JPH0443106B2 - - Google Patents

Info

Publication number
JPH0443106B2
JPH0443106B2 JP32944087A JP32944087A JPH0443106B2 JP H0443106 B2 JPH0443106 B2 JP H0443106B2 JP 32944087 A JP32944087 A JP 32944087A JP 32944087 A JP32944087 A JP 32944087A JP H0443106 B2 JPH0443106 B2 JP H0443106B2
Authority
JP
Japan
Prior art keywords
polymer
ppe
styrene
weight
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32944087A
Other languages
Japanese (ja)
Other versions
JPH01172451A (en
Inventor
Sumio Ueda
Sadao Ibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62329440A priority Critical patent/JPH01172451A/en
Priority to EP88201212A priority patent/EP0322931B1/en
Priority to DE8888201212T priority patent/DE3867620D1/en
Priority to CA000569418A priority patent/CA1335391C/en
Priority to CN88103838A priority patent/CN1011240B/en
Priority to CN 90101653 priority patent/CN1012577B/en
Priority to KR1019880007291A priority patent/KR910007552B1/en
Publication of JPH01172451A publication Critical patent/JPH01172451A/en
Priority to US07/798,038 priority patent/US5191031A/en
Publication of JPH0443106B2 publication Critical patent/JPH0443106B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は低分子量のスチレン系重合体が特定量
結合したポリフエニレンエーテル系重合体とスチ
レン系重合体よりなる従来にない優れた色調と成
形加工性及び機械的特性をそなえた熱可塑性樹脂
組成物に関するものである。 〔従来の技術及びその問題点〕 ポリフエニレンエーテル系重合体(以下PPE
という)は、優れた耐熱性、電気的特性、機械的
特性、透明性を有しているが、加熱時の溶融粘度
が高く単独での成形加工性が非常に困難であると
いう問題点を有している。特にPPEは加熱時に
ポリマー分子間のカツプリングによる分子量の増
大が生じ成形加工性をより困難なものとしてい
る。又PPEには加熱による色調の悪化が激しい
という問題点もある。この様なPPEの問題点を
改良することを目的として、米国特許第3383435
号には、PPEとポリスチレン系重合体(以下PS
という)のブレンドが提案されている。 しかし、このものはPSのブレンドによつて成
形加工性等を改良しようとするのであり、PPE
自身を改質するものではないため、PPEの成形
加工性の悪さ及び色調の悪さはある程度軽減され
るものの、なお改善の余地を残している。 特に最近は事務機器、電気、電子部品等の大形
化及び薄肉化と白系着色及び鮮やかな色の増加に
より、この問題が顕著化してきている。 このうち成形加工性の改良に関しては、PPE
にスチレン化合物をグラフト重合したり、PPE
に高分子量PSをグラフトする方法が数多く開発
されている(例えば特公昭52−38596号及び特公
昭59−11605号)。 これらの方法はPPE鎖にスチレンをグラフト
する反応を促進させる事を目的として、ラジカル
発生剤存在下に、スチレン量、反応温度、混合条
件等を規定し、PPE鎖への高分子量PSのグラフ
ト反応を促進しているものが多いが、ラジカル発
生剤を添加し、加熱下で反応を進める結果、
PPE分子間のカツプリングも同時に促進されて、
加熱時の分子量の増加が進み、高温下での成形加
工性の点ではまだ改良の必要があり、且つポリマ
ーの色調もラジカル発生剤の使用により悪化する
という問題点を有していた。 また、衝撃補強様として含まれるジエン系ゴム
質重合体の存在下でラジカル発生剤を併用すると
ゴムのゲル化が促進され、衝撃強度の低下が起る
ことも判明した。 一方PPEの色調改良に関しては、次亜リン酸
塩、亜リン酸エステルを添加することが特公昭42
−12530号公報、特公昭51−33938号公報及び特公
昭51−40589号公報等に示されている。又次亜リ
ン酸を用いることも特開昭59−98160号公報及び
特開昭59−98161号公報に示されている。 しかしこれら一連の添加剤によるPPEの色調
改良効果は十分でなく、いずれもこの樹脂の特徴
である流動性を大幅に低下させ、その結果、成形
品の外観にも多大の悪影響を及ぼす。又、衝撃強
さ熱安定性も低下するため著しく商品価値が損わ
れるという問題点を有している。 〔発明が解決しようとする問題点〕 本発明は上記した問題点を解決し、PPEの有
する優れた電気的特性、機械的特性を損う事な
く、その成形加工性及び色調を改良することを目
的としてなされたものである。 〔問題点を解決するための手段〕 即ち、本発明はPPEとスチレン系単量体化合
物を分散混合した後、ラジカル発生剤を使用せず
に260℃以上の高温で混合反応させることにより
得られる、低分子量スチレン系重合体結合PPE
であつて、且つ該重合体においては、PPEに、
その平均重合度が10以下の低分子量スチレン系重
合体が結合しており、この低分子量スチレン系重
合体の結合量がPPEに対し0.1〜5.0重量%の範囲
にある低分子量スチレン系重合体結合PPE95〜
10重量とPS5〜90重量部よりなる色調及び成形加
工性の優れた熱可塑性樹脂組成物を提供するもの
である。 本発明の樹脂組成物においては高温下でPPE
の分子間カツプリングに起因すると思われる分子
量の増加が押さえられるとともに、小量結合した
低分子量スチレン系重合体の効果も加わり、ブレ
ンド物の高温時の溶融流動特性、及びポリマーの
色調が非常に改良されることが判明した。 また、本発明の組成物は繰り返し熱履歴を受け
ても上記の特徴を保持し、品質安定性の面でも非
常に優れた効果を発揮し得るものである。 以下本発明を詳細に説明する。 本発明で用いるポリフエニレンエーテル系重合
体(PPE)とは、下記一般式() (式中、R1及びR2はそれぞれ炭素数1〜4の
アルキル基又はハロゲン原子を表わす。nは重合
度を示す整数である。)で示されるものである。 この一般式()で示されるものの具体例とし
ては、ポリ(2,6−ジメチル−1,4−フエニ
レン)エーテル、ポリ(2−メチル−6−エチル
−1,4−フエニレン)エーテル、ポリ(2,6
−ジエチル−1,4−フエニレン)エーテル、ポ
リ(2−エチル−6−nプロピル−1,4−フエ
ニレン)エーテル、ポリ(2,6−ジ−nプロピ
ル−1,4−フエニレン)エーテル、ポリ(2−
メチル−6−nブチル−1,4−フエニレン)エ
ーテル、ポリ(2−エチル−6−イソプロピル−
1,4−フエニレン)エーテル、ポリ(2−メチ
ル−6−クロル−1,4−フエニレン)エーテ
ル、ポリ(2−メチル−6−ヒドロキシエチル−
1,4−フエニレン)エーテル、ポリ(2−メチ
ル−6−クロロエチル−1,4−フエニレン)エ
ーテル等のホモポリマーが挙げられる。このう
ち、好ましいものは、ポリ(2,6−ジメチル−
1,4−フエニレン)エーテルである。 また上記一般式で表わされる化学構造を主体と
してなるポリフエニレンエーテル共重合体も使用
可能である。その具体例としては、2,6−ジメ
チルフエノールと2,3,6−トリメチルフエノ
ールの共重合体があげられる。 本発明で用いられるPPEはクロロホルム中30
℃で測定したときの固有粘度が0.30〜0.75dl/g
の範囲のものが好ましい。より好ましくは0.35〜
0.70dl/gのものである。0.40dl/g未満のもの
は機械的強度が劣り、0.75dl/gより高くなると
成形加工が非常に困難となるので好ましくない。 このPPEに結合する低分子量スチレン系重合
体としては低分子量ポリスチレン、又はスチレン
とビニル化合物との共重合体で、ビニル化合物が
スチレン系重合体中30重量%以下のスチレン系重
合体である。共重合体の具体例としてはスチレン
−α−メチルスチレン共重合体、スチレン−メチ
ルメタクリレート共重合体、スチレン−アクリロ
ニトリル共重合体、スチレン−無水マレイン酸共
重合体などが挙げられる。これらの中で低分子量
ポリスチレンが特に好ましい。 PPEに結合する低分子量スチレン系重合体の
平均重合度は10以下にする必要がある。PPEに
結合するスチレン系重合体の平均重合度が10より
大きくなると、熱安定性改良の効果を得るための
