JP2758977B2 - Low temperature liquefied gas flow measurement method and flow meter using the method - Google Patents

Low temperature liquefied gas flow measurement method and flow meter using the method

Info

Publication number
JP2758977B2
JP2758977B2 JP15169490A JP15169490A JP2758977B2 JP 2758977 B2 JP2758977 B2 JP 2758977B2 JP 15169490 A JP15169490 A JP 15169490A JP 15169490 A JP15169490 A JP 15169490A JP 2758977 B2 JP2758977 B2 JP 2758977B2
Authority
JP
Japan
Prior art keywords
gas
low
temperature liquefied
liquefied gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15169490A
Other languages
Japanese (ja)
Other versions
JPH0450619A (en
Inventor
誠 鳥海
和朗 鯉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teisan KK
Original Assignee
Teisan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teisan KK filed Critical Teisan KK
Priority to JP15169490A priority Critical patent/JP2758977B2/en
Publication of JPH0450619A publication Critical patent/JPH0450619A/en
Application granted granted Critical
Publication of JP2758977B2 publication Critical patent/JP2758977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ある場所へ送給される低温液化ガスの流
量を測定する方法及びその方法を用いた流量計に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for measuring a flow rate of a low-temperature liquefied gas sent to a certain place, and a flow meter using the method.

(従来技術) 液体酸素、液体窒素、液体アルゴンのような低温液化
ガスは、例えばその保有する寒冷を利用するためには液
体のまま使用場所へ送給しなければならない。しかしな
がらこれらの低温液化ガスはきわめて気化しやすく、流
量を測定すべき管路中においても気化ガスの気泡を同伴
する場合が多く、また沸騰によって常に液面が泡立った
状態にあるので、その正確な流量を測定することは非常
に困難であった。
(Prior Art) A low-temperature liquefied gas such as liquid oxygen, liquid nitrogen, and liquid argon must be sent to a place of use in a liquid state in order to use the cold thereof, for example. However, these low-temperature liquefied gases are very easy to vaporize, often accompanied by gas bubbles of the vaporized gas even in the pipeline where the flow rate is to be measured, and since the liquid surface is constantly bubbling due to boiling, the accurate Measuring the flow rate was very difficult.

そのため、例えば実願昭52−81188号(実開昭54−846
8号)明細書には、低温液化ガスを熱交換器において大
気又は他の熱媒体で加温して気化し、気化されたガスを
ガス流量計で正確な流量を測定した後に、熱交換器にお
いて冷媒によって冷却再液化して使用場所へ送給すると
いう低温液化ガスの流量測定装置が開示されている。
Therefore, for example, Japanese Utility Model Application No. 52-81188 (Japanese Utility Model Application No. 54-846)
No. 8) The specification states that a low-temperature liquefied gas is vaporized in a heat exchanger by heating it with air or other heat medium, and the vaporized gas is measured for an accurate flow rate by a gas flow meter. Discloses a low-temperature liquefied gas flow rate measuring device which cools and reliquefies with a refrigerant and sends it to a place of use.

しかしながら上記の先行技術は、同明細書にも記され
ているように(第1頁末尾2行)少量の低温液化ガスの
流量には適しているかもしれないが、工業的用途に用い
る程度の流量の場合には不適当な装置である。何故なら
ば、低温液化ガスが気化すると数百倍の体積のガスとな
るので(例えば液体窒素は0℃、1気圧で648倍)、全
量を気化してガス流量を測定し、さらに再液化するに
は、装置を大型化しなくてはならず、費用もかかるとい
う欠点があった。
However, the above prior art may be suitable for a small flow rate of a low-temperature liquefied gas as described in the same specification (the last two lines on page 1), but is not suitable for industrial use. In the case of flow rate, it is an unsuitable device. Because the low-temperature liquefied gas becomes a gas of several hundred times volume when it is vaporized (for example, liquid nitrogen is 648 times at 0 ° C and 1 atm), the whole amount is vaporized, the gas flow rate is measured, and the liquid is reliquefied. However, there is a drawback in that the apparatus must be increased in size and costly.

