JPH01222407A - Metal magnetic powder, and manufacture and usage thereof - Google Patents

Metal magnetic powder, and manufacture and usage thereof

Info

Publication number
JPH01222407A
JPH01222407A JP63048198A JP4819888A JPH01222407A JP H01222407 A JPH01222407 A JP H01222407A JP 63048198 A JP63048198 A JP 63048198A JP 4819888 A JP4819888 A JP 4819888A JP H01222407 A JPH01222407 A JP H01222407A
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
powder
complex compound
thermally decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63048198A
Other languages
Japanese (ja)
Inventor
Masatsugu Maruo
丸尾 正嗣
Toshihiko Kawamura
河村 俊彦
Haruki Ichinose
一ノ瀬 治紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP63048198A priority Critical patent/JPH01222407A/en
Publication of JPH01222407A publication Critical patent/JPH01222407A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Abstract

PURPOSE:To make it possible to obtain metal magnetic powder having an excellent oxidation-resistant property by a method wherein the thermally decomposed residue of acetylacetonato complex compound is carried on the surface of grains. CONSTITUTION:Grains carry the thermally decomposed residue of an acetylacetonato complex compound on the surface. The thermally decomposed residue of the acetylacetonato complex compound can be provided on the surface of the substrate constituting grains by allowing the substrate constituting grain powder to come in contact with one another in a liquid phase system or a vapor phase system, and the powder is thermally decomposed on the surface of the grains. The above-mentioned metal magnetic powder carrying the thermally decomposed residue has a remarkably improved oxidation-resistant property, and as a result, the powder maintains excellent magnetic characteristics for a long period, the powder itself has an excellent storage stability, it is in the state favorable in handling and process control. Besides, the dispersion property of the powder into a medium is excellent, and it is suitable for the manufacture of a high recording density magnetic medium of high output.

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明は、耐酸化性に優れた磁気記録用に好適な金属磁
性粉末、その製造方法及びそれを使用す4m気記録媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a metal magnetic powder with excellent oxidation resistance suitable for magnetic recording, a method for producing the same, and a 4-meter recording medium using the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年高記録密度化による小型化、高性
能化の指向が一段と強まってきている。
In recent years, there has been an increasing trend toward miniaturization and higher performance of magnetic recording media due to higher recording densities.

これとあいまワて磁気記録用磁性粉末として、従来の酸
化鉄系磁性粉末に比し、飽和磁化が太き(、かつ高保磁
力化が容易な鉄または鉄系金属磁性粉末(以下金属磁性
粉末という)が注目されており、デジタルオーディオチ
ーブや8−/■ビデオテーフ。
Coupled with this, as magnetic powder for magnetic recording, iron or iron-based metal magnetic powder (hereinafter referred to as metal magnetic powder) has thicker saturation magnetization (and can easily be made to have a high coercive force) than conventional iron oxide-based magnetic powder. ) are attracting attention, as well as Digital Audio Chive and 8-/■Video Tefe.

などへの実用化がはかられつつあるが、近時さらに高画
質ビデオテープ、高記録密度ディスク用など高性能記録
媒体への適用が一層期待されている。
Although efforts are being made to put it to practical use in applications such as high-definition video tapes and high-density disks, there are increasing expectations for its application to high-performance recording media such as high-definition video tapes and high-density disks.

ところで、このような金属磁性粉末は、通常約0.5μ
m以下(長径)、さらには0.3μm以下の微細粒子で
あるのが望ましく、かつこのものを磁気塗料としたとき
の分散性、塗膜での配向性、充填性等に優れたものであ
ることが望まれている。しかしながらこのような微細粒
子は表面活性が強く、このために経時的に酸化が進むこ
とにより、これにともなって飽和磁化、保磁力などの磁
気特性が低下し、いわゆる経時安定性(以下耐酸化性と
いう)の悪化がさけられなかったりする。またさらに著
しい場合には、前記酸化反応が急激に進むと自然発火、
燃焼に至るなど取扱操作、工程管理工種々のトラブルを
惹起したりする。
By the way, such metal magnetic powder usually has a thickness of about 0.5μ.
Preferably, the particles are fine particles with a diameter of 1.5 m or less (longer diameter), and more preferably 0.3 μm or less, and have excellent dispersibility, orientation in a coating film, filling property, etc. when used as a magnetic coating. It is hoped that However, such fine particles have strong surface activity, and as a result, oxidation progresses over time, resulting in a decrease in magnetic properties such as saturation magnetization and coercive force, resulting in so-called stability over time (hereinafter referred to as oxidation resistance). ) may be unavoidable. In even more severe cases, if the oxidation reaction proceeds rapidly, spontaneous combustion may occur.
This can cause various problems in handling operations and process control, such as combustion.