結合量を増加する必要があり、その結果PPEの
耐熱性を低下させる。又成形加工性改良の効果も
少くなる。 平均重合度10以下のスチレン系重合体の結合量
はPPEに対し0.1〜5.0重量%の範囲が好ましい。
結合量0.1重量%以下では、熱安定性及び溶融時
の流動特性の改良効果が得られない。5.0重量%
以上では耐熱性低下が大きくなり、その割りに熱
安定性及び溶融時の流動特性は良くならない。 低分子量スチレン系重合体のより好ましい結合
量は、0.5〜3.0wt%の範囲である。 この様な低分子量のスチレン系重合体を特定量
結合したPPEを得るには、PPEとスチレン系単
量体化合物を良く分散混合した後、260℃以上の
高温で混合反応させる方法をとることが必要であ
る。反応温度が低いと結合するスチレン系重合体
の重合度が高くなる。 反応時のラジカル発生剤の添加は低分子量スチ
レン系重合体の結合量を過度に高くする。また得
られるPPEの色調も悪化する。PPEとスチレン
系単量体の混合比率によつても低分子量スチレン
系重合体の結合量が変化する。PPE100重量部に
対し1〜30重量部の範囲が適当である。 反応はニーダー、ブラベンダー、及び押出機に
より実施可能である。特に2軸押出機を用いる事
が作業性、量産性の面で優れている。 本発明の組成物中の低分子量スチレン系重合体
が特定量結合したPPEに関しては、以下の方法
により結合低分子量スチレン系重合体の分析を実
施し得る。 A.FactorらによりJ.Polymer Sci.,7B,205
(1969)に報告された方法、即ち、PPEは塩化メ
チレンと複合体を形成することにより、塩化メチ
レンに不溶になること、およびこの複合体は加熱
により容易に塩化メチレンを放出してPPEが得
られることを利用し、PPEを分離し、この分離
PPE中に含まれる結合スチレン系重合体量を赤
外線吸収スペクトル分析により測定し得る。 結合しているスチレン系重合体の重合度に関し
ては、上記の塩化メチレンによる分離PPEの
NMR測定により、スチレン系重合体の末端基の
シグナルと主鎖中のシグナルの強度比較により判
定出来る。PPEに結合したスチレン系重合体の
分子量を確認する他の方法として、USP3442858
号に示されているリチウム−ビフエニルにより
PPE成分を分解しスチレン系重合体を分離した
のち、GPC測定する事も可能である。 又、本発明で用いられるスチレン系重合体とし
ては、ポリスチレン、又はスチレンと他のビニル
化合物の少なくとも一種との共重合体、及びそれ
らのゴム変形重合体を含むものである。スチレン
と他のビニル化合物の少なくとも1種との共重合
体の具体例としては、スチレン−アクリロニトリ
ル共重合体、スチレン−メタクリル酸メチル共重
合体、スチレン−α−メチルスチレン共重合体、
スチレン−無水マレイン酸共重合体等があげられ
る。また、ゴム変性重合体としては、ゴム変性ポ
リスチレン(HIPS)、ゴム変性スチレン−アク
リロニトリル共重合体(ABS)、ゴム変性スチレ
ン−無水マレイン酸共重合体等がある。 この内、特に好ましい重合体はポリスチレン
(PS)及びゴム変性ポリスチレン(HIPS)であ
る。 低分子量スチレン系重合体結合PPEとスチレ
ン系重合体のブレンド比率に関しては、低分子量
スチレン系重合体結合PPE95〜10重量部とスチ
レン系重合体5〜90重量部の範囲が好ましい。低
分子量スチレン系重合体結合PPEが95重量部を
こえると押出加工時の吐出量の低下が大きく又押
出安定性も低下する。一方10重量部未満では
PPEの耐熱性、電気特性、機械特性等の特徴が
あらわれない。 本発明組成物を得るために行うブレンドは通常
実施されている押出機による方法を用いることが
できる。又、PPEとスチレン系単量体化合物を
混合反応させる行程にスチレン系重合体も同時に
加えることも特に問題はない。 本発明の組成物を種々の用途に使用する場合
に、単独での使用の他、このポリマーの特性を損
わない範囲で他のポリマーを配合しても用いられ
る。その具体例としてはポリオレフイン、ポリア
ミド、ポリブタジエン、スチレン−ブタジエン系
ブロツク共重合体及びその水素添加物等があげら
れる。更にはガラス繊維、カーボン繊維、カーボ
ンブラツクその他無機系充填剤、可塑剤、難熱
剤、安定剤等の添加も可能である。 [実施例] 以下、本発明の方法を実施例により詳細に説明
するが、本発明はこれらに限定されるものではな
い。 実施例1〜4、比較例1 PPEとしてクロロホルム中、30℃で測定した
固有粘度が0.55dl/gのポリ−(2,6ジメチル
−1,4フエニレン)エーテルを50重量部とポリ
スチレン(旭化成(株)製、商品名:スタイロン685)
50重量部に、スチレンを下記の表−1に示す量添
加し、ヘンシエルミキサーでよく攪拌混合した。
これら配合物を30mmφベント付2軸押出機中で
290℃の温度で溶融混練し、ペレツト化した。 この様にして得られたペレツト10gを150mlの
塩化メチレンに溶解した後、−5℃に一昼夜放置
し、析出物を濾過する。次いで冷塩化メチレンで
洗浄した後、140℃で1時間減圧下乾燥し、ポリ
マーを得る。このポリマー中に含まれる結合ポリ
スチレン量は赤外線吸収スペクトル分析により測
定した。又この結合ポリスチレンの重合度は、こ
のサンプルの13C−NMRを測定し、下記に示す
ポリスチレンの末端芳香環のC−1炭素と、ポリ
スチレン主鎖中の芳香環のC−4炭素のシグナル
強度の比較より求めた。又このもののクロロホル
ム中の固有粘度も測定した。 このペレツト品の成形加工性の評価として溶融
粘度をインストロンレオメーターを用い280℃で、
ずり速度103-1での値を測定した。 又この組成物の成形片色調は温度290℃で射出
成形した50×90×2mmのカラープレートを用い、
デジタル測色色差計算機(スガ試験機)にて測定
した白色度(W(Lab))の値を用いた。 W(Lab)の値が大きい程、樹脂の色調が明か
るく且つ色が薄くなつていることを示す。 これらの結果を表−1に示す。
[Industrial Application Field] The present invention is made of a polyphenylene ether polymer and a styrene polymer in which a specific amount of a low molecular weight styrene polymer is bonded. The present invention relates to a thermoplastic resin composition having the following properties. [Conventional technology and its problems] Polyphenylene ether polymer (hereinafter referred to as PPE)
) has excellent heat resistance, electrical properties, mechanical properties, and transparency, but it has the problem of high melt viscosity when heated, making it extremely difficult to mold it alone. are doing. In particular, when PPE is heated, the molecular weight increases due to coupling between polymer molecules, making moldability more difficult. PPE also has the problem that its color tone deteriorates significantly when heated. For the purpose of improving these problems of PPE, US Patent No. 3383435
The issue covers PPE and polystyrene polymers (PS).
) has been proposed. However, this product attempts to improve moldability etc. by blending PS, and PPE
Since it does not modify itself, the poor moldability and poor color tone of PPE can be alleviated to some extent, but there is still room for improvement. In particular, this problem has become more prominent recently due to the increasing size and thinning of office equipment, electrical and electronic components, and the increase in white and bright colors. Among these, regarding improvement of moldability, PPE
Graft polymerization of styrene compounds to PPE