(発明が解決しようとする課題) この発明は、上記のような欠点を除去し、気泡の混入
しない正確な低温液化ガスの流量を簡便に測定すること
のできる測定方法及び測定装置(流量計)を提供するこ
とを目的としている。
(Problems to be Solved by the Invention) The present invention eliminates the above-mentioned drawbacks, and enables a simple and accurate measurement of the flow rate of a low-temperature liquefied gas free of air bubbles. It is intended to provide.

(課題を解決するための手段) その目的は、一定圧力下にある低温液化ガスを取出し
て所望の圧力まで膨張させて一部分を気化した後に気液
分離し、次いで分離された気化ガスの流量を測定するこ
とによって、気液分離後の送給低温液化ガスの流量を知
ることができるこの発明の方法により構成される。
(Means for solving the problem) The purpose is to take out a low-temperature liquefied gas under a certain pressure, expand it to a desired pressure, vaporize a part, separate it into gas and liquid, and then adjust the flow rate of the separated vaporized gas. It is constituted by the method of the present invention that can measure the flow rate of the supplied low-temperature liquefied gas after gas-liquid separation by measuring.

また一方、この発明は、上記の方法を実施するため
に、一定圧力下にある低温液化ガス供給源からの低温液
化ガス導出管に所望の圧力への膨張弁、気液分離器を順
次設け、前記気液分離器下部には低温液化ガス送給管
を、上部にはガス流量計を備えた気化ガス導出管を設け
て、前記低温液化ガス送給管を通る低温液化ガス流量を
測定する流量計も提供するものである。
On the other hand, in the present invention, in order to carry out the above method, an expansion valve to a desired pressure and a gas-liquid separator are sequentially provided in a low-temperature liquefied gas supply pipe from a low-temperature liquefied gas supply source under a constant pressure, A low-temperature liquefied gas supply pipe is provided at the lower part of the gas-liquid separator, and a vaporized gas outlet pipe provided with a gas flow meter is provided at the upper part, and a flow rate for measuring a low-temperature liquefied gas flow rate passing through the low-temperature liquefied gas supply pipe is provided. It also provides a total.

ある低温液化ガスを膨張させた場合、何%の低温液化
ガスが気化してガスとなるかは、低温液化ガスの種類ご
とに、膨張前の圧力と膨張後の圧力がわかれば容易に知
ることができる。例えば液体窒素の場合、5kg/cm2(ゲ
ージ圧)から大気圧まで膨張すれば、その20%が気化し
て80%が液体として残る。したがって正確な測定が容易
なガス(窒素ガス)の量を測定することにより、液体と
して残る液体窒素の量を知ることができる。この場合、
膨張前の低温液化ガスが気液平衡状態にあれば、一層正
確な値が得られる。
When a certain low-temperature liquefied gas is expanded, it is easy to know what percentage of the low-temperature liquefied gas is vaporized into gas by knowing the pressure before expansion and the pressure after expansion for each type of low-temperature liquefied gas. Can be. For example, in the case of liquid nitrogen, if it expands from 5 kg / cm 2 (gauge pressure) to atmospheric pressure, 20% of it will evaporate and 80% will remain as liquid. Therefore, by measuring the amount of gas (nitrogen gas) for which accurate measurement is easy, the amount of liquid nitrogen remaining as liquid can be known. in this case,
If the low temperature liquefied gas before expansion is in a gas-liquid equilibrium state, a more accurate value can be obtained.

この発明は上に述べた原理に基いてなされたものであ
り、低温液化ガスのガスの種類ごとに、P1圧力のものを
P2圧力にまで膨張すれば、膨張前の低温液化ガスのG%
が気化するかはすでに知られているのでG%に相当する
気化ガスの流量を正確に測定することにより、(100−
G)%に相当する液体として残った低温液化ガスの流量
を容易にしかも正確に知ることができるのである。
The present invention has been made based on the principles described above, for each type of gas of the low-temperature liquefied gas, those P 1 pressure
If expanded to the P 2 pressure, G% of low-temperature liquefied gas before expansion
Since it is already known whether or not the gas is vaporized, by accurately measuring the flow rate of the vaporized gas corresponding to G%, (100−
The flow rate of the low-temperature liquefied gas remaining as a liquid corresponding to G)% can be easily and accurately known.