これらの問題点を改良するために、既に多くの提案がな
されている。例えば、(11還元により製造した直後の
金属磁性粉末の粒子表面を、徐酸化して薄い酸化被膜を
形成させたり、(2)金属磁性粉末の粒子表面を例えば
シリコン系化合物や高級脂肪酸系化合物等の有機物質で
被覆したり、さらには(3)金属磁性粉末の粒子表面に
、耐食性金属化合物を湿式あるいは乾式の種々の方法に
よって被着せしめたり等の方法が知られている。しかし
ながら、これらの方法によっても耐酸化性が十分満足さ
れるものでなかったり、十分な耐酸化性を付与しようと
すると金属磁性粉末のもつ高飽和磁化、高保磁力などの
優れた磁気特性や塗料化時の分散性などが損なわれ易か
ったりするなど、未だ改善を要する問題点が少なくない
。ことに、さらに高S/N比化、高出力化が一段と要請
されることとあいまって、金属磁性粉末のより微粒子化
が指向されており前記問題点の解決が強く希求されてい
る。
Many proposals have already been made to improve these problems. For example, (11) the particle surface of the metal magnetic powder immediately after being produced by reduction may be slowly oxidized to form a thin oxide film, or (2) the particle surface of the metal magnetic powder may be coated with, for example, a silicon-based compound, a higher fatty acid-based compound, etc. There are known methods such as (3) coating the particle surface of the metal magnetic powder with a corrosion-resistant metal compound using various wet or dry methods. If the oxidation resistance is not fully satisfied depending on the method, or if you try to give sufficient oxidation resistance, it is difficult to obtain the excellent magnetic properties of metal magnetic powder such as high saturation magnetization and high coercive force, and the dispersibility when forming into paint. There are still many problems that need to be improved, such as the fact that the metal magnetic powder is easily damaged.In particular, with the demand for higher S/N ratio and higher output, finer particles of metal magnetic powder are required. There is a strong desire to solve the above problems.

〔発明の目的〕[Purpose of the invention]

本発明は、前記問題点を解決し、耐酸化性に優れた磁気
記録媒体用に好適な金属磁性粉末、その製造方法及びそ
れを使用する磁気記録媒体を提供することにある。
The present invention solves the above problems and provides a metal magnetic powder suitable for use in magnetic recording media with excellent oxidation resistance, a method for producing the same, and a magnetic recording medium using the same.

〔発明の概要〕[Summary of the invention]

本発明は、本発明者等がかねてより、金属磁性粉末本来
の優れた特性を損なうことなく、前記問題点を解決すべ
く種々検討を進めた結果、特定の有機金属化合物を、金
属磁性粉末の粒子表面上で熱分解させることによって、
その熱分解残渣物を該粒子表面に担持せしめた場合には
、前記問題を解決し得、十分な耐酸化性と磁気記録媒体
における高性能磁気特性を付与し得る金属磁性粉末が得
られること、かつこのものを比較的簡潔な手段でもって
製造することができることの知見を得、本発明を完成し
たものである。すなわち本発明の第1は、粒子表面に、
アセチルアセトナト錯化合物の熱分解残渣物を、−担持
してなることを特徴とする金属磁性粉末であり、第2は
、アセチルアセトナト錯化合物を、金属磁性粉末粒子表
面に接触させ、かつ加熱分解してその熱分解残渣物を該
粒子表面に担持処理することを特徴とする金属磁性粉末
の製造方法であり、第3は、アセデルアセトナト錯化合
物を、金属磁性粉末表面に接触させ、かつ加熱分解して
その熱分解残渣物を該粒子表面に担持処理した後、該処
理物を不活性雰囲気下で加熱処理することであり、また
第4は、該処理物を酸化性雰囲気下で酸化処理すること
を特徴とする金属磁性粉末の製造方法、および第5は、
前記第1の発明に係わる金属磁性粉末を含有してなる磁
性層を、非磁性支持体上に形成してなることを特徴とす
る磁気記録媒体である。
The present invention was developed as a result of various studies carried out by the present inventors in order to solve the above-mentioned problems without impairing the inherent excellent properties of metal magnetic powder. By pyrolysis on the particle surface,
When the thermal decomposition residue is supported on the surface of the particles, a metal magnetic powder can be obtained which can solve the above problems and can provide sufficient oxidation resistance and high-performance magnetic properties in magnetic recording media; Moreover, the present invention was completed based on the knowledge that this product can be manufactured using relatively simple means. That is, the first aspect of the present invention is that on the particle surface,
A second metal magnetic powder is characterized in that it supports a thermal decomposition residue of an acetylacetonato complex compound. A method for producing a metal magnetic powder, which comprises decomposing the powder and carrying the thermal decomposition residue on the surface of the particles; and a fourth step is to thermally decompose and carry the thermal decomposition residue on the surface of the particles, and then heat-treat the treated product in an inert atmosphere. A method for producing metal magnetic powder, which is characterized by subjecting it to oxidation treatment, and the fifth aspect is:
A magnetic recording medium characterized in that a magnetic layer containing the metal magnetic powder according to the first invention is formed on a non-magnetic support.