Many methods have been developed for grafting high-molecular-weight PS onto a material (for example, Japanese Patent Publication No. 52-38596 and Japanese Patent Publication No. 59-11605). These methods aim to accelerate the reaction of grafting styrene onto PPE chains by specifying the amount of styrene, reaction temperature, mixing conditions, etc. in the presence of a radical generator, and then proceeding with the grafting reaction of high molecular weight PS onto PPE chains. However, as a result of adding a radical generator and proceeding with the reaction under heating,
Coupling between PPE molecules is also promoted,
The molecular weight increases during heating, there is still a need for improvement in terms of moldability at high temperatures, and the color tone of the polymer also deteriorates due to the use of radical generators. It has also been found that when a radical generator is used in combination with a diene-based rubbery polymer contained as an impact reinforcement, the gelation of the rubber is promoted, resulting in a decrease in impact strength. On the other hand, in order to improve the color tone of PPE, it was recommended to add hypophosphite and phosphite ester.
-12530, Japanese Patent Publication No. 51-33938, Japanese Patent Publication No. 51-40589, etc. The use of hypophosphorous acid is also disclosed in JP-A-59-98160 and JP-A-59-98161. However, the effect of improving the color tone of PPE by these series of additives is not sufficient, and all of them significantly reduce the fluidity, which is a characteristic of this resin, and as a result, the appearance of molded products is also greatly affected. In addition, impact strength and thermal stability are also reduced, resulting in a significant loss of commercial value. [Problems to be solved by the invention] The present invention aims to solve the above-mentioned problems and improve the moldability and color tone of PPE without impairing its excellent electrical and mechanical properties. It was done for a purpose. [Means for solving the problem] That is, the present invention is obtained by dispersing and mixing PPE and a styrene monomer compound, and then carrying out a mixing reaction at a high temperature of 260°C or higher without using a radical generator. , low molecular weight styrenic polymer bonded PPE
and the polymer contains PPE,
A low molecular weight styrenic polymer bonded with a low molecular weight styrenic polymer whose average degree of polymerization is 10 or less, and the amount of this low molecular weight styrenic polymer bonded is in the range of 0.1 to 5.0% by weight relative to PPE. PPE95~
The object of the present invention is to provide a thermoplastic resin composition having excellent color tone and moldability and comprising 10 parts by weight and 5 to 90 parts by weight of PS. In the resin composition of the present invention, PPE
In addition to suppressing the increase in molecular weight that is thought to be caused by intermolecular coupling of It turned out that it was. Further, the composition of the present invention retains the above-mentioned characteristics even when subjected to repeated thermal history, and can exhibit extremely excellent effects in terms of quality stability. The present invention will be explained in detail below. The polyphenylene ether polymer (PPE) used in the present invention has the following general formula () (In the formula, R 1 and R 2 each represent an alkyl group having 1 to 4 carbon atoms or a halogen atom. n is an integer indicating the degree of polymerization.) Specific examples of those represented by the general formula () include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly( 2,6
-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly (2-
Methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-
1,4-phenylene) ether, poly(2-methyl-6-chloro-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-
Examples include homopolymers such as 1,4-phenylene) ether and poly(2-methyl-6-chloroethyl-1,4-phenylene) ether. Among these, preferred is poly(2,6-dimethyl-