以下に、この発明による低温液化ガス流量計の一実施
態様を例として示す図を参照しながらこの発明をさらに
詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to the drawings showing an embodiment of a low-temperature liquefied gas flow meter according to the present invention as an example.

(実施例) 送給すべき低温液化ガスは、断熱二重容器、例えばコ
ールドエバポレータと呼ばれる供給貯槽1内に収容さ
れ、その一部が加圧用気化器2、圧力調整器3を備えた
供給加圧ライン4を通って一定圧力の気化ガスとなって
貯槽1の気相部に戻される。この場合供給貯槽1内の気
相部の圧力と平衡した液相温度となるように、加圧用気
化器2には通常よりは多くの低温液化ガスを流して一部
を気化し、残部は液体のまま加温して貯槽1内に戻す。
これにより貯槽1内の低温液化ガスは圧力P1の気液平衡
状態となり、液取出し管5を経て貯槽1外に取出され、
断熱された低温液化ガス導出管(断熱層は図示されてい
ない)6に送出される。次いで低温液化ガスは、前記導
出管6に設けられた膨張弁7によって所望圧力(例えば
使用圧力)P2まで膨張され、導出管6から気液分離器8
内へ気液混合状態で導入される。気液分離器8には、下
部に低温液化ガス送給管9が、上部には気化ガス導出管
10が設けられ、気化ガス導出管10には、公知の種類のガ
ス流量計11が取付けられている。12は、低温液化ガス送
給管11に設けられた開閉弁である。
(Embodiment) A low-temperature liquefied gas to be fed is accommodated in an adiabatic double container, for example, a supply storage tank 1 called a cold evaporator, a part of which is supplied with a pressurized vaporizer 2 and a pressure regulator 3. The gas passes through the pressure line 4 and becomes a vaporized gas having a constant pressure and is returned to the gas phase portion of the storage tank 1. In this case, a larger amount of low-temperature liquefied gas is flowed through the pressurizing vaporizer 2 than usual to evaporate a part of the gas so that the liquid phase temperature becomes equilibrium with the pressure of the gas phase part in the supply storage tank 1, and the remaining part is liquid. It is heated and returned into the storage tank 1.
As a result, the low-temperature liquefied gas in the storage tank 1 is in a gas-liquid equilibrium state at a pressure P 1 , taken out of the storage tank 1 through the liquid extraction pipe 5,
The insulated low-temperature liquefied gas outlet pipe (insulated layer is not shown) 6 is sent out. Next, the low-temperature liquefied gas is expanded to a desired pressure (for example, operating pressure) P 2 by an expansion valve 7 provided in the outlet pipe 6, and the gas-liquid separator 8 is discharged from the outlet pipe 6.
It is introduced into the inside in a gas-liquid mixed state. The gas-liquid separator 8 has a low-temperature liquefied gas supply pipe 9 at the lower part and a vaporized gas discharge pipe at the upper part.
A gas flow meter 11 of a known type is attached to the vaporized gas outlet pipe 10. Reference numeral 12 denotes an on-off valve provided in the low-temperature liquefied gas supply pipe 11.

前記したように膨張弁7で膨張されて気化し、気液分
離器8で分離されて気化ガス導出管10から導出される気
化ガスと、液体のまま残り低温液化ガス送給管9を通っ
て送給される低温液化ガスとの比率は、低温液化ガスの
ガスの種類と、貯槽1内の圧力P1及び気液分離器8内の
圧力P2とによって定まるので、気化ガス流量計11によっ
て測定された数値から、低温液化ガス送給管9を通る流
量は計算によって求めることができる。その計算は、例
えば必要な情報を記憶させておけば、コンピュータによ
って容易に行うことができるので、きわめて容易であ
る。
As described above, the gas is expanded and vaporized by the expansion valve 7, separated by the gas-liquid separator 8 and discharged from the vaporized gas discharge pipe 10, and remains as a liquid and passes through the low-temperature liquefied gas supply pipe 9. The ratio of the supplied low-temperature liquefied gas to the low-temperature liquefied gas is determined by the type of the low-temperature liquefied gas and the pressure P 1 in the storage tank 1 and the pressure P 2 in the gas-liquid separator 8. From the measured values, the flow rate through the low temperature liquefied gas supply pipe 9 can be determined by calculation. The calculation is extremely easy because, for example, if necessary information is stored, it can be easily performed by a computer.

気液分離器8は、低温液化ガス送給管9を通る低温液
化ガス流量に見合った大きさのもので、分離器8下部に
液体ができるだけ溜らずに、管7から送入された低温液
化ガスがそのまま管12から流出するようにするのが好ま
しい。例えば管12からの流出量が10/minの場合、気液
分離器8の内容積は5程度である。また気液分離をで
きるだけ完全に行うために、例えば気液分離器8内に金
網やスパイラルワイヤ片などを充填することもできる。
The gas-liquid separator 8 has a size corresponding to the flow rate of the low-temperature liquefied gas passing through the low-temperature liquefied gas supply pipe 9. Preferably, the gas flows out of the tube 12 as is. For example, when the outflow from the pipe 12 is 10 / min, the internal volume of the gas-liquid separator 8 is about five. In order to perform gas-liquid separation as completely as possible, for example, the inside of the gas-liquid separator 8 may be filled with a wire mesh, a spiral wire piece, or the like.

気化ガス導出管10で導出された気化ガスは、まだ非常
な低温であるが、一般に用いられるガス流量計は低温ガ
スの測定には不適なので、図示しない熱交換器で、空
気、その他により常温付近まで加温された後にガス流量
計11に導入される。この場合、ガスを常に一定温度で導
入するか、ガス流量計11の表示が温度補正されるように
して、所定温度における正確な流量が得られるようにす
るのが好ましい。
The vaporized gas discharged from the vaporized gas discharge pipe 10 is still at a very low temperature, but a generally used gas flow meter is not suitable for measuring a low-temperature gas. After being heated up to, the gas is introduced into the gas flow meter 11. In this case, it is preferable that the gas is always introduced at a constant temperature or that the display of the gas flow meter 11 is temperature-corrected to obtain an accurate flow rate at a predetermined temperature.

(効 果) この発明は、上に述べたような構成を有するものであ
り、そこから次のような効果を生じる。
(Effects) The present invention has the above-described configuration, and produces the following effects therefrom.

(1) 気泡が混入したり、常に沸騰状態にあって正確
な測定が困難な低温液化ガスの流量を、測定が簡単で容
易なガス流量測定値から正しく計算することができる。
(1) The flow rate of a low-temperature liquefied gas in which bubbles are mixed or in which it is always in a boiling state and accurate measurement is difficult can be correctly calculated from a gas flow measurement value which is simple and easy to measure.

(2) 装置の構成も簡単であり、信頼性が高い。(2) The configuration of the device is simple and the reliability is high.

(3) 膨張後の低温液化ガス(気化しなかった残部の
液体)は、温度が降下して安定した気液平衡状態となる
ので、これを冷媒として使用する場合には一層有利であ
る。
(3) The temperature of the low-temperature liquefied gas after expansion (the remaining liquid that has not been vaporized) falls into a stable gas-liquid equilibrium state, and is more advantageous when used as a refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

図は、この発明による低温液化ガス流量計の一実施態様
を示す図である。 1……低温液化ガス供給貯槽、4……1の供給加圧ライ
ン、6……低温液化ガス導出管、7……膨張弁、8……
気液分離器、9……低温液化ガス送給管、10……気化ガ
ス導出管、11……ガス流量計。
FIG. 1 is a diagram showing one embodiment of a low-temperature liquefied gas flow meter according to the present invention. 1 ... Low temperature liquefied gas supply storage tank, 4 ... Pressure supply line of 1, 6 ... Low temperature liquefied gas outlet pipe, 7 ... Expansion valve, 8 ...
Gas-liquid separator, 9: Low-temperature liquefied gas supply pipe, 10: Vaporized gas outlet pipe, 11: Gas flow meter.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01F 1/00 - 3/38──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G01F 1/00-3/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一定圧力下にある低温液化ガスのある場所
への送給流量を測定する方法において、前記低温液化ガ
スを所望の圧力まで膨張させて一部分を気化した後に気
液分離し、次いで分離された気化ガスの流量を測定する
ことによって、前記場所へ送給される気液分離後の低温
液化ガス流量を知る低温液化ガスの流量測定方法。
1. A method for measuring a flow rate of a low-temperature liquefied gas supplied to a certain location under a constant pressure, wherein the low-temperature liquefied gas is expanded to a desired pressure and a part thereof is vaporized, followed by gas-liquid separation. A method for measuring the flow rate of a low-temperature liquefied gas, which measures the flow rate of the separated vaporized gas to determine the flow rate of the low-temperature liquefied gas sent to the place after the gas-liquid separation.
【請求項2】一定圧力下にある低温液化ガス供給源から
の低温液化ガス導出管に所望の圧力への膨張弁、気液分
離器を順次設け、前記気液分離器下部には低温液化ガス
送給管を、上部にはガス流量計を備えた気化ガス導出管
を設けてある前記低温液化ガス送給管を通る低温液化ガ
ス流量を測定する流量計。
2. A low-temperature liquefied gas supply pipe from a low-temperature liquefied gas supply source under a constant pressure is provided with an expansion valve and a gas-liquid separator sequentially to a desired pressure, and a low-temperature liquefied gas is provided below the gas-liquid separator. A flow meter for measuring a flow rate of a low-temperature liquefied gas passing through the low-temperature liquefied gas supply pipe, which is provided with a supply pipe and a vaporized gas outlet pipe provided with a gas flow meter at an upper portion.
JP15169490A 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method Expired - Lifetime JP2758977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15169490A JP2758977B2 (en) 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15169490A JP2758977B2 (en) 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method

Publications (2)

Publication Number Publication Date
JPH0450619A JPH0450619A (en) 1992-02-19
JP2758977B2 true JP2758977B2 (en) 1998-05-28

Family

ID=15524226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15169490A Expired - Lifetime JP2758977B2 (en) 1990-06-12 1990-06-12 Low temperature liquefied gas flow measurement method and flow meter using the method

Country Status (1)

Country Link
JP (1) JP2758977B2 (en)

Also Published As

Publication number Publication date
JPH0450619A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
Sloan et al. Water content of methane gas in equilibrium with hydrates
US6732594B2 (en) Accurate cryogenic liquid dispenser
JPH11270792A (en) Cylinder charging system of extremely low temperature fluid
JP4643589B2 (en) Method for filling a compressed gas container with gas
Hahne et al. Evaporation waves in flashing processes
Wormald et al. Excess enthalpies for (water+ nitrogen)(g) up to 698.2 K and 12.6 MPa
US3330773A (en) Process for preparing gaseous mixtures
JPH01500047A (en) Method and apparatus for supplying anhydrous carbonic acid under high pressure
JP2758977B2 (en) Low temperature liquefied gas flow measurement method and flow meter using the method
CN113030151B (en) Device and method for testing liquefaction rate of low-temperature gas liquefaction device
Wormald et al. A new enthalpy-increment calorimeter enthalpy increments for n-hexane
Jung et al. Heat and mass transfer of submerged helium injection in liquid oxygen vessel
CN107238450A (en) A kind of cryogenic fluid transfer pipeline leakage heat test device and method
US3273348A (en) Process and apparatus for preparing gaseous mixtures
US5778678A (en) Method and apparatus for producing liquid mixtures of oxygen and nitrogen
Parisot et al. Liquid Viscosity Above the Normal Boiling Point.
Wormald et al. Molar enthalpy increments for (0.5 H2O+ 0.5 CH3OH) at temperatures up to 573.2 K and pressures up to 13.0 MPa
JP2717297B2 (en) How to measure the amount of stored hydrogen in the hydrogen storage tank
Wormald et al. Excess enthalpies of (carbon dioxide+ pentane or hexane or heptane or cyclohexane or benzene)(g) at temperatures from 432.2 K to 573.2 K and pressures up to 2.71 MPa
CN214702729U (en) Relief valve discharge capacity testing arrangement
US2045413A (en) Metering system
JP2006200553A (en) Liquefied gas flow measuring system
Henderson et al. Effects of Air Contamination in a Helium Tunnel
Johnson Helium pressurant requirements for liquid-hydrogen expulsion using submerged gas injection
JP2001164275A (en) Method for estimating production amount of hydrate producing facility and apparatus therefor