本発明において、被処理物として使用する金属磁性粉末
(以下基体構成粒子という)は、種々の方法によって製
造される鉄または鉄を主体とする鉄系合金類の金属磁性
粉末であって、もっとも−船釣には針状晶の形状のもの
であるが、さらに前記針状晶形状のもののほか、例えば
紡錘状、米粒状、球状、棒状、平板状、サイコロ状など
種々の形状のものを使用することができる。なお、これ
らの基体構成粒子は、担持処理に先立って、必要に応じ
例えば酸素含有ガスで徐酸化処理してお(こともできる
In the present invention, the metal magnetic powder (hereinafter referred to as substrate constituent particles) used as the object to be processed is a metal magnetic powder of iron or an iron-based alloy mainly composed of iron, which is manufactured by various methods, and most For boat fishing, needle-shaped crystals are used, but in addition to the above-mentioned needle-shaped crystals, various other shapes such as spindle-shaped, rice-grain-shaped, spherical, rod-shaped, plate-shaped, dice-shaped, etc. are also used. be able to. Note that, prior to the supporting treatment, these substrate constituent particles may be subjected to a slow oxidation treatment, for example, with an oxygen-containing gas, if necessary.

本発明において、使用するアセチルアセトナト錯化合物
としては、次記一般式 (但し、式中R+、Rtは、ハロゲン原子で置換されて
いてもよい炭素原子数1〜24のアルキル基または了り
−ル基であり、R5は水素原子またはR11R2と同一
であり、Meは例えば)IgI Car CIjI M
n1 COI Nl *Zr、 Cr、 Mo+^l、
 In+Pb+Sn、Ag、Ceなどよりなる金属原子
であり、nは1〜5である)で表される種々の有機金属
錯化合物を謂う。それらの具体例としては、前記金属原
子よりなるアセチルアセトナート、メチルアセトナート
、トリフロロアセトナート、ヘキサクロロアセトナート
等であって、例えば、アセチルアセトン銅、アセチルア
セトン鉄、アセチルアセトンカルシウム、アセチルアセ
トナートル) (II、I[[)、アセチルアセトンマ
ンガン(■、■)、トリフロロアセチルアセトンアルミ
ニウム、ヘキサフロロアセチルアセトンマグネシウム、
ヘキサフロロアセチルアセトンニッケル、メチルアセチ
ルアセトン銅、プロピルアセチルアセトンニッケル、フ
ェニルアセチルアセトンコバルト(II、III)など
を挙げることができる。これらの化合物の処理剤は、そ
れらを単独で用いても、あるいは2種以上混用してもよ
い。
In the present invention, the acetylacetonato complex compound used is represented by the following general formula (wherein R+ and Rt are an alkyl group having 1 to 24 carbon atoms, which may be substituted with a halogen atom, or - R5 is a hydrogen atom or the same as R11R2, Me is, for example) IgI Car CIjI M
n1 COI Nl *Zr, Cr, Mo+^l,
A metal atom consisting of In+Pb+Sn, Ag, Ce, etc., where n is 1 to 5). Specific examples thereof include acetylacetonate, methylacetonate, trifluoroacetonate, hexachloroacetonate, etc. made of the above metal atoms, such as copper acetylacetonate, iron acetylacetonate, calcium acetylacetonate, acetylacetonate) ( II, I[[), manganese acetylacetone (■, ■), aluminum trifluoroacetylacetone, magnesium hexafluoroacetylacetone,
Examples include hexafluoroacetylacetone nickel, methylacetylacetone copper, propylacetylacetone nickel, and phenylacetylacetone cobalt (II, III). As processing agents for these compounds, they may be used alone or in combination of two or more.