1,4-phenylene) ether. Further, a polyphenylene ether copolymer mainly having a chemical structure represented by the above general formula can also be used. A specific example thereof is a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol. The PPE used in the present invention is
Intrinsic viscosity is 0.30 to 0.75 dl/g when measured at °C
Preferably, the range is . More preferably 0.35~
It is 0.70dl/g. If it is less than 0.40 dl/g, the mechanical strength is poor, and if it is more than 0.75 dl/g, molding becomes extremely difficult, which is not preferable. The low molecular weight styrene polymer bonded to this PPE is low molecular weight polystyrene or a copolymer of styrene and a vinyl compound, where the vinyl compound is 30% by weight or less in the styrenic polymer. Specific examples of the copolymer include styrene-α-methylstyrene copolymer, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, and styrene-maleic anhydride copolymer. Among these, low molecular weight polystyrene is particularly preferred. The average degree of polymerization of the low molecular weight styrenic polymer bonded to PPE must be 10 or less. When the average degree of polymerization of the styrenic polymer bonded to PPE is greater than 10, it is necessary to increase the amount of bonding in order to obtain the effect of improving thermal stability, resulting in a decrease in the heat resistance of PPE. Furthermore, the effect of improving moldability is also reduced. The bonding amount of the styrenic polymer having an average degree of polymerization of 10 or less is preferably in the range of 0.1 to 5.0% by weight based on PPE.
If the amount of bonding is less than 0.1% by weight, the effect of improving thermal stability and flow characteristics during melting cannot be obtained. 5.0% by weight
Above this, the heat resistance will be significantly lowered, and the thermal stability and flow characteristics during melting will not be improved. A more preferable bonding amount of the low molecular weight styrenic polymer is in the range of 0.5 to 3.0 wt%. In order to obtain PPE in which a specific amount of low molecular weight styrene polymer is bonded, it is necessary to thoroughly disperse and mix PPE and styrene monomer compound, and then perform a mixing reaction at a high temperature of 260°C or higher. is necessary. When the reaction temperature is low, the degree of polymerization of the styrenic polymer to be bonded becomes high. Addition of a radical generator during the reaction excessively increases the amount of bonding of the low molecular weight styrenic polymer. The color tone of the resulting PPE also deteriorates. The amount of bonding of the low molecular weight styrenic polymer also changes depending on the mixing ratio of PPE and styrenic monomer. A suitable range is 1 to 30 parts by weight per 100 parts by weight of PPE. The reaction can be carried out in kneaders, Brabenders, and extruders. In particular, the use of a twin-screw extruder is excellent in terms of workability and mass production. Regarding the PPE in which a specific amount of low molecular weight styrenic polymer is bound in the composition of the present invention, the bound low molecular weight styrenic polymer can be analyzed by the following method. J. Polymer Sci., 7B, 205 by A. Factor et al.
(1969), that is, PPE becomes insoluble in methylene chloride by forming a complex with methylene chloride, and that this complex easily releases methylene chloride upon heating to obtain PPE. Separate the PPE by taking advantage of the
The amount of bound styrenic polymer contained in PPE can be determined by infrared absorption spectroscopy. Regarding the degree of polymerization of the bound styrenic polymer, the above separation of PPE using methylene chloride
It can be determined by NMR measurement by comparing the intensity of the signal of the terminal group of the styrene polymer and the signal in the main chain. Another method for determining the molecular weight of styrenic polymers bound to PPE is USP3442858.
By lithium-biphenyl shown in No.
