JP4194325B2 - Method and apparatus for reducing calorific value of high calorific value LNG - Google Patents

Method and apparatus for reducing calorific value of high calorific value LNG Download PDF

Info

Publication number
JP4194325B2
JP4194325B2 JP2002262560A JP2002262560A JP4194325B2 JP 4194325 B2 JP4194325 B2 JP 4194325B2 JP 2002262560 A JP2002262560 A JP 2002262560A JP 2002262560 A JP2002262560 A JP 2002262560A JP 4194325 B2 JP4194325 B2 JP 4194325B2
Authority
JP
Japan
Prior art keywords
gas
lng
liquid
calorific value
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002262560A
Other languages
Japanese (ja)
Other versions
JP2004099718A (en
Inventor
誠 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Plant Construction Co Ltd
Original Assignee
IHI Plant Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Plant Construction Co Ltd filed Critical IHI Plant Construction Co Ltd
Priority to JP2002262560A priority Critical patent/JP4194325B2/en
Publication of JP2004099718A publication Critical patent/JP2004099718A/en
Application granted granted Critical
Publication of JP4194325B2 publication Critical patent/JP4194325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0295Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/90Mixing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Description

【0001】
【発明の属する技術分野】
本発明は、LNG貯蔵基地等からLNGを都市ガスとして供給するための高発熱量LNGの低カロリー化方法及びその装置に関するものである。
【0002】
【従来の技術】
LNGの貯蔵基地で、LNGを長期間貯蔵すると、タンク及び付帯設備に低温で滞留しているLNGへの外気、付属ポンプ等からの入熱により、メタンを主成分としたガス(BOG)が蒸発する。
【0003】
LNGは、メタンを主成分とした、エタン、プロパン、ブタンなどの重質分との混合成分であるために、LNGの大部分を占める低沸点成分であるメタンが優先的に蒸発する。BOGは、自圧或いは圧縮機で昇圧して消費者に供給するが、BOG量が多く(貯蔵量大)消費量が少ないケースでは、メタン成分がBOGとして多く失われるために残留液は重質化し、高発熱量のLNGとなる。
【0004】
輸入されるLNG或いはこれらの基地からサテライト基地等に入るLNGは、殆どの場合、都市ガス(13A)の発熱量46.05MJ/Nm3 (11000kcal/Nm3 )より低い。しかし、貯蔵は低温度であるため、タンクへの外気等からの入熱により、メタンを主成分とした低沸点の軽質成分が先に蒸発して失われ、残液が重質化(高発熱量)する。
【0005】
このような重質化は貯蔵基地に入荷するLNGが13Aガスの規制値に近い場合は、容易に発熱量が規制値を超える。また、貯蔵基地のBOG量が多く年間の貯蔵液量から年間のBOG発生量を引いた貯蔵液の収斂組成が、発熱量の規制値を超える場合はLNGからの気化ガスから重質分を除去しなければならない。また、入荷液が当初から規制値を超える場合は当然入荷LNGから重質分を除去しなければならない。
【0006】
LNG貯蔵基地において重質化した気化ガスの単位体積当たりの発熱量は高くなり、都市ガスで規制されている発熱量を超えるために、濃縮LNGの気化ガスを低発熱量に調整する装置が必要になる。
【0007】
従来、単位体積当たりの高発熱量ガスを低発熱量に調整する方法としては、水素ガスで希釈する方法、空気で希釈する方法、BOGを再液化して貯蔵タンクに戻す方法などが考えられる。
【0008】
【特許文献1】
特開2002−38170号公報
【0009】
【発明が解決しようとする課題】
しかしながら、これらの方法は以下の問題がある。
【0010】
(a)水素ガスで希釈する方法
この方法は燃焼性等の点から優れた方法であるが、水素ガスを得るのが難しいので、その点に難点がある。水素ガス製造装置を作ると設備費或いは運転費が高くなり経済性が悪くなる。運転、維持等が面倒になる。
【0011】
(b)空気で希釈する方法
この方法は空気を圧縮して必要量を混合すれば、容易に所定の発熱量の都市ガスが得られるので経済的に優れた方法であるが、重質成分の含有量によっては燃焼特性が悪くなるために混合量が制限される。従って、十分な熱調設備とは言えない。
【0012】
(c)BOGの再液化方法
BOGを再液化して貯蔵タンクに返せば貯蔵液は濃縮しない。再液化方法には冷凍機或いは出荷するLNGの冷熱でBOGを凝縮させる方法があるが、冷凍機での再液化は設備費及び運転費が高価になるので経済性が劣る。
【0013】