本発明において、アセチルアセトナト錯化合物の熱分解
残渣物を、前記基体構成粒子表面に担持処理させるには
、該基体構成粒子粉末を液相系もしくは気相系で接触さ
せ、該粒子表面で熱分解させることによっておこなうこ
とができる。該処理を液相系でおこなう場合は、例えば
アセチルアセトナト錯化合物を芳香族炭化水素類、ケト
ン類、エーテル類、アルコール類などの種々の有機溶媒
、水または水性媒液に溶解させた溶液中に、該基体構成
粒子粉末を分散させて懸濁液とするか、あるいは該基体
構成粒子粉末を前記溶媒に分散させて懸濁液とし、この
中ヘアセチルアセトナト錯化合物を添加し、次いで該懸
濁液を窒素ガスなどの不活性ガスを通気させながら該ア
セチルアセトナト錯化合物の分解温度まで加熱し、通常
80〜300℃、好ましくは90〜280℃で、0.1
〜10時間、好ましくは0.5〜5時間加熱処理してア
セチルアセトナト錯化合物の実質的全部を、該金属磁性
粉末の粒子表面で熱分解させることによっておこなうこ
とができる。また当該担持処理を気相系でおこなう場合
には、例えば該基体構成粒子粉末をアセチルアセトナト
錯化合物の分解温度下に保持した充填床を形成し、該床
にアセチルアセトナト錯化合物を不活性ガスとともに通
気して該基体構成粒子表面で熱分解させることによって
おこなうことができる。
In the present invention, in order to support the thermal decomposition residue of the acetylacetonato complex compound on the surface of the base particles, the base component particles are brought into contact with each other in a liquid phase system or a gas phase system, and heat is applied to the surface of the particles. This can be done by decomposing it. When the treatment is carried out in a liquid phase system, for example, the acetylacetonate complex compound is dissolved in various organic solvents such as aromatic hydrocarbons, ketones, ethers, alcohols, water, or an aqueous medium. Then, the base constituent particle powder is dispersed to form a suspension, or the base constituent particle powder is dispersed in the solvent to form a suspension, into which the hair acetylacetonate complex compound is added, and then the The suspension is heated to the decomposition temperature of the acetylacetonate complex compound while passing an inert gas such as nitrogen gas, and the temperature is usually 80 to 300°C, preferably 90 to 280°C, and the temperature is 0.1
This can be carried out by thermally decomposing substantially all of the acetylacetonato complex compound on the particle surface of the metal magnetic powder by heat treatment for 10 hours, preferably 0.5 to 5 hours. In addition, when carrying out the supporting treatment in a gas phase system, for example, a packed bed is formed in which the particle powder constituting the substrate is maintained at the decomposition temperature of the acetylacetonato complex compound, and the acetylacetonate complex compound is inactivated in the bed. This can be carried out by aerating the particles together with a gas to cause thermal decomposition on the surface of the particles constituting the substrate.

なお前記アセチルアセトナト錯化合物の熱分解残渣物を
担持処理した金属磁性粉末は、さらに必要に応じ該粒子
表面を窒素含有ガス雰囲気下で加熱処理したり、あるい
は該粒子表面を酸化性ガス雰囲気中で徐酸化したりする
ことによって、耐酸化性を一層好ましいものとすること
ができる。前記アセチルアセトナト錯化合物の担持量は
、基体構成粒子の金属磁性粉末の粒子の形状、大きさ、
比表面積などによって異なり、−概に言えないが、該基
体構成粒子の重量基準に比して0.1〜30χ、望まし
くは0.3〜15χである。担持量が前記範囲より少な
きにすぎると所望の効果がもたらされず、また前記範囲
より多きにすぎると飽和磁化などの磁気特性や塗料化時
の分散性などが損なわれ易かったりする。
The metal magnetic powder on which the thermal decomposition residue of the acetylacetonato complex compound has been supported may be further heat-treated on the particle surface in a nitrogen-containing gas atmosphere, or the particle surface may be heated in an oxidizing gas atmosphere, if necessary. The oxidation resistance can be made more preferable by slow oxidation. The amount of the acetylacetonato complex compound supported depends on the shape and size of the metal magnetic powder particles constituting the base particles,
It varies depending on the specific surface area, etc., and although it cannot be generalized, it is 0.1 to 30x, preferably 0.3 to 15x, based on the weight of the base particles. If the supported amount is too small than the above range, the desired effect will not be produced, and if the supported amount is too large, magnetic properties such as saturation magnetization, dispersibility when forming into a paint, etc. may be easily impaired.