It is also possible to perform GPC measurement after decomposing the PPE component and separating the styrene polymer. The styrenic polymer used in the present invention includes polystyrene, a copolymer of styrene and at least one other vinyl compound, and rubber modified polymers thereof. Specific examples of copolymers of styrene and at least one other vinyl compound include styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer, styrene-α-methylstyrene copolymer,
Examples include styrene-maleic anhydride copolymer. Examples of rubber-modified polymers include rubber-modified polystyrene (HIPS), rubber-modified styrene-acrylonitrile copolymer (ABS), and rubber-modified styrene-maleic anhydride copolymer. Among these, particularly preferred polymers are polystyrene (PS) and rubber-modified polystyrene (HIPS). Regarding the blend ratio of the low molecular weight styrenic polymer-bound PPE and the styrenic polymer, a range of 95 to 10 parts by weight of the low molecular weight styrenic polymer-bound PPE and 5 to 90 parts by weight of the styrenic polymer is preferred. If the amount of the low molecular weight styrene polymer-bound PPE exceeds 95 parts by weight, the amount of extrusion during extrusion processing will decrease significantly and the extrusion stability will also decrease. On the other hand, less than 10 parts by weight
Characteristics such as heat resistance, electrical properties, and mechanical properties of PPE do not appear. Blending to obtain the composition of the present invention can be carried out using a commonly used method using an extruder. Furthermore, there is no particular problem in adding a styrene polymer at the same time to the step of mixing and reacting PPE with a styrene monomer compound. When the composition of the present invention is used for various purposes, it may be used alone or may be blended with other polymers as long as the properties of the polymer are not impaired. Specific examples include polyolefins, polyamides, polybutadiene, styrene-butadiene block copolymers, and hydrogenated products thereof. Furthermore, it is also possible to add glass fibers, carbon fibers, carbon black, other inorganic fillers, plasticizers, heat retardants, stabilizers, and the like. [Examples] Hereinafter, the method of the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. Examples 1 to 4, Comparative Example 1 As PPE, 50 parts by weight of poly-(2,6 dimethyl-1,4 phenylene) ether with an intrinsic viscosity of 0.55 dl/g measured at 30°C in chloroform and polystyrene (Asahi Kasei Co., Ltd., product name: Styron 685)
Styrene was added in an amount shown in Table 1 below to 50 parts by weight, and the mixture was thoroughly stirred and mixed using a Henschel mixer.
These compounds were processed in a 30mmφ vented twin-screw extruder.
The mixture was melt-kneaded at a temperature of 290°C and pelletized. After dissolving 10 g of the pellets thus obtained in 150 ml of methylene chloride, the solution was left at -5°C overnight and the precipitate was filtered. After washing with cold methylene chloride, the mixture is dried at 140° C. for 1 hour under reduced pressure to obtain a polymer. The amount of bound polystyrene contained in this polymer was measured by infrared absorption spectroscopy. The degree of polymerization of this bonded polystyrene can be determined by measuring the 13C-NMR of this sample and determining the signal intensity of the C-1 carbon of the terminal aromatic ring of polystyrene and the C-4 carbon of the aromatic ring in the main chain of polystyrene as shown below. Obtained from comparison. The intrinsic viscosity of this product in chloroform was also measured. To evaluate the moldability of this pellet product, the melt viscosity was measured using an Instron rheometer at 280℃.
The value was measured at a shear rate of 10 3 s -1 . The color tone of the molded piece of this composition was determined using a 50 x 90 x 2 mm color plate injection molded at a temperature of 290°C.
The value of whiteness (W (Lab)) measured with a digital colorimetric color difference calculator (Suga Test Instruments) was used. The larger the value of W (Lab), the brighter and lighter the color tone of the resin. These results are shown in Table-1.

【表】【table】

【表】 上表にみる通り、溶融混練り時スチレンを含ま
ない比較例1では、PPEへの結合スチレンは検
出されず、塩化メチレン析出物の固有粘度がアツ
プしポリマーの色調及び流動性が劣る。 実施例1〜4に示すとうり、スチレンを加え、
低分子量PSの結合したPPEは、塩化メチレン析
出物の固有粘度が、溶融混練り前のものとほとん
ど変わらず、ポリマーの色調及び流動特性の優れ
ていることが明らかである。 比較例 2,3 実施例2において2軸押出機で溶融混練りする
段階でラジカル発生剤としてジ−第三級−ブチル
パーオキシドを表−2に示す量添加する以外は実
施例2と全く同じ条件で実施した結果を表−2に
示す。
[Table] As shown in the table above, in Comparative Example 1, which does not contain styrene during melt-kneading, styrene bound to PPE is not detected, the intrinsic viscosity of the methylene chloride precipitate increases, and the color tone and fluidity of the polymer are poor. . Add styrene as shown in Examples 1-4,
It is clear that the intrinsic viscosity of the methylene chloride precipitate of PPE bound with low molecular weight PS is almost the same as that before melt-kneading, and the color tone and fluidity properties of the polymer are excellent. Comparative Examples 2 and 3 Exactly the same as Example 2 except that di-tertiary-butyl peroxide was added as a radical generator in the amount shown in Table 2 at the stage of melt-kneading using a twin-screw extruder. The results of the test are shown in Table 2.

【表】 表−2より、ラジカル発生剤添加の比較例2及
び3では、結合St量及び固有粘度が増加し、成形
加工性、耐熱性のバランスが悪くなり、又ポリマ
ーの色調も悪化する事がわかる。 比較例 4,5 PPEへのスチレンの結合状態を変えた試料を
次の条件下で作製し評価した。 実施例3において押出時の温度のみを230℃に
変更し押出したもの(比較例4)および230℃押
出段階でジー第三級−ブチルパーオキサイドを
1.0重量部添加したもの(比較例5)についての
評価結果を表−3に示す。
[Table] From Table 2, in Comparative Examples 2 and 3 with the addition of a radical generator, the amount of bonded St and the intrinsic viscosity increased, the balance between moldability and heat resistance deteriorated, and the color tone of the polymer also deteriorated. I understand. Comparative Examples 4 and 5 Samples in which the bonding state of styrene to PPE was changed were prepared and evaluated under the following conditions. In Example 3, only the extrusion temperature was changed to 230°C (Comparative Example 4), and di-tertiary-butyl peroxide was added at the 230°C extrusion stage.
Table 3 shows the evaluation results for the product containing 1.0 part by weight (Comparative Example 5).

【表】 実施例5及び比較例6,7 実施例1に使用したのと同一のPPE(30℃クロ
ロホルム中で測定した固有粘度が0.55dl/g)55
重量部とゴム補強ポリスチレン(旭化成(株)製、商
品名:スタイロン492)45重量部、トリフエニル
ホスフエート4重量部、オクタデシル−3−(3,
5−ジターシヤリーブチル−4−ヒドロキシフエ
ニル)プロピオネート(イルガノツクス1076)
0.5重量部からなる組成物に、スチレンを9重量
部加え、290℃で溶融混練し、ポリマーを得た。
比較としてスチレンを加えずに溶融混練したケー
ス(比較例6)及びスチレン9重量部にラジカル
発生剤としてジターシヤリーブチルパーオキサイ
ド1.0重量部を併用した系(比較例7)について
もあわせて評価した。尚、塩化メチレン析出物評
価にあたつては、ポリマー中のゴム成分をまず分
離する必要があるため、18gのポリマーを300ml
のクロロホルムに溶解後、遠心分離により上層に
浮上した不溶物を分離した。クロロホルム溶液は
メタノール中に加え、ポリマーを回収した。上記
実施例と同様に評価した結果を表−4に示す。
[Table] Example 5 and Comparative Examples 6 and 7 Same PPE as used in Example 1 (intrinsic viscosity measured in chloroform at 30°C: 0.55 dl/g)55
Parts by weight, 45 parts by weight of rubber-reinforced polystyrene (manufactured by Asahi Kasei Corporation, product name: Styron 492), 4 parts by weight of triphenyl phosphate, octadecyl-3-(3,
5-Ditertiarybutyl-4-hydroxyphenyl)propionate (Irganox 1076)
9 parts by weight of styrene was added to a composition consisting of 0.5 parts by weight, and the mixture was melt-kneaded at 290°C to obtain a polymer.
For comparison, a case in which styrene was not added and melt-kneaded (Comparative Example 6) and a system in which 9 parts by weight of styrene was combined with 1.0 parts by weight of di-tertiary butyl peroxide as a radical generator (Comparative Example 7) were also evaluated. . In addition, when evaluating methylene chloride precipitates, it is necessary to first separate the rubber component in the polymer, so 18 g of polymer is separated into 300 ml.
After dissolving the solution in chloroform, the insoluble matter that floated to the upper layer was separated by centrifugation. The chloroform solution was added to methanol to recover the polymer. Table 4 shows the results of evaluation in the same manner as in the above examples.

【表】 上表にみる通り、本発明の実施例5は流動特性
及び成形片の色調が非常に優れ、しかも、ポリマ
ー物性面でも優れたものが得られることが明らか
である。一方、結合Stを含まない比較例6では流
動特性及び成形片の色調が非常に劣る。結合St量
が多く、又結合Stの分子量が高い比較例7でも流
動特性及び成形片の色調が劣り、ポリマー物性
中、特にアイゾツト衝撃強さの低下が激しく、表
面光沢も低下する。 なお、実施例5と比較例6の組成物100重量部
に白着色剤の酸化チタンを各々2.5重量部、5重
量部、10重量部加えた後、40mmφ単軸押出機を用
い、290℃で造粒したものの白色度を測定した。
その結果を表−5に示す。
[Table] As shown in the above table, it is clear that Example 5 of the present invention has excellent flow characteristics and color tone of the molded piece, and also has excellent polymer physical properties. On the other hand, in Comparative Example 6, which does not contain the bond St, the flow characteristics and the color tone of the molded piece are very poor. Even in Comparative Example 7, in which the amount of bonded St is large and the molecular weight of bonded St is high, the fluidity properties and the color tone of the molded pieces are poor, and the physical properties of the polymer, especially the isot impact strength, are significantly reduced, and the surface gloss is also reduced. In addition, after adding 2.5 parts by weight, 5 parts by weight, and 10 parts by weight of titanium oxide as a white coloring agent to 100 parts by weight of the compositions of Example 5 and Comparative Example 6, they were heated at 290°C using a 40 mmφ single screw extruder. The whiteness of the granulated product was measured.
The results are shown in Table-5.

〔発明の効果〕〔Effect of the invention〕

本発明は特定量の低分子量スチレン系重合体を
結合せしめたPPEにPSをブレンドすることによ
つて、PPEの成形加工性及び色調を改善するこ
とに成功したものであつて、PPEの優れた特性、
例えば機械的特性、電気的特性、透明性等を維持
しつつ、耐熱性、成形加工性が優れ、且つ色調の
優れた樹脂組成物を提供した効果は極めて大き
い。
The present invention has succeeded in improving the moldability and color tone of PPE by blending PS into PPE bound with a specific amount of low molecular weight styrene polymer. Characteristic,
For example, the effect of providing a resin composition with excellent heat resistance, moldability, and color tone while maintaining mechanical properties, electrical properties, transparency, etc. is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフエニレンエーテル系重合体とスチレン
系単量体化合物を分散混合した後、ラジカル発生
剤を使用せずに260℃以上の高温で混合反応させ
ることにより得られる、低分子量スチレン系重合
体結合ポリフエニレンエーテル系重合体であつ
て、且つ該重合体おいては、ポリフエニレンエー
テル系重合体に、平均重合度が10以下の低分子量
スチレン系重合体が結合しており、この低分子量
スチレン系重合体の結合量が、ポリフエニレンエ
ーテル系重合体に対し、0.1〜5.0重量%の範囲内
にある低分子量スチレン系重合体結合ポリフエニ
レンエーテル系重合体95〜10重量部と、スチレン
系重合体5〜90重量部よりなる色調及び成形加工
性の優れた熱可塑性樹脂組成物。
1 A low molecular weight styrenic polymer bond obtained by dispersing and mixing a polyphenylene ether polymer and a styrene monomer compound and then carrying out a mixing reaction at a high temperature of 260°C or higher without using a radical generator. It is a polyphenylene ether polymer, and in this polymer, a low molecular weight styrene polymer having an average degree of polymerization of 10 or less is bonded to the polyphenylene ether polymer, and this low molecular weight 95 to 10 parts by weight of a low molecular weight styrenic polymer-bonded polyphenylene ether polymer in which the amount of styrene polymer bound is within the range of 0.1 to 5.0 weight % based on the polyphenylene ether polymer; A thermoplastic resin composition comprising 5 to 90 parts by weight of a styrene polymer and having excellent color tone and moldability.
JP62329440A 1987-12-02 1987-12-28 Resin composition excellent in hue and moldability Granted JPH01172451A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62329440A JPH01172451A (en) 1987-12-28 1987-12-28 Resin composition excellent in hue and moldability
EP88201212A EP0322931B1 (en) 1987-12-02 1988-06-14 Thermoplastic resin polymer having improved moldability and heat resistance, and composition
DE8888201212T DE3867620D1 (en) 1987-12-02 1988-06-14 THERMOPLASTIC RESIN WITH IMPROVED MOLDABILITY AND HEAT RESISTANCE AND COMPOSITION.
CA000569418A CA1335391C (en) 1987-12-02 1988-06-14 Thermoplastic resin polymer having improved moldability and heat resistance, and composition
CN88103838A CN1011240B (en) 1987-12-02 1988-06-15 Thermoplastic resin polymer having improved moldability and heat resistance, and composition
CN 90101653 CN1012577B (en) 1987-12-02 1988-06-15 Thermoplastic resin polymer with improved moldability and heat resistance
KR1019880007291A KR910007552B1 (en) 1987-12-02 1988-06-17 Resin composition having excellent heat resistance and mold ability
US07/798,038 US5191031A (en) 1987-12-02 1991-11-20 Thermoplastic resin polymer having improved moldability and heat resistance and composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329440A JPH01172451A (en) 1987-12-28 1987-12-28 Resin composition excellent in hue and moldability

Publications (2)

Publication Number Publication Date
JPH01172451A JPH01172451A (en) 1989-07-07
JPH0443106B2 true JPH0443106B2 (en) 1992-07-15

Family

ID=18221394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329440A Granted JPH01172451A (en) 1987-12-02 1987-12-28 Resin composition excellent in hue and moldability

Country Status (1)

Country Link
JP (1) JPH01172451A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159027A (en) * 1989-01-27 1992-10-27 Asahi Kasei Kogyo Kabushiki Kaisha Stabilized polyphenylene ether resin and process for the preparation of the same

Also Published As

Publication number Publication date
JPH01172451A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
US4299757A (en) Aromatic polyether resin composition
US4863996A (en) Novel impact-resistant polyamide resin composition and process for producing the same
JPH0551614B2 (en)
EP0044703B1 (en) A thermoplastic resin composition having high heat resistance and articles molded therefrom
US3963804A (en) Thermoplastic blend composition
JPS5931534B2 (en) Method for producing graft copolymer
CA1201236A (en) Composition of polyphenylene ether resin and poly(tetra-alkylated bisphenol) having reduced melt viscosity
US3819761A (en) High impact strength thermoplastic compositions
JPH0116852B2 (en)
EP0033146B1 (en) Resin compositions containing a polyphenylene ether
JPS63113069A (en) Thermoplastic resin composition
US3976725A (en) High impact strength thermoplastic compositions
US5434220A (en) Polyphenylene ether resin compositions comprising copolymers of unsaturated dicarboxylic acid esters and block copolymers
CA1141882A (en) Process for producing graft copolymers
US5191031A (en) Thermoplastic resin polymer having improved moldability and heat resistance and composition
KR0150765B1 (en) Natural colored polyphenylenether thermoplastic resin composition
JPH0616924A (en) Resin composition improved in weld characteristic
JPH0443106B2 (en)
JPS5898359A (en) Production of polyphenylene ether resin composition
JPH0657128A (en) Resin composition excellent in low-temperature impact resistance
EP0564039B1 (en) Polymeric thermoplastic composition based on polyphenylene ether and an impact-resistant vinyl aromatic copolymer
JPH07165998A (en) Thermoplastic resin composition
CA1335391C (en) Thermoplastic resin polymer having improved moldability and heat resistance, and composition
JPH07258501A (en) Nitrile resin composition
JPH049180B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees