JPH0439884A - Heating body having positive resistance temperature coefficient - Google Patents

Heating body having positive resistance temperature coefficient

Info

Publication number
JPH0439884A
JPH0439884A JP14783290A JP14783290A JPH0439884A JP H0439884 A JPH0439884 A JP H0439884A JP 14783290 A JP14783290 A JP 14783290A JP 14783290 A JP14783290 A JP 14783290A JP H0439884 A JPH0439884 A JP H0439884A
Authority
JP
Japan
Prior art keywords
resistor
electrode wire
temperature coefficient
conductive
resistance temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14783290A
Other languages
Japanese (ja)
Inventor
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14783290A priority Critical patent/JPH0439884A/en
Publication of JPH0439884A publication Critical patent/JPH0439884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To improve safety and permit long time use by providing a resistor having a specific positive resistance temperature coefficient (PTC), an electrode wire surrounded with the resistor, an electrode wire facing the outer shell side of the resistor and coated over the whole periphery, and an electrical insulating body sheathing the latter electrode wire. CONSTITUTION:A heating body having a positive resistance temperature coefficient is formed by dispersing conductive fine powder in a crystalline polymer composition to be bridged by an electron beam or a cross linking agent such as organic peroxide, then making the crystalline polymer composition fine powder to be a particled conductive composition having a particle diameter of 0.5-100mum, and providing a long size tubular resistor 1 having the main component of a conductive composition, composed by dispersing conductive fine powder in the particled conductive composition, and a positive resistance temperature coefficient; an electrode wire 2 surrounded with the resistor 1; an electrode wire 3 facing the outer shell side of the resistor l and coated over the whole periphery; and an electrical insulating body 4 sheathing the electrode wire 3. This can prevent deterioration due to an interface crack, and a heating body having long life can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は採暖器具および一般の加熱装置として利用され
る正抵抗温度係数をもつ発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a heating element with a positive temperature coefficient of resistance that is used as a warming appliance and a general heating device.

従来の技術 従来のチューブ状の正抵抗温度係数をもつ(J:、J。Conventional technology It has a conventional tubular positive temperature coefficient of resistance (J:, J.

下PTCと称す)発熱体は、一対の電極線間に設けたP
TC抵抗体のPTC特性により適宜な温度に自己制御さ
れている。しかし、特に大きな電力密度か要求される場
合においては、発熱体の温度分布を一様にするため、一
対の電極線間方向の温度分布を良好にすることか不可欠
であり、その解決策として、一対の電極線間の距離を互
いに接近させて構成する方法が講しられてきた。
The heating element (referred to as lower PTC) is a PTC installed between a pair of electrode wires.
The temperature is self-controlled to an appropriate level by the PTC characteristics of the TC resistor. However, in cases where particularly high power density is required, it is essential to improve the temperature distribution in the direction between the pair of electrode wires in order to make the temperature distribution of the heating element uniform. A method has been proposed in which the distance between a pair of electrode wires is made closer to each other.

第2図において、電極線7及び電極線9は互いに接近し
て設けられた同芯軸状の金属電極であり、この間にPT
C抵抗体8を配することにより高出力のPTC発熱体を
現出している。
In FIG. 2, the electrode wire 7 and the electrode wire 9 are concentric metal electrodes provided close to each other, and between them, the PT
By arranging the C resistor 8, a high output PTC heating element appears.

発明が解決しようとする課題 一般にこうしたPTC発熱体は、長期的な使用によりヒ
ータ全体が高抵抗化して発熱温度が低下するという欠点
を有していた。特に高分子組成物か架橋物を細粉化した
導電性粉末を混合したタイプのPTC抵抗体は導電性粉
末とバインダーとしての高分子との間で海島構造を有し
ているため安全性と加工安定性に優れている反面、発熱
分布の均一性が得にくいため、上記のような傾向が顕著
にみられた。これは主として、架橋された導電性粉末と
バインダーとしての未架橋高分子との間に熱膨脹差に起
因する界面クラックが生じて、導電パスが寸断されるた
めであり特に粒径分布のうち比較的大きな導電粒子の近
傍にはこの傾向が顕著である。
Problems to be Solved by the Invention In general, such PTC heating elements have the disadvantage that, with long-term use, the resistance of the entire heater increases and the heat generation temperature decreases. In particular, PTC resistors that are mixed with a conductive powder made of a finely divided polymer composition or a crosslinked material have a sea-island structure between the conductive powder and the polymer as a binder, which improves safety and processing. Although it has excellent stability, it is difficult to obtain uniform heat generation distribution, so the above-mentioned tendency was noticeable. This is mainly because interfacial cracks occur due to the difference in thermal expansion between the crosslinked conductive powder and the uncrosslinked polymer as a binder, and the conductive path is severed. This tendency is remarkable near large conductive particles.