本発明において、アセチルアセトナト錯化合物の熱分解
残渣物とは、前記アセチルアセトナト錯化合物の熱分解
によって、基体構成粒子の金属磁性粉末の粒子表面に形
成される実質的に当該アセチルアセトナト錯化合物の構
成金属成分よりなる耐食性金属の表面層のことを謂うも
のである。前記アセチルアセトナト錯化合物の熱分解残
渣物の担持処理によって奏される本発明の耐酸化性等の
きわめて優れた特性の改善がもたらされる作用機作は、
未だ十分解明するには至っていないが、均一膜厚の緻密
な耐食性被膜が形成され易いためではないかと推定され
る。また前記熱分解残渣物を担持処理した金属磁性粉末
を、酸化性ガス雰囲気中や窒素ガスなどの不活性ガス雰
囲気中で加熱処理することによって金属磁性粉末の耐酸
化性が一層増大し得ることの所以は、前記基体構成粒子
表面の耐食性被膜がより緻密化されたり、さらにはより
安定な酸化被膜が形成されたりすることによるのではな
いかとみられる。
In the present invention, the thermal decomposition residue of the acetylacetonato complex compound is substantially the acetylacetonato complex formed on the particle surface of the metal magnetic powder of the base material particles by thermal decomposition of the acetylacetonato complex compound. It refers to the surface layer of a corrosion-resistant metal made of the constituent metal components of a compound. The mechanism of action by which the extremely excellent properties such as oxidation resistance of the present invention are brought about by the treatment of supporting the thermal decomposition residue of the acetylacetonato complex compound is as follows:
Although it has not yet been fully elucidated, it is presumed that this is because a dense corrosion-resistant film with a uniform thickness is likely to be formed. Furthermore, the oxidation resistance of the metal magnetic powder can be further increased by heat-treating the metal magnetic powder that has been treated to support the thermal decomposition residue in an oxidizing gas atmosphere or an inert gas atmosphere such as nitrogen gas. The reason seems to be that the corrosion-resistant film on the surface of the substrate constituent particles becomes more dense, and that a more stable oxide film is formed.

前記の本発明の方法にもとづいて製造される金属磁性粉
末は、種々のバインダー樹脂、例えば塩化ビニル−酢酸
ビニル共重合体系樹脂、ポリウレタン系樹脂、ポリエス
テル系樹脂、アクリル系樹脂、セルローズ系樹脂などの
バインダー成分と、種々の添加剤、例えば分散剤、潤滑
剤、研磨剤、帯電防止剤などを添加して磁性塗料を調製
し、ポリエチレンテレフタレートフィルム、アセテート
フィルムなど種々の非磁性支持体上に、所定厚み(通常
は乾燥後の厚み2〜5μm)に塗布し、配向処理後乾燥
して磁性層を形成し、さらにカレンダー処理、スリッテ
ィング加工を経て磁気記録媒体、例えば磁気テープを得
ることができる。なお、前記磁気テープは、必要に応じ
さらに帯電防止、走行安定性等をはかるべく、該支持体
の磁性層側の反対の面に、いわゆるバンクコート層を形
成してもよい。
The metal magnetic powder produced according to the method of the present invention described above can be made of various binder resins, such as vinyl chloride-vinyl acetate copolymer resins, polyurethane resins, polyester resins, acrylic resins, cellulose resins, etc. A magnetic paint is prepared by adding a binder component and various additives, such as a dispersant, a lubricant, an abrasive, an antistatic agent, etc., and applied onto various non-magnetic supports such as polyethylene terephthalate film and acetate film. A magnetic recording medium such as a magnetic tape can be obtained by applying the magnetic layer to a thickness (usually 2 to 5 μm thick after drying) and drying after orientation treatment to form a magnetic layer, followed by calendering and slitting. In addition, the magnetic tape may be provided with a so-called bank coat layer on the opposite surface of the support from the magnetic layer side in order to further improve antistatic properties, running stability, etc., if necessary.

以下に実施例及び比較例を挙げて本発明をさらに説明す
る。
The present invention will be further explained by giving examples and comparative examples below.

