an analytical model of the no-vent fill process with no-vent fill test results for a 4.96 cu m (175 cu ft) tank
Szara Rapid, Low-Loss Liquid Helium Transfers
JP2021179258A (en) Liquefier of cooled gas and liquefaction method of cooled gas