出荷LNGで冷却してBOGを再液化する設備は冷凍機設備より経済性が優れているが、BOGの量が多くLNGの出荷量が少ない場合は、出荷LNGの量では、必要なBOGを液化できない場合があり濃縮の問題を解決できないケースがある。
【0014】
そこで、本発明の目的は、上記課題を解決し、LNGの燃焼特性を劣化させることなく容易にかつ安価に発熱量を調整して出荷できる高発熱量LNGの低カロリー化方法を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明は、低温貯蔵タンク内で濃縮されて重質化したLNGを所定の発熱量のガスに調整して消費系に供給するに際し、低温貯蔵タンクから払い出されるLNGを加熱して気化し、その気化ガスと低温貯蔵タンクから払い出されるLNGとを混合してその温度を調整し、気液を平衡させた後、これを気液分離器に導入して一定圧力下で気液分離し、その気液分離された重質の分離液を蒸留塔に導入して分離液から重質成分を分離すると共に軽質成分をガス化させ、そのガス化した軽質成分のガスを気液分離器で分離されたガスに混入して消費系に供給するようにした高発熱量LNGの低カロリー化方法である。
【0016】
請求項2の発明は、気液分離器で分離されたガスの温度を検出し、その温度が設定温度となるよう、上記気化ガスとLNGの混合量を制御する請求項1記載の高発熱量LNGの低カロリー化方法である。
【0017】
請求項3の発明は、蒸留塔に導入した分離液を加熱してメタン、エタンからなる軽質成分とプロパン、ブタンからなる重質成分とに分離し、その軽質成分のガスを、気液分離器で分離されたガスに混入する請求項1又は2記載の高発熱量LNGの低カロリー化方法である。
【0018】
請求項4の発明は、低温貯蔵タンク内で濃縮されて重質化したLNGを所定の発熱量のガスに調整して消費系に供給するための高発熱量LNGの低カロリー化装置において、低温貯蔵タンク内の重質化したLNGを払い出す払出ラインと、その払出ラインに接続された気化器と、気化器をバイパスするLNGラインと、払出ラインに接続され、気化器で気化された気化ガスとLNGラインからのLNGを混合する第1ラインミキサーと、払出ラインに接続され、ラインミキサーで混合されたLNGを導入し、これを気液分離する気液分離器と、気液分離器の頂部に接続され、分離された軽質成分のガスを消費系に供給するためのガスラインと、気液分離器で、分離された分離液を導入してこれを蒸留分離する蒸留塔と、蒸留塔で蒸留分離された軽質成分を上記ガスラインのガスに混入する蒸留ガスライとを備えた高発熱量LNGの低カロリー化装置である。
【0019】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0020】
図1において、10は、低温貯蔵タンク11と払出ポンプ12から構成されるLNG設備で、そのLNG払出ライン13に気液分離器14が接続される。
【0021】
気液分離器14に至るLNG払出ライン13には、第1圧力調整弁15、第1開閉弁16、気化器17、第1ラインミキサー18が順次接続される。
【0022】
気液分離器14の頂部には、ガスライン19が接続され、そのガスライン19に、第2圧力調整弁20、第2開閉弁21、ガス加熱器22、流量計23、閉止弁25、第3圧力調整弁26が順次接続される。
【0023】
閉止弁25の前後のガスライン19には、導入ライン27と排出ライン28を介してバッファタンク30が接続される。導入ライン27には、導入弁29aが、排出ライン28には、排出弁29bが接続される。
【0024】
気液分離器14の底部には、気液分離後の液を蒸留塔31に供給する液ライン32が接続される。この液ライン32には、液位調整弁33、流量計34、液導入弁35が接続される。
【0025】
蒸留塔31は、その塔体36の下部にボトム加熱器37が設けられ、その上部に下段蒸留部38と上段蒸留部39が設けられ、蒸留塔頂部にコンデンサー40が設けられる。
【0026】
液ライン32は、下段蒸留部38と上段蒸留部39の間の塔体36に接続される。
【0027】
塔体36の頂部には蒸留ガスライン41が接続され、その蒸留ガスライン41が、第2圧力調整弁20と第2開閉弁21間のガスライン19に接続される。このガスライン19に至る蒸留ガスライン41には、第2圧力調節器42と第3圧力調整弁43が接続される。第3圧力調整弁43は、第2圧力調節器42により制御される。
【0028】
塔体36の底部には、LPG排出ライン44が接続され、そのLPG排出ライン44に、液位調節弁45、LPG冷却器46が接続される。液位調節弁45は、蒸留塔31に設けた第2液面調節計47により制御される。
【0029】
払出ポンプ12の吐出側の払出ライン13には、第1圧力調整弁15をバイパスして、低温貯蔵タンク11のLNGをコンデンサー40に流した後、第1圧力調整弁15の下流側に戻すバイパスライン48が接続され、その入口側バイパスライン48aに、蒸留塔31の頂部に設けた温度調節器49に応じてLNG量を調整する温度調整弁50が接続される。
【0030】
また、入口側バイパスライン48aの下流側の払出ライン13には、第1圧力調整弁15、第1開閉弁16、気化器17をバイパスして第1ラインミキサー18にLNGを流すLNGライン51が接続され、そのLNGライン51に温度調整弁52が接続される。
【0031】
気化器17の出口側の払出ライン13には、気化ガスを定期的に分析する成分分析計53が接続され、その分析値が制御器54に入力される。また気液分離器14の頂部には温度調節器55が設けられ、その検出値が制御器54に入力される。
【0032】
また、ガス加熱器22の出口側のガスライン19には圧力調節器56が接続され、この圧力調節器56の検出値が設定圧となるように払出ライン13の第1圧力調整弁15が制御されるようになっている。
【0033】
さらにガスライン19には、発熱量分析器57が接続され、この発熱量分析器57で分析された発熱量が温度調節器55を介して制御器54に入力され、発熱量分析器57で分析された発熱量が規制値(13A)となるように制御器54が温度調節器55の設定温度を設定するようになっている。
【0034】
気液分離器14には、分離した分離液の液面を検出する液面計58が設けられ、この液面計58の検出値が制御器59に入力される。制御器59には、ガスライン19に接続した流量計23の流量値と、液ライン32に接続した流量計34の流量値とが入力される。制御器59は、これら流量値と液面計58の検出値に応じて液位調整弁33を制御するようになっている。
【0035】
ボトム加熱器37の加熱媒体供給ライン37aには、流量制御弁60が接続される。蒸留塔31の下部には温度制御器61が設けられ、この検出値が制御器62に入力される。制御器62は、温度制御器61からの検出値と流量計34から入力される流量値に応じて流量制御弁60を制御するようになっている。
【0036】
次に、本発明の高発熱量LNGの低カロリー化方法を説明する。
【0037】
低温貯蔵タンク11内で濃縮されたLNGは払出ポンプ12で加圧されて、ガスライン19の圧力調整器56の圧力が所定圧力になるように第1圧力調節弁15で制御されて第1気化器17に入る。
【0038】
気化器17でLNGは海水、空気、その他の加熱媒体で加熱されて、約0℃以上の気化ガスになる。
【0039】
気化ガスは定期的に成分分析器53で分析されて組成を確定する。その後第1ラインミキサー18に入る。
【0040】
第1ラインミキサー18には第1圧力調節弁15の上流から分岐されたLNGライン51を通して、温度調整弁52で、その流量が調節されたLNGが流入する。第1ラインミキサー18に入った気化ガスとLNGとは、両流体が均一になるように十分に混合される。
【0041】
LNGライン51の温度調節弁52は、下流側の気液分離器14に設置されている温度調節器55により、温度が所定温度になるように制御器54で制御されて、第1ラインミキサー18での気化ガスとLNGの混合量が制御されてLNGが流入する。
【0042】
温度調節器55の設定温度は、成分分析器53の分析結果から定期的に決められる。温度調節器55の設定温度は、例えば圧力が0.6MPaの場合に約−60℃前後(気・液平衡計算から求める)になる。
【0043】
第1ラインミキサー18に入った気化ガスとLNGは、第1ラインミキサー18内で両流体が均一になるように十分に混合される。
【0044】
混合流体は気液分離器14に入り比重差でガスと液に分離される。気液分離器14内の圧力は、気液平衡状態から算出される必要圧力に、ガスライン19に設置された第2圧力調整弁20により一定に調整される。分離されたガスは低発熱量の軽質成分で、分離液は高発熱量の重質成分となる。
【0045】
第2圧力調整弁20から流出したガスは低温なのでガス加熱器22に入り0℃以上に海水、空気、その他の加熱媒体により加熱される。
【0046】
ガス加熱器22からの流出ガスは、圧力調整器56の圧力が所定圧力になるように第1圧力調節弁15により調節され、流量が流量計23で測定され、バッファタンク30に溜められた後、第3圧力調整弁26を介して消費系に供給される。
【0047】
バッファタンク30は、基地外へのガス供給が激しく変動する場合のシステムの圧力変動を緩やかにするために設置する。第3圧力調整弁26は下流側の圧力を必要な圧力に維持するために設けられる。
【0048】
気液分離器14で分離されたガスとの平衡液(分離液)は気液分離器14の底部に貯蔵され、余剰液は底部から液ライン32を介して蒸留塔31に送られる。
【0049】
気液分離器14から蒸留塔31に送られる余剰分離液は、液面計58と液位調整弁33により制御されると同時に流量計34により、蒸留塔31への流量を一定時間(θ)の間一定流量で流れるように制御される。これは、流量が短時間で大きく変動すると塔頂・塔底のプロダクトの性質が安定しないのでこのような制御を行なう。このために、気液分離器14の底部の分離液貯蔵体積を、分離量の数時間分以上溜められるようにする。
【0050】
制御器59は、流量計23と第2液面調節計47から蒸留塔31での妥当な処理量を定期的に算定し、算定値を流量計34に伝送して液位調整弁33で流量制御することにより、蒸留塔31に適切な処理量を送り込む。
【0051】
蒸留塔31に送られた分離液はエタン以上の軽沸点成分とLPGに分離される。軽沸点成分は塔頂からガスとして、LPGは塔底から液状でそれぞれ分離される。
【0052】
塔頂ガスは蒸留ガスライン41より、気液分離器14からの分離ガスに混入して都市ガスの原料とするが、低温度なのでガス加熱器22の入口で気液分離器14の分離ガスと合流する。
【0053】
蒸留塔31内に導入された気液分離器14からの分離液は、塔底に設置されているボトム加熱器37で加熱され蒸発し、塔頂ではコンデンサー40で、バイパスライン48からのLNGを冷却媒体として冷却される。
【0054】
この蒸留塔31の分離のためのキー成分は、塔頂ではプロパン成分で、塔底ではエタン成分となる。
【0055】
塔頂、塔底温度は定期的に原料LNGの組成を確認している成分分析計53から、塔頂と塔底のキー成分の許容含有量を算定して、蒸留塔31の圧力に対応した温度になるように加熱媒体或は冷却媒体の流量を制御する。
【0056】
塔底のボトム加熱器37は温度調節器49と成分分析計53から決められた温度になるように、温度制御器61と温度制御弁60により加熱流体が制御される。同時に気液分離器14の分離液の流入量を測定している流量計34のデータにより、蒸留塔31の塔底での必要加熱量を確保するように熱媒体の流量を流量制御弁60で制御する。
【0057】
塔頂温度は決められた温度になるように温度調節器49と温度調整弁50によりLNG量を制御する。
【0058】
塔頂コンデンサー40の冷却温度は通常低い温度となるので、冷却媒体はLNGの顕熱を使用することになる。従って、LNGは第1圧力調節弁15の上流側からコンデンサー40に導き、下流側に返して気化器17で気化させてガスの製造に供する。
【0059】
塔頂ガスは塔内圧力調節器42と圧力調節弁43により、所定の圧力を維持するように塔内から排出され、圧力調節弁20の下流側で、ガス加熱器22の入口より上流で気液分離器14の分離ガスに混入される。
【0060】
塔底のLPGは設定液面より高くなると、液面調節計47と液面調節弁45より塔外に排出される。LPGは冷却器46で常温に冷却されてLPGタンクに送られ、貯蔵されると共に熱調の原料或は他の用途に供する。
【0061】
次に、より具体的な実施例を説明する。
【0062】
(1)発熱量が46.05MJ/Nm3 (11000kcal/Nm3 )以上になったLNGの組成の一例として、下記の例について実施例を説明する。
【0063】

Figure 0004194325
上記のLNG組成中のC2(エタン)、C3(プロパン)、C4(ブタン),C5(ペンタン)の含有量は僅かであるが、メタンに比べて発熱量が約2〜3倍以上あり、これが都市ガスの発熱量46.05MJ/Nm3 (11000kcal/Nm3 )以上とする要因である。
【0064】
(2)(1)のガスの気液分離器14における気液平衡関係からガスと液の組成を求める。それぞれの概略の分離量と発熱量は次のようになる。
【0065】
Figure 0004194325
(3)気液分離器14での熱的条件を作る為にラインミキサー18で、気化器17での気化ガス量と冷却LNG量を求める。
【0066】
Figure 0004194325
(4)上記の平衡計算をべースにして実際に都市ガス(13A)を製造する場合のマテリアルバランスについて一例を示す。
【0067】
Figure 0004194325
このように本発明は(5)に示した各流量を各ユニット毎に設定された圧力と温度条件下で制御し、所定の発熱量のガスを製造するものである。
【0068】
LNGの組成が変動しない場合の気液分離器14での分離は、圧力と温度を正確に制御すれば、理論上は所定の発熱量のガス(13A)を得ることが可能であるが、都市ガスの消費量が常に変動するので、実際には正確な温度(検知遅れ等)とそれに対する流量の制御が難しい。
【0069】
この理由で本発明では、気液分離器14での分離ガスの発熱量が規定値(13A)よりも低めになるように、設定圧力に対する温度の制御値を設定する。気液分離器14の分離ガスを規定値(13A)にする為の微調整は、下流に設置されている常設の熱調設備により行なう。この場合、蒸留塔31で分離回収したLPG排出ライン44からのLPGを分離ガスに混入して熱調する。
【0070】
【発明の効果】
以上要するに本発明によれば、重質化したLNGを気液分離器で気液分離し、その気液分離した分離液を蒸留塔で蒸留してプロパンなどの重質成分を除去し、軽質成分を気液分離器で分離されたガスに混入して消費系に供給することで、燃料特性を劣化させることなく容易にかつ安価に発熱量を調整することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す図である。
【符号の説明】
11 低温貯蔵タンク
13 払出ライン
14 気液分離器
19 ガスライン
31 蒸留塔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing calorie of a high calorific value LNG and an apparatus for supplying LNG as city gas from an LNG storage base or the like.
[0002]
[Prior art]
When LNG is stored for a long time at the LNG storage base, methane-based gas (BOG) evaporates due to the external air to LNG staying at low temperatures in the tanks and incidental facilities, and heat input from the attached pump, etc. To do.
[0003]
Since LNG is a mixed component of methane as a main component and a heavy component such as ethane, propane, or butane, methane, which is a low boiling point component that occupies most of LNG, preferentially evaporates. BOG is supplied to the consumer by increasing the pressure with self-pressure or compressor, but in the case where the amount of BOG is large (large amount of storage) and the amount of consumption is small, the methane component is largely lost as BOG, so the residual liquid is heavy. NG with a high calorific value.
[0004]
In most cases, imported LNG or LNG entering satellite bases from these bases is lower than the calorific value of city gas (13A) of 46.05 MJ / Nm 3 (11000 kcal / Nm 3 ). However, since the storage temperature is low, heat input from the outside air into the tank causes light components with low boiling points, mainly methane, to evaporate and be lost first, resulting in a heavy residue (high heat generation). Amount).
[0005]
When the LNG arrives at the storage base is close to the 13A gas regulation value, the amount of heat generated easily exceeds the regulation value. In addition, when the amount of BOG in the storage base is large and the concentration of the storage solution obtained by subtracting the annual BOG generation amount from the annual storage solution amount exceeds the regulation value of the calorific value, heavy components are removed from the vaporized gas from LNG. Must. In addition, if the incoming liquid exceeds the regulation value from the beginning, naturally the heavy component must be removed from the incoming LNG.
[0006]
Since the calorific value per unit volume of the vaporized gas that has become heavy at the LNG storage base is high and exceeds the calorific value regulated by city gas, a device for adjusting the vaporized gas of concentrated LNG to a low calorific value is required. become.
[0007]
Conventionally, as a method for adjusting the high calorific value gas per unit volume to a low calorific value, a method of diluting with hydrogen gas, a method of diluting with air, a method of reliquefying BOG and returning it to the storage tank, etc. are conceivable.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-38170
[Problems to be solved by the invention]
However, these methods have the following problems.
[0010]
(A) Method of diluting with hydrogen gas This method is excellent in terms of combustibility and the like. However, since it is difficult to obtain hydrogen gas, there is a difficulty in this point. If a hydrogen gas production apparatus is made, the equipment cost or the operating cost becomes high and the economic efficiency deteriorates. Driving and maintenance are troublesome.
[0011]
(B) Method of diluting with air This method is economically superior because the city gas with a predetermined calorific value can be easily obtained by compressing air and mixing the required amount. Depending on the content, the combustion characteristics deteriorate, so the mixing amount is limited. Therefore, it cannot be said that the heat control equipment is sufficient.
[0012]
(C) Re-liquefaction method of BOG If BOG is re-liquefied and returned to the storage tank, the stored solution will not be concentrated. The reliquefaction method includes a method of condensing BOG with the cold heat of a refrigerator or LNG to be shipped, but reliquefaction with a refrigerator is inferior in economic efficiency because equipment costs and operation costs are high.
[0013]
Equipment that cools with shipping LNG and re-liquefies BOG is more economical than refrigeration equipment, but if the amount of BOG is large and the amount of LNG shipped is small, the amount of shipping LNG liquefies the required BOG. There are cases where it is impossible to solve the concentration problem.
[0014]
Accordingly, an object of the present invention is to provide a method for reducing the calorific value of a high calorific value LNG that can solve the above-mentioned problems and can easily and inexpensively adjust the calorific value before shipping without deteriorating the combustion characteristics of LNG. is there.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is arranged such that when LNG concentrated and heavy in the low temperature storage tank is adjusted to a gas having a predetermined calorific value and supplied to the consumption system, it is discharged from the low temperature storage tank. LNG is heated and vaporized, and the vaporized gas and LNG discharged from the low temperature storage tank are mixed to adjust the temperature, equilibrate the gas and liquid, and then introduce this into the gas-liquid separator to maintain a constant level. Gas-liquid separation is performed under pressure, and the gas-liquid separated heavy separation liquid is introduced into a distillation column to separate heavy components from the separated liquid and gasify the light components. This is a method for reducing the calorific value of a high calorific value LNG in which the gas is mixed with the gas separated by the gas-liquid separator and supplied to the consumption system.
[0016]
The invention according to claim 2 detects the temperature of the gas separated by the gas-liquid separator, and controls the mixing amount of the vaporized gas and LNG so that the temperature becomes a set temperature. This is a method for reducing the calorie of LNG.
[0017]
According to a third aspect of the present invention, the separated liquid introduced into the distillation tower is heated to separate into a light component composed of methane and ethane and a heavy component composed of propane and butane, and the gas of the light component is separated into a gas-liquid separator. 3. The method of reducing calorie of a high calorific value LNG according to claim 1 or 2, wherein the calorific value is mixed with the gas separated in step (1).
[0018]
According to a fourth aspect of the present invention, there is provided a high calorific value LNG low calorie reduction apparatus for adjusting a heavy LNG concentrated in a low temperature storage tank to a gas having a predetermined calorific value and supplying it to a consumption system. A discharge line for discharging heavy LNG in the storage tank, a vaporizer connected to the discharge line, an LNG line bypassing the vaporizer, and a vaporized gas connected to the discharge line and vaporized by the vaporizer The first line mixer that mixes LNG from the LNG line, the gas-liquid separator that is connected to the discharge line and that is mixed in the line mixer and separates it into gas-liquid, and the top of the gas-liquid separator A gas line for supplying the separated light component gas to the consumption system, a gas-liquid separator, a distillation column for introducing the separated separated liquid and distilling the separated liquid, and a distillation column Distilled and separated The light component is a low calorie apparatus having high heating value LNG having a distillation Gasurai down mixed in the gas of the gas line.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
In FIG. 1, reference numeral 10 denotes an LNG facility composed of a low-temperature storage tank 11 and a discharge pump 12, and a gas-liquid separator 14 is connected to the LNG discharge line 13.
[0021]
A first pressure regulating valve 15, a first on-off valve 16, a vaporizer 17, and a first line mixer 18 are sequentially connected to the LNG discharge line 13 leading to the gas-liquid separator 14.
[0022]
A gas line 19 is connected to the top of the gas-liquid separator 14, and a second pressure regulating valve 20, a second on-off valve 21, a gas heater 22, a flow meter 23, a shut-off valve 25, a first valve are connected to the gas line 19. Three pressure regulating valves 26 are sequentially connected.
[0023]
A buffer tank 30 is connected to the gas lines 19 before and after the shutoff valve 25 via an introduction line 27 and a discharge line 28. An introduction valve 29 a is connected to the introduction line 27, and a discharge valve 29 b is connected to the discharge line 28.
[0024]
A liquid line 32 for supplying the liquid after gas-liquid separation to the distillation column 31 is connected to the bottom of the gas-liquid separator 14. A liquid level adjustment valve 33, a flow meter 34, and a liquid introduction valve 35 are connected to the liquid line 32.
[0025]
The distillation column 31 is provided with a bottom heater 37 at the bottom of the column body 36, a lower distillation unit 38 and an upper distillation unit 39 at the upper part, and a condenser 40 at the top of the distillation column.
[0026]
The liquid line 32 is connected to a tower body 36 between the lower distillation section 38 and the upper distillation section 39.
[0027]
A distillation gas line 41 is connected to the top of the tower body 36, and the distillation gas line 41 is connected to the gas line 19 between the second pressure regulating valve 20 and the second on-off valve 21. A second pressure regulator 42 and a third pressure regulating valve 43 are connected to the distillation gas line 41 leading to the gas line 19. The third pressure regulating valve 43 is controlled by the second pressure regulator 42.
[0028]
An LPG discharge line 44 is connected to the bottom of the tower body 36, and a liquid level control valve 45 and an LPG cooler 46 are connected to the LPG discharge line 44. The liquid level control valve 45 is controlled by a second liquid level controller 47 provided in the distillation column 31.
[0029]
The discharge line 13 on the discharge side of the discharge pump 12 bypasses the first pressure regulating valve 15, bypasses the LNG in the low temperature storage tank 11 through the condenser 40, and then returns to the downstream side of the first pressure regulating valve 15. A line 48 is connected, and a temperature adjustment valve 50 that adjusts the amount of LNG according to a temperature controller 49 provided at the top of the distillation column 31 is connected to the inlet side bypass line 48a.
[0030]
In addition, an LNG line 51 that bypasses the first pressure regulating valve 15, the first on-off valve 16, and the carburetor 17 and flows LNG to the first line mixer 18 is disposed in the discharge line 13 on the downstream side of the inlet side bypass line 48 a. The temperature adjustment valve 52 is connected to the LNG line 51.
[0031]
A component analyzer 53 that periodically analyzes the vaporized gas is connected to the discharge line 13 on the outlet side of the vaporizer 17, and the analysis value is input to the controller 54. A temperature controller 55 is provided at the top of the gas-liquid separator 14, and the detected value is input to the controller 54.
[0032]
Further, a pressure regulator 56 is connected to the gas line 19 on the outlet side of the gas heater 22, and the first pressure regulating valve 15 of the discharge line 13 is controlled so that the detected value of the pressure regulator 56 becomes a set pressure. It has come to be.
[0033]
Further, a calorific value analyzer 57 is connected to the gas line 19, and the calorific value analyzed by the calorific value analyzer 57 is input to the controller 54 via the temperature controller 55 and analyzed by the calorific value analyzer 57. The controller 54 sets the set temperature of the temperature controller 55 so that the generated heat value becomes the regulation value (13A).
[0034]
The gas-liquid separator 14 is provided with a liquid level gauge 58 for detecting the liquid level of the separated separated liquid, and the detected value of the liquid level gauge 58 is input to the controller 59. The flow rate value of the flow meter 23 connected to the gas line 19 and the flow rate value of the flow meter 34 connected to the liquid line 32 are input to the controller 59. The controller 59 controls the liquid level adjusting valve 33 according to the flow rate value and the detected value of the liquid level gauge 58.
[0035]
A flow rate control valve 60 is connected to the heating medium supply line 37 a of the bottom heater 37. A temperature controller 61 is provided below the distillation column 31, and this detected value is input to the controller 62. The controller 62 controls the flow control valve 60 according to the detected value from the temperature controller 61 and the flow value input from the flow meter 34.
[0036]
Next, the method for reducing calorie of the high calorific value LNG of the present invention will be described.
[0037]
The LNG concentrated in the low-temperature storage tank 11 is pressurized by the discharge pump 12, and is controlled by the first pressure control valve 15 so that the pressure of the pressure regulator 56 of the gas line 19 becomes a predetermined pressure. Enters vessel 17.
[0038]
In the vaporizer 17, the LNG is heated by seawater, air, or other heating medium to become a vaporized gas of about 0 ° C. or higher.
[0039]
The vaporized gas is periodically analyzed by the component analyzer 53 to determine the composition. Thereafter, the first line mixer 18 is entered.
[0040]
Through the LNG line 51 branched from the upstream side of the first pressure control valve 15, LNG whose flow rate is adjusted by the temperature adjustment valve 52 flows into the first line mixer 18. The vaporized gas and LNG entering the first line mixer 18 are sufficiently mixed so that both fluids are uniform.
[0041]
The temperature control valve 52 of the LNG line 51 is controlled by the controller 54 so that the temperature becomes a predetermined temperature by the temperature controller 55 installed in the gas-liquid separator 14 on the downstream side, and the first line mixer 18. The amount of vaporized gas and LNG mixed in is controlled and LNG flows in.
[0042]
The set temperature of the temperature controller 55 is periodically determined from the analysis result of the component analyzer 53. For example, when the pressure is 0.6 MPa, the set temperature of the temperature controller 55 is about −60 ° C. (obtained from the gas / liquid equilibrium calculation).
[0043]
The vaporized gas and LNG that have entered the first line mixer 18 are sufficiently mixed in the first line mixer 18 so that both fluids are uniform.
[0044]
The mixed fluid enters the gas-liquid separator 14 and is separated into gas and liquid with a specific gravity difference. The pressure in the gas-liquid separator 14 is adjusted to a required pressure calculated from the gas-liquid equilibrium state by a second pressure regulating valve 20 installed in the gas line 19. The separated gas is a light component having a low calorific value, and the separated liquid is a heavy component having a high calorific value.
[0045]
Since the gas flowing out from the second pressure regulating valve 20 has a low temperature, it enters the gas heater 22 and is heated to 0 ° C. or higher by seawater, air, or other heating medium.
[0046]
The effluent gas from the gas heater 22 is adjusted by the first pressure control valve 15 so that the pressure of the pressure regulator 56 becomes a predetermined pressure, and the flow rate is measured by the flow meter 23 and stored in the buffer tank 30. Then, it is supplied to the consumption system via the third pressure regulating valve 26.
[0047]
The buffer tank 30 is installed to moderate the pressure fluctuation of the system when the gas supply to the outside of the base fluctuates violently. The third pressure regulating valve 26 is provided to maintain the downstream pressure at a necessary pressure.
[0048]
The equilibrium liquid (separated liquid) with the gas separated by the gas-liquid separator 14 is stored at the bottom of the gas-liquid separator 14, and the surplus liquid is sent from the bottom to the distillation column 31 via the liquid line 32.
[0049]
The surplus separation liquid sent from the gas-liquid separator 14 to the distillation column 31 is controlled by the liquid level gauge 58 and the liquid level adjusting valve 33, and at the same time, the flow rate to the distillation column 31 is controlled by the flow meter 34 for a certain time (θ). It is controlled to flow at a constant flow rate during This control is performed because the properties of the top and bottom products are not stable if the flow rate fluctuates greatly in a short time. For this purpose, the separation liquid storage volume at the bottom of the gas-liquid separator 14 can be stored for several hours or more of the separation amount.
[0050]
The controller 59 periodically calculates an appropriate processing amount in the distillation column 31 from the flow meter 23 and the second liquid level controller 47, transmits the calculated value to the flow meter 34, and flows through the liquid level adjustment valve 33. By controlling, an appropriate processing amount is sent to the distillation column 31.
[0051]
The separated liquid sent to the distillation column 31 is separated into light boiling components of ethane or higher and LPG. Light-boiling components are separated from the top of the column as gas, and LPG is separated from the bottom of the column in liquid form.
[0052]
The gas at the top of the column is mixed with the separation gas from the gas-liquid separator 14 through the distillation gas line 41 to produce a raw material for the city gas. However, since the temperature is low, it is separated from the separation gas of the gas-liquid separator 14 at the inlet of the gas heater 22. Join.
[0053]
The separated liquid from the gas-liquid separator 14 introduced into the distillation tower 31 is heated and evaporated by the bottom heater 37 installed at the bottom of the tower, and the LNG from the bypass line 48 is removed by the condenser 40 at the top of the tower. It is cooled as a cooling medium.
[0054]
The key component for separation of the distillation column 31 is a propane component at the top and an ethane component at the bottom.
[0055]
The column top and column bottom temperatures correspond to the pressure of the distillation column 31 by calculating the allowable content of the key components at the column top and column bottom from the component analyzer 53 that regularly confirms the composition of the raw material LNG. The flow rate of the heating medium or the cooling medium is controlled so as to reach the temperature.
[0056]
The heating fluid is controlled by the temperature controller 61 and the temperature control valve 60 so that the bottom heater 37 at the bottom of the tower has a temperature determined by the temperature controller 49 and the component analyzer 53. At the same time, the flow rate of the heat medium is controlled by the flow rate control valve 60 so as to secure the necessary heating amount at the bottom of the distillation column 31 based on the data of the flow meter 34 that measures the inflow amount of the separated liquid of the gas-liquid separator 14. Control.
[0057]
The amount of LNG is controlled by the temperature controller 49 and the temperature control valve 50 so that the tower top temperature becomes a predetermined temperature.
[0058]
Since the cooling temperature of the tower top condenser 40 is usually low, the cooling medium uses sensible heat of LNG. Accordingly, LNG is led from the upstream side of the first pressure regulating valve 15 to the condenser 40, returned to the downstream side, vaporized by the vaporizer 17, and used for gas production.
[0059]
The tower top gas is discharged from the tower so as to maintain a predetermined pressure by the tower pressure regulator 42 and the pressure regulation valve 43, and the gas at the downstream side of the pressure regulation valve 20 is upstream from the inlet of the gas heater 22. It is mixed in the separation gas of the liquid separator 14.
[0060]
When the LPG at the bottom of the tower becomes higher than the set liquid level, it is discharged out of the tower from the liquid level controller 47 and the liquid level control valve 45. The LPG is cooled to room temperature by a cooler 46, sent to an LPG tank, stored, and used for a heat-conditioning raw material or other applications.
[0061]
Next, a more specific embodiment will be described.
[0062]
(1) As an example of the composition of LNG having a calorific value of 46.05 MJ / Nm 3 (11000 kcal / Nm 3 ) or more, examples of the following examples will be described.
[0063]
Figure 0004194325
Although the contents of C2 (ethane), C3 (propane), C4 (butane), and C5 (pentane) in the above LNG composition are slight, the calorific value is about 2-3 times or more than that of methane. The calorific value of city gas is 46.05 MJ / Nm 3 (11000 kcal / Nm 3 ) or more.
[0064]
(2) The composition of gas and liquid is obtained from the gas-liquid equilibrium relationship in the gas-liquid separator 14 of (1). The approximate separation amount and calorific value of each are as follows.
[0065]
Figure 0004194325
(3) In order to create the thermal condition in the gas-liquid separator 14, the amount of vaporized gas and the amount of cooling LNG in the vaporizer 17 are obtained by the line mixer 18.
[0066]
Figure 0004194325
(4) An example of material balance in the case of actually producing city gas (13A) based on the above equilibrium calculation will be shown.
[0067]
Figure 0004194325
As described above, the present invention controls the flow rates shown in (5) under the pressure and temperature conditions set for each unit to produce a gas having a predetermined calorific value.
[0068]
Separation by the gas-liquid separator 14 when the composition of LNG does not vary can theoretically obtain a gas (13A) having a predetermined calorific value if the pressure and temperature are accurately controlled. Since the gas consumption always fluctuates, it is actually difficult to control the exact temperature (detection delay, etc.) and the flow rate for it.
[0069]
For this reason, in the present invention, the control value of the temperature with respect to the set pressure is set so that the calorific value of the separation gas in the gas-liquid separator 14 is lower than the specified value (13A). The fine adjustment for setting the separation gas of the gas-liquid separator 14 to the specified value (13A) is performed by a permanent heat control facility installed downstream. In this case, the LPG from the LPG discharge line 44 separated and recovered by the distillation column 31 is mixed with the separation gas and heat-controlled.
[0070]
【The invention's effect】
In short, according to the present invention, heavy LNG is gas-liquid separated by a gas-liquid separator, the separated liquid is distilled by a distillation tower to remove heavy components such as propane, and light components. Is mixed with the gas separated by the gas-liquid separator and supplied to the consumption system, so that the calorific value can be adjusted easily and inexpensively without deteriorating the fuel characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
[Explanation of symbols]
11 Low temperature storage tank 13 Discharge line 14 Gas-liquid separator 19 Gas line 31 Distillation tower

Claims (4)

低温貯蔵タンク内で濃縮されて重質化したLNGを所定の発熱量のガスに調整して消費系に供給するに際し、低温貯蔵タンクから払い出されるLNGを加熱して気化し、その気化ガスと低温貯蔵タンクから払い出されるLNGとを混合してその温度を調整し、気液を平衡させた後、これを気液分離器に導入して一定圧力下で気液分離し、その気液分離された重質の分離液を蒸留塔に導入して分離液から重質成分を分離すると共に軽質成分をガス化させ、そのガス化した軽質成分のガスを気液分離器で分離されたガスに混入して消費系に供給することを特徴とする高発熱量LNGの低カロリー化方法。  When the concentrated and heavy LNG in the low-temperature storage tank is adjusted to a gas with a predetermined calorific value and supplied to the consumption system, the LNG discharged from the low-temperature storage tank is heated and vaporized. LNG discharged from the storage tank was mixed and its temperature was adjusted to equilibrate the gas and liquid. Then, this was introduced into the gas and liquid separator and separated into gas and liquid under a constant pressure, and the gas and liquid were separated. A heavy separation liquid is introduced into a distillation column to separate heavy components from the separation liquid, gasify the light components, and mix the gasified light components gas into the gas separated by the gas-liquid separator. A method for reducing the calorific value of a high calorific value LNG, characterized in that it is supplied to a consumer system. 気液分離器で分離されたガスの温度を検出し、その温度が設定温度となるよう、上記気化ガスとLNGの混合量を制御する請求項1記載の高発熱量LNGの低カロリー化方法。  The method of reducing calorie of the high calorific value LNG according to claim 1, wherein the temperature of the gas separated by the gas-liquid separator is detected and the amount of the vaporized gas and LNG mixed is controlled so that the temperature becomes a set temperature. 蒸留塔に導入した分離液を加熱してメタン、エタンからなる軽質成分とプロパン、ブタンからなる重質成分とに分離し、その軽質成分のガスを、気液分離器で分離されたガスに混入する請求項1又は2記載の高発熱量LNGの低カロリー化方法。  The separated liquid introduced into the distillation tower is heated to separate the light component consisting of methane and ethane and the heavy component consisting of propane and butane, and the light component gas is mixed into the gas separated by the gas-liquid separator. The method for reducing calories of the high calorific value LNG according to claim 1 or 2. 低温貯蔵タンク内で濃縮されて重質化したLNGを所定の発熱量のガスに調整して消費系に供給するための高発熱量LNGの低カロリー化装置において、低温貯蔵タンク内の重質化したLNGを払い出す払出ラインと、その払出ラインに接続された気化器と、気化器をバイパスするLNGラインと、払出ラインに接続され、気化器で気化された気化ガスとLNGラインからのLNGを混合する第1ラインミキサーと、払出ラインに接続され、ラインミキサーで混合されたLNGを導入し、これを気液分離する気液分離器と、気液分離器の頂部に接続され、分離された軽質成分のガスを消費系に供給するためのガスラインと、気液分離器で、分離された分離液を導入してこれを蒸留分離する蒸留塔と、蒸留塔で蒸留分離された軽質成分を上記ガスラインのガスに混入する蒸留ガスライとを備えたことを特徴とする高発熱量LNGの低カロリー化装置。In a low calorie reduction device for high calorific value LNG for adjusting LNG concentrated and heavy in the low temperature storage tank to a gas with a predetermined calorific value and supplying it to the consumption system, the heaviness in the low temperature storage tank The LNG discharged from the LNG line, the vaporizer connected to the discharge line, the LNG line bypassing the vaporizer, the vaporized gas connected to the discharge line and vaporized by the vaporizer, and the LNG from the LNG line The first line mixer to be mixed, the LNG connected to the discharge line, and the LNG mixed by the line mixer is introduced, and the gas-liquid separator for separating this is connected to the top of the gas-liquid separator and separated. A gas line for supplying light component gas to the consumption system, a distillation column for introducing and separating the separated liquid by a gas-liquid separator, and a light component distilled and separated by the distillation column. Above High heating value of LNG low calorie apparatus being characterized in that a distillation Gasurai down mixed in line gas.
JP2002262560A 2002-09-09 2002-09-09 Method and apparatus for reducing calorific value of high calorific value LNG Expired - Lifetime JP4194325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262560A JP4194325B2 (en) 2002-09-09 2002-09-09 Method and apparatus for reducing calorific value of high calorific value LNG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262560A JP4194325B2 (en) 2002-09-09 2002-09-09 Method and apparatus for reducing calorific value of high calorific value LNG

Publications (2)

Publication Number Publication Date
JP2004099718A JP2004099718A (en) 2004-04-02
JP4194325B2 true JP4194325B2 (en) 2008-12-10

Family

ID=32262575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262560A Expired - Lifetime JP4194325B2 (en) 2002-09-09 2002-09-09 Method and apparatus for reducing calorific value of high calorific value LNG

Country Status (1)

Country Link
JP (1) JP4194325B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0501335D0 (en) * 2005-01-21 2005-03-02 Cryostar France Sa Natural gas supply method and apparatus
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
DE102006061251B4 (en) * 2006-12-22 2010-11-11 Man Diesel & Turbo Se Gas supply system for a drive
JP5653563B2 (en) * 2012-07-11 2015-01-14 中国電力株式会社 LNG base
FR3004513B1 (en) * 2013-04-11 2015-04-03 Gaztransp Et Technigaz METHOD AND SYSTEM FOR PROCESSING AND DELIVERING NATURAL GAS TO ENERGY PRODUCTION EQUIPMENT FOR VESSEL PROPULSION
JP2014224204A (en) * 2013-05-17 2014-12-04 大阪瓦斯株式会社 Gas production method and gas production facility
KR20160095597A (en) * 2015-02-03 2016-08-11 삼성중공업 주식회사 Fuel gas supplying system in ships
CN107560321B (en) * 2017-09-15 2023-04-25 长江大学 BOG recovery and nitrogen liquefaction system and technological method
JP7084219B2 (en) * 2018-06-15 2022-06-14 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Natural gas production equipment and natural gas production method
CN113357531B (en) * 2021-05-21 2022-10-11 厚普清洁能源(集团)股份有限公司 System and method capable of simultaneously filling LNG cold liquid and hot liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390302A (en) * 1977-01-21 1978-08-09 Osaka Gas Co Ltd Vaporizer of liquefied natural gas
JPS53118276A (en) * 1977-03-25 1978-10-16 Mitsui Eng & Shipbuild Co Ltd Evaporation of liquefied natural gas
JPS59100195A (en) * 1982-11-30 1984-06-09 Osaka Gas Co Ltd Preparation of fuel gas with consistent calorific value from multi-component liquefied natural gas
JPS60262890A (en) * 1984-06-08 1985-12-26 Osaka Gas Co Ltd Adjustment of composition of liquefied natural gas
JPH09157668A (en) * 1995-12-06 1997-06-17 Kobe Steel Ltd Method fo controlling calorific value of natural gas and apparatus therefor
JP3827790B2 (en) * 1997-01-08 2006-09-27 大阪瓦斯株式会社 City gas production method and equipment
JP2001056096A (en) * 1999-08-12 2001-02-27 Ishikawajima Harima Heavy Ind Co Ltd Prevention method and device against forming liquid in lng tank into heavy gravity
JP4024996B2 (en) * 2000-07-28 2007-12-19 大阪瓦斯株式会社 City gas production method

Also Published As

Publication number Publication date
JP2004099718A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5350625B2 (en) Gas supply device for drive machine
EP3540028B1 (en) A method to recover lpg and condensates from refineries fuel gas streams
US20110277497A1 (en) Method and apparatus for processing hydrocarbon liquefied gas
CN101382099A (en) Gas supply device for an internal combustion engine driven by gaseous fuel
JP4194325B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
KR102265257B1 (en) liquefaction system of boil-off gas and ship having the same
US11692772B2 (en) Method to recover LPG and condensates from refineries fuel gas streams
SU455554A3 (en) The method of regulating the temperature of liquefied gas
JP4194324B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
JP6881329B2 (en) Component adjustment device for multi-component liquefied gas
KR101910530B1 (en) Liquid natural gas vaporization
US7603867B2 (en) Process and system to produce multiple distributable products from source, or imported LNG
JP6852684B2 (en) Liquefied fuel gas component regulator
JP2000146430A (en) Method for reliquefying bog utilizing lng
JP4551548B2 (en) Power generation facility and power generation method using the same
JP2007024198A (en) Method and device for treating boil-off gas
Elsheemy et al. Maximization of condensate production by revamping of gas-oil separation plant in gulf of Suez
JP6904272B2 (en) Liquefied fuel gas component regulator for lorry shipment
JP2002098296A (en) Manufacturing equipment for supply gas
JP2002038170A (en) Method for producing town gas
JP2001201041A (en) City gas supply system
JP2018145405A (en) Component adjusting device of multicomponent-based liquefied gas
JP2004211747A (en) Bog treating method and treating provision without use of compressor
JPS63231193A (en) Method and device for separating gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

R150 Certificate of patent or registration of utility model

Ref document number: 4194325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term