〔本発明の実施例〕 実施例1 硫酸第一飲水溶液を水酸化ナトリウム水溶液で中和し、
さらに酸化性ガスを導入して酸化しα−Fe00 II
を生成し、次いでこのものを加熱脱水してα−Fe10
3とし、しかる後水素気流中で加熱還元して得られた針
状の金属鉄磁性粉末(比表面積(BET)55m”/g
、平均長軸粒子径0.15μ、平均軸比9、保磁力1.
3840eS飽和磁化177e+su/g、角形比0.
511)を基体構成粒子とし、このちの20gをエチレ
ングリコール400−に懸濁した。この懸濁液を攪拌機
を付した四つロフラスコに入れ、さらに窒素ガスを導入
して非酸化性雰囲気を保持しながら、攪拌下にNi(C
sllyOz)g6.7gを添加し、次いで4℃/分で
190℃まで昇温し、この温度で1時間保持して加熱分
解した。しかる後室温まで冷却稜線懸濁液を濾過し、さ
らにトルエンで洗浄、ひきつづきトルエンで洗浄した。
[Examples of the present invention] Example 1 A sulfuric acid primary drinking water solution was neutralized with an aqueous sodium hydroxide solution,
Furthermore, oxidizing gas is introduced to oxidize α-Fe00 II
This product is then heated and dehydrated to form α-Fe10
3, and then heated and reduced in a hydrogen stream to obtain acicular metallic iron magnetic powder (specific surface area (BET) 55 m''/g
, average major axis particle diameter 0.15μ, average axial ratio 9, coercive force 1.
3840eS saturation magnetization 177e+su/g, squareness ratio 0.
511) was used as the base constituent particles, and 20 g of it was suspended in ethylene glycol 400-. This suspension was placed in a four-loaf flask equipped with a stirrer, and nitrogen gas was introduced to maintain a non-oxidizing atmosphere while Ni(C) was stirred.
6.7 g of sllyOz) was added thereto, and then the temperature was raised to 190° C. at a rate of 4° C./min, and this temperature was maintained for 1 hour for thermal decomposition. The ridge suspension was then cooled to room temperature and filtered, washed with toluene, and then washed with toluene.

得られたケーキを風乾して目的の金属磁性粉末(A)を
得た。
The obtained cake was air-dried to obtain the desired metal magnetic powder (A).

前記方法によって得られた金属磁性粉末を用いて、下記
の配合組成物を混合分散させて磁性塗料を調製した。
Using the metal magnetic powder obtained by the above method, a magnetic paint was prepared by mixing and dispersing the following composition.

磁性粉末            5 重量部分散剤 
            0.25  〃ポリウレタシ
樹脂 (30%tat(1>            
2.96   〃混合溶媒”            
13.4  〃0 トルエン/M11iK/シクロへl
ン(4,5/4.5/1)次いで、前記磁性塗料をポリ
エステルフィルム上に、乾燥膜厚10pmとなるように
塗布し、配向処理後乾燥し磁気シートを作製した。
Magnetic powder 5 Weight part dispersant
0.25 Polyurethane resin (30% tat (1>
2.96 "Mixed solvent"
13.4 〃0 Toluene/M11iK/cyclohel
(4.5/4.5/1) Next, the magnetic paint was applied onto a polyester film to a dry film thickness of 10 pm, and after orientation treatment, it was dried to produce a magnetic sheet.

実施例2 実施例1で得られたNi (Cslb(h) z熱分解
物を担持処理してなる金属磁性粉末(A)10gを、管
状電気炉中で窒素ガスを通気しながら300℃で2時間
加熱処理して目的の金属磁性粉末(B)を得た。
Example 2 10 g of the metal magnetic powder (A) obtained by supporting the Ni (Cslb(h)z pyrolyzed product) obtained in Example 1 was heated at 300°C for 2 hours while passing nitrogen gas in a tubular electric furnace. The desired metal magnetic powder (B) was obtained by heat treatment for a period of time.

実施例3 実施例1において、Ni (C5II?Oり zの添加
量を2.2gとしたのほかは同例と同様に処理後、さら
に実施例2と同様に窒素ガス中加熱処理を行ない、目的
の金属磁性粉末(C)を得た。
Example 3 After treatment in the same manner as in Example 1 except that the amount of Ni (C5II?O) added was 2.2 g, heat treatment in nitrogen gas was performed in the same manner as in Example 2, The desired metal magnetic powder (C) was obtained.