本発明の目的は上記問題点を改善するもので、安全で且
つ長期使用に酎えるPTC発熱体を提供しようとするも
のである。
An object of the present invention is to improve the above-mentioned problems and to provide a PTC heating element that is safe and can be used for a long period of time.

課題を解決するための手段 本発明は上記目的を達成するため、結晶性高分子組成物
中に導電性微粉末を分散させてなる導電性組成物を主成
分とする長尺のチューブ状の正抵抗温度係数をもつ抵抗
体と、前記抵抗体に包囲された電極線と、前記抵抗体の
外殼側に対峙し且つ全周にわたって被覆された電極線と
、この電極線を外装する電気絶縁体とを備えた正抵抗温
度係数をもつ発熱体とし、また導電性組成物として、電
子線あるいは有機過酸化物等の架橋剤により架橋した後
、これを細粉化して粒子状導電性組成物とし、これを結
晶性高分子組成物に混合分散して形成された導電性組成
物を用いる正抵抗温度係数をもつ発熱体とした。
Means for Solving the Problems In order to achieve the above object, the present invention provides a long tube-shaped positive electrode whose main component is a conductive composition obtained by dispersing conductive fine powder in a crystalline polymer composition. A resistor having a temperature coefficient of resistance, an electrode wire surrounded by the resistor, an electrode wire facing the outer shell side of the resistor and covered over the entire circumference, and an electrical insulator sheathing the electrode wire. A heating element having a positive temperature coefficient of resistance, and a conductive composition that is crosslinked with an electron beam or a crosslinking agent such as an organic peroxide, and then pulverized to form a particulate conductive composition, This was used as a heating element having a positive temperature coefficient of resistance using a conductive composition formed by mixing and dispersing it in a crystalline polymer composition.

作用 上記構成において、高分子組成物中の導電粉末の粒径が
100vの間欠時の低抗値変化率に及ぼす影響について
検討した結果を第3図に示す。第3図から明らかなよう
に、導電性粉末の最大粒径と低抗値変化率の間には密接
な関係が存在することがわかる。特に最大粒径が100
μm以下では抵抗値の変化が極度に安定化される。これ
は導電性粉末とバインダーとしての高分子物質の間に熱
膨脹差があり、発熱通電の繰り返しにより、特に大きな
粉末を中心として界面クラックを生しるが、本発明では
最大粒径を100μm以下に微粒子することにより、導
電パスの形成と応力ムラ均等化されることにより、界面
クラックの発生を極度にくい止める機構が形成されるの
で、発熱体の通電による高抵抗化が改善でき、長寿命化
か可能となる。
Effect In the above configuration, the effect of the particle size of the conductive powder in the polymer composition on the low resistance value change rate during intermittent 100V operation is investigated and the results are shown in FIG. As is clear from FIG. 3, it can be seen that there is a close relationship between the maximum particle size of the conductive powder and the low resistance value change rate. Especially when the maximum particle size is 100
Below μm, the change in resistance value is extremely stabilized. This is because there is a difference in thermal expansion between the conductive powder and the polymer material as a binder, and repeated heat generation and energization will cause interface cracks, especially in large powders.However, in the present invention, the maximum particle size is reduced to 100 μm or less. The fine particles form a conductive path and equalize stress unevenness, creating a mechanism that prevents the occurrence of interface cracks to an extremely low level. This improves the high resistance caused by energization of the heating element and extends the product's lifespan. It becomes possible.

実施例 以下、本発明の一実施例として示したPTC発極線2(
外径0.1+nmの銅線を16本撚りしたもの)と前記
PTC抵抗体1の外殼側を被覆した電極線3(外径0.
1順の銅線を編んだもの)か設けられている。さらに前
記全体を絶縁体6(ポリ環化ビニル等)で被覆してPT
C発熱体としている。
Example Below, PTC polarization wire 2 (
(16 twisted copper wires with an outer diameter of 0.1+ nm) and an electrode wire 3 (outer diameter 0.1 nm) covering the outer shell side of the PTC resistor 1.
(1) Braided copper wire is provided. Furthermore, the entire area is covered with an insulator 6 (polycyclized vinyl, etc.) and PT.
C heating element.

なお、前記実施例では、PTC抵抗体は下記組成物から
成る。結晶性高分子組成物としてポリエチレンを用い、
導電性微粉末として、40重量%のファーネスブラック
を含む低密度ポリエチレン混線物100重量部に架橋剤
としてジクミルパーオキサイドを3.5重量部配合した
ものを180℃で1時間熱処理を施すことにより得た架
橋物を冷凍粉砕によって粒径0.5〜35μmかつ平均
粒子径15μmの粒子状導電性組成物を作成した。その
後、この粒子状導電性組成物を結晶性高分子組成物とし
ての(1a)を低密度ポリエチレン中に導電性微粉末と
してカーホンブラックを組成比28重量%混練したもの
を用いた。なお、この正抵抗温度係数をもつ低抗体は3
゜2X10’Ω口の体積固有抵抗値を示した。さらにA
C100■で通電すると約62℃の飽和温度を示した。
In the above examples, the PTC resistor is made of the following composition. Using polyethylene as a crystalline polymer composition,
As a conductive fine powder, 100 parts by weight of a low-density polyethylene mixed wire containing 40% by weight of furnace black was mixed with 3.5 parts by weight of dicumyl peroxide as a crosslinking agent, and the mixture was heat-treated at 180°C for 1 hour. A particulate conductive composition having a particle size of 0.5 to 35 μm and an average particle size of 15 μm was prepared by freeze-pulverizing the obtained crosslinked product. Thereafter, this particulate conductive composition was prepared by kneading (1a) as a crystalline polymer composition into low density polyethylene and carbon black as a conductive fine powder at a composition ratio of 28% by weight. Note that this low antibody with a positive temperature coefficient of resistance is 3
The volume resistivity value of ゜2×10'Ω mouth is shown. Further A
When current was applied at C100■, a saturation temperature of about 62°C was exhibited.

上記の粒径か0.5〜35μmの導電性組成物を用いた
本発明の実施例と一1粒径が0.5〜300μmの導電
性粒子を用いたサンプルとの対比のため、雰囲気温度1
00°C1印加電圧200Vの連続通電耐久試験を行っ
た。低抗値変化率か50%に達する時間として、後者は
2100時間であったか、前者の実施例では6000時
間経過するも未だ到達していないことから通電耐久性が
優れている。
In order to compare the above-mentioned examples of the present invention using conductive compositions with a particle size of 0.5 to 35 μm and samples using conductive particles with a particle size of 0.5 to 300 μm, the atmospheric temperature 1
A continuous current durability test was conducted at 00°C and an applied voltage of 200V. The time required for the low resistance change rate to reach 50% was 2,100 hours for the latter example, and the former example had not yet reached this point even after 6,000 hours had passed, indicating excellent current-carrying durability.

なお、前記実施例ではヘースとしての結晶性高分子組成
物として低密度ポリエチレンを示したが、ポリアミド、
エチレン−酢酸ビニル共重合体、アクリル酸やマレイン
酸等のグラフト重合体ポリプロピレン等であってもよい
In addition, although low density polyethylene was shown as the crystalline polymer composition as a haze in the above example, polyamide,
Ethylene-vinyl acetate copolymers, graft polymers of acrylic acid, maleic acid, etc., polypropylene, and the like may also be used.

発明の効果 上記のように本発明の正抵抗温度係数をもつ発熱体によ
れば、極めて微粒子化された導電性粒子から構成されて
いるために、通電時の導電パスの形成と発熱による熱膨
張差に起因する最大粒径導電粒子バインダーとの間に多
発する界面クランクが生じにくいための劣化が防止でき
、極めて長寿命の発熱体が実現できる。また、抵抗値変
化率が従来例と比較して大きく向上され、極めて高信頼
度のある安全な自己温度制御作用を有する発熱体を実現
することができる等の効果がある。
Effects of the Invention As described above, according to the heating element having a positive temperature coefficient of resistance of the present invention, since it is composed of extremely fine conductive particles, it is difficult to form a conductive path when electricity is applied and to thermal expansion due to heat generation. It is possible to prevent deterioration due to the frequent occurrence of interfacial cranks between the conductive particles and the conductive particle binder due to the difference in maximum particle size, and it is possible to realize a heating element with an extremely long life. Further, the rate of change in resistance value is greatly improved compared to the conventional example, and it is possible to realize a heating element having an extremely reliable and safe self-temperature control function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すPTC発熱体の断面図
、第2図は従来のPTC発熱体の断面て示す特性図であ
る。 1・・・・・・PTC抵抗体、2.3・・・・・・電極
線、4・・・・・・絶縁体。 代理人の氏名 弁理士 粟野重孝 ほか12第 図 /  −−−P  T  C麹 凱 惇2j−−−li
t L を陽像 4−−− 給線 俸 第 図
FIG. 1 is a cross-sectional view of a PTC heating element showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing a cross-section of a conventional PTC heating element. 1... PTC resistor, 2.3... Electrode wire, 4... Insulator. Name of agent Patent attorney Shigetaka Awano et al.
Positive image of t L 4--- Feeding line Salary diagram

Claims (1)

【特許請求の範囲】[Claims] 結晶性高分子組成物中に導電性微粉末を分散させて電子
線あるいは有機過酸化物等の架橋剤により架橋した後、
これを細粉化して0.5〜100μmの粒径をもつ粒子
状導電性組成物とし、これを結晶性高分子組成物に混合
分散して形成された導電性組成物を主成分とする長尺の
チューブ状の正抵抗温度係数をもつ抵抗体と、前記抵抗
体に包囲された電極線と、前記抵抗体の外殼側に対峙し
且つ全周にわたって被覆された電極線と、この電極線を
外装する電気絶縁体とを備えたことを特徴とする正抵抗
温度係数をもつ発熱体。
After dispersing conductive fine powder in a crystalline polymer composition and crosslinking it with an electron beam or a crosslinking agent such as an organic peroxide,
This is finely powdered to form a particulate conductive composition having a particle size of 0.5 to 100 μm, and this is mixed and dispersed in a crystalline polymer composition to form a conductive composition as a main component. A resistor having a positive temperature coefficient of resistance in the form of a long tube, an electrode wire surrounded by the resistor, an electrode wire facing the outer shell side of the resistor and covered over the entire circumference, and this electrode wire. A heating element having a positive temperature coefficient of resistance, characterized in that it is equipped with an exterior electrical insulator.
JP14783290A 1990-06-06 1990-06-06 Heating body having positive resistance temperature coefficient Pending JPH0439884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14783290A JPH0439884A (en) 1990-06-06 1990-06-06 Heating body having positive resistance temperature coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14783290A JPH0439884A (en) 1990-06-06 1990-06-06 Heating body having positive resistance temperature coefficient

Publications (1)

Publication Number Publication Date
JPH0439884A true JPH0439884A (en) 1992-02-10

Family

ID=15439256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14783290A Pending JPH0439884A (en) 1990-06-06 1990-06-06 Heating body having positive resistance temperature coefficient

Country Status (1)

Country Link
JP (1) JPH0439884A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212090A (en) * 1982-06-01 1983-12-09 日立電線株式会社 Self-temperature controllable heater
JPS60136194A (en) * 1983-12-23 1985-07-19 松下電器産業株式会社 Method of producing heat generator
JPS647493A (en) * 1987-06-30 1989-01-11 Matsushita Electric Ind Co Ltd Heater with positive temperature coefficient of resistance
JPH01166479A (en) * 1987-12-22 1989-06-30 Matsushita Electric Ind Co Ltd Exothermic body having positive resistance temperature coefficient
JPH0217609A (en) * 1988-07-06 1990-01-22 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element
JPH0218902A (en) * 1988-07-07 1990-01-23 Matsushita Electric Ind Co Ltd Positive temperature coefficient heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212090A (en) * 1982-06-01 1983-12-09 日立電線株式会社 Self-temperature controllable heater
JPS60136194A (en) * 1983-12-23 1985-07-19 松下電器産業株式会社 Method of producing heat generator
JPS647493A (en) * 1987-06-30 1989-01-11 Matsushita Electric Ind Co Ltd Heater with positive temperature coefficient of resistance
JPH01166479A (en) * 1987-12-22 1989-06-30 Matsushita Electric Ind Co Ltd Exothermic body having positive resistance temperature coefficient
JPH0217609A (en) * 1988-07-06 1990-01-22 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element
JPH0218902A (en) * 1988-07-07 1990-01-23 Matsushita Electric Ind Co Ltd Positive temperature coefficient heater

Similar Documents

Publication Publication Date Title
US4910389A (en) Conductive polymer compositions
EP0038716B1 (en) A ptc circuit protection device
US4980541A (en) Conductive polymer composition
JPH08339904A (en) Positive temperature coefficient composition
JPH0439884A (en) Heating body having positive resistance temperature coefficient
JP2955281B2 (en) Circuit protection equipment
JPH083017B2 (en) Method for producing heating element composition
JPH0443587A (en) Heater having positive resistance temperature coefficient
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JPH0359985A (en) Heating body with positive resistance temperature coefficient
JPH0439885A (en) Heating body having positive resistance temperature coefficient
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JPH0359984A (en) Heating body with positive resistance temperature coefficient
JPH04144089A (en) Heat emitting element having positive resistance temperature coefficient
JPH04144090A (en) Heat emitting element having positive resistance temperature coefficient
JPH05135856A (en) Heating unit with positive resistance temperature coefficient
JPH04144091A (en) Heat emitting element having positive resistance temperature coefficient
JPS59226493A (en) Self-temperature controllable heater
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JPH03176981A (en) Heating element with positive resistance temperature coefficient
JP2545970B2 (en) Conductive ceramic heater, method of manufacturing the conductive ceramic heater, and self-controlled glow plug having the conductive ceramic heater
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JPH0218902A (en) Positive temperature coefficient heater