実施例4 実施例3において、Ni (Csll?Og)富10.
5gの代わりにCo(CslltOz) z 6−7 
gを用いたことのほかは同様にして、目的の金属磁性粉
末(D)を得た。
Example 4 In Example 3, Ni (Csll?Og) richness 10.
Co(CslltOz) z 6-7 instead of 5g
The desired metal magnetic powder (D) was obtained in the same manner except that g was used.

実施例5 実施例3において、N1(CslbOいdO,5gの代
わりにCo(CsH−IOt) s 6.7 gを用い
たことのほかは同様にして、目的の金属磁性粉末(E)
を得た。
Example 5 The desired metal magnetic powder (E) was prepared in the same manner as in Example 3 except that 6.7 g of Co(CsH-IOt) was used instead of 5 g of N1(CslbOdO).
I got it.

比較例1 実施例1において、Ni (CsHy(h) zを添加
しなかったほかは、同例の場合と同様に処理して金属磁
性粉末(F)を得た。
Comparative Example 1 A metal magnetic powder (F) was obtained in the same manner as in Example 1, except that Ni (CsHy(h) z) was not added.

比較例2 実施例2において、Ni (Csfly(h) tを添
加しなかったほかは、同例の場合と同様に処理して金属
磁性粉末(G)を得た。
Comparative Example 2 A metal magnetic powder (G) was obtained in the same manner as in Example 2, except that Ni(Csfly(h)t) was not added.

前記実施例及び比較例の金属磁性粉末とそれらを用いて
作製した磁気テープについて、常法により飽和磁化(δ
s:emu/g)、保磁力(Hc:Oe) 、飽和磁束
密度(Bm:Gauss) 、角形比(Rs、 SQ 
)、配向性(OR) 、反転磁界分布(S F D)を
測定した。また酸化安定性を評価するために、温度60
℃、相対湿度80%の環境下で、4週間放置してδS、
Hc、Rsについて促進経時変化を測定し、飽和磁化の
劣化率ΔδS(χ)及びΔBm(χ)を下記の式によっ
て求めた。これらの結果を表−1(粉末特性)及び表−
2(テープ特性)に示す。
The saturation magnetization (δ
s: emu/g), coercive force (Hc: Oe), saturation magnetic flux density (Bm: Gauss), squareness ratio (Rs, SQ)
), orientation (OR), and reversal magnetic field distribution (S F D) were measured. In addition, in order to evaluate oxidation stability, a temperature of 60
℃ and 80% relative humidity for 4 weeks, δS,
Accelerated changes over time were measured for Hc and Rs, and saturation magnetization deterioration rates ΔδS(χ) and ΔBm(χ) were determined using the following formulas. These results are shown in Table-1 (powder characteristics) and Table-
2 (tape characteristics).

(式中、δS0は経時前のδSであり、δS゛ は経時
後のδSである) (式中、B m Oは経時前のBmであり、Bm’ は
経時後のBmである) 〔発明の効果〕 本発明によって得られるアルキル金属化合物の熱分解残
渣物を担持した金属磁性粉末は、耐酸化1が著しく改善
されたものであり、従って優れた1気特性を長期間保持
し得るとともに、それ自体貯蔵安定性に優れ、取扱い操
作上、工程管理上甚だ好ましいものであること、さらに
媒体への分散1も良好なものであって高出力の高記録密
度磁気媒体を製造する上で極めて好適なものである。ま
た本発明の金属磁性粉末の製造方法は、比較的面素な手
段でもって優れた性能の磁性粉末を容易に製造すること
ができるものであり、甚だ工業的意義の大きいものであ
る。
(In the formula, δS0 is δS before aging, and δS゛ is δS after aging.) (In the formula, B m O is Bm before aging, and Bm' is Bm after aging.) [Invention [Effect] The metal magnetic powder supporting the thermal decomposition residue of an alkyl metal compound obtained by the present invention has significantly improved oxidation resistance 1, and therefore can maintain excellent 1-air characteristics for a long period of time. As such, it has excellent storage stability and is highly desirable in terms of handling and process control.Furthermore, it has good dispersion into the medium, making it extremely suitable for producing high-output, high-density magnetic media. It is something. Furthermore, the method for producing metal magnetic powder of the present invention allows magnetic powder with excellent performance to be easily produced using relatively simple means, and is therefore of great industrial significance.

Claims (5)

【特許請求の範囲】[Claims] (1)粒子表面に、アセチルアセトナト錯化合物の熱分
解残渣物を担持してなることを特徴とする金属磁性粉末
(1) A metal magnetic powder characterized by carrying thermal decomposition residues of an acetylacetonate complex compound on the particle surface.
(2)アセチルアセトナト錯化合物を、金属磁性粉末粒
子表面に接触させ、かつ加熱分解してその熱分解残渣物
を該粒子表面に担持処理することを特徴とする金属磁性
粉末の製造方法。
(2) A method for producing metal magnetic powder, which comprises bringing an acetylacetonato complex compound into contact with the surface of metal magnetic powder particles, thermally decomposing the compound, and supporting the thermal decomposition residue on the particle surface.
(3)アセチルアセトナト錯化合物を、金属磁性粉末表
面に接触させ、かつ加熱分解してその熱分解残渣物を該
粒子表面に担持処理した後、該処理物を不活性雰囲気下
で加熱処理することを特徴とする金属磁性粉末の製造方
法。
(3) The acetylacetonato complex compound is brought into contact with the surface of the metal magnetic powder, thermally decomposed and the thermal decomposition residue is supported on the particle surface, and then the treated product is heat-treated in an inert atmosphere. A method for producing metal magnetic powder, characterized by the following.
(4)アセチルアセトナト錯化合物を、金属磁性粉末粒
子表面に接触させ、かつ加熱分解してその熱分解残渣物
を該粒子表面に担持処理した後、該処理物を酸化性雰囲
気下で酸化処理することを特徴とする金属磁性粉末の製
造方法。
(4) The acetylacetonato complex compound is brought into contact with the surface of the metal magnetic powder particles, thermally decomposed and the thermal decomposition residue is supported on the surface of the particles, and then the treated product is oxidized in an oxidizing atmosphere. A method for producing metal magnetic powder, characterized by:
(5)粒子表面にアセチルアセトナト錯化合物の熱分解
残渣物を担持してなる金属磁性粉末を含有してなる磁性
層を、非磁性支持体上に形成してなることを特徴とする
磁気記録媒体。
(5) A magnetic recording characterized in that a magnetic layer containing a metal magnetic powder carrying thermal decomposition residues of an acetylacetonate complex compound on the particle surface is formed on a non-magnetic support. Medium.
JP63048198A 1988-03-01 1988-03-01 Metal magnetic powder, and manufacture and usage thereof Pending JPH01222407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048198A JPH01222407A (en) 1988-03-01 1988-03-01 Metal magnetic powder, and manufacture and usage thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048198A JPH01222407A (en) 1988-03-01 1988-03-01 Metal magnetic powder, and manufacture and usage thereof

Publications (1)

Publication Number Publication Date
JPH01222407A true JPH01222407A (en) 1989-09-05

Family

ID=12796686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048198A Pending JPH01222407A (en) 1988-03-01 1988-03-01 Metal magnetic powder, and manufacture and usage thereof

Country Status (1)

Country Link
JP (1) JPH01222407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027978A (en) * 2010-07-23 2012-02-09 Fujifilm Corp Magnetic particle and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027978A (en) * 2010-07-23 2012-02-09 Fujifilm Corp Magnetic particle and method of manufacturing the same
US8753530B2 (en) 2010-07-23 2014-06-17 Fujifilm Corporation Magnetic particle and method of preparing the same

Similar Documents

Publication Publication Date Title
US4306921A (en) Production of magnetic powder
JPH0544162B2 (en)
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPH01222407A (en) Metal magnetic powder, and manufacture and usage thereof
JPH02162703A (en) Manufacture of metallic magnetic powder
JPS6114642B2 (en)
JP3041880B2 (en) Ferromagnetic metal particles for magnetic recording
JPH01220408A (en) Metal magnetic powder, manufacture thereof and use thereof
JPH04157615A (en) Treating method of magnetic powder
JPS6411577B2 (en)
JPH01274402A (en) Magnetic metal powder
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JPH01231301A (en) Metallic magnetic powder and usage thereof
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JPS6349722B2 (en)
JPH0448602A (en) Manufacture of metallic magnetic powder for magnetic recording
JP2940117B2 (en) Ferromagnetic metal particles for magnetic recording media
KR100241694B1 (en) Ferromagnetic iron oxide powder and its manufacturing method
JPH03253505A (en) Production of ferromagnetic metal powder
JP5082045B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6354041B2 (en)
JPS63120404A (en) Manufacture of magnetic iron powder
JPS63143802A (en) Manufacture of magnetic iron powder
JPH0312125B2 (en)
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording