JPH043907A - Capacitor and manufacture thereof - Google Patents

Capacitor and manufacture thereof

Info

Publication number
JPH043907A
JPH043907A JP2106163A JP10616390A JPH043907A JP H043907 A JPH043907 A JP H043907A JP 2106163 A JP2106163 A JP 2106163A JP 10616390 A JP10616390 A JP 10616390A JP H043907 A JPH043907 A JP H043907A
Authority
JP
Japan
Prior art keywords
film
capacitor according
chlorosilane
surfactant
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2106163A
Other languages
Japanese (ja)
Other versions
JPH0752699B2 (en
Inventor
Kazufumi Ogawa
一文 小川
Norihisa Mino
規央 美濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2106163A priority Critical patent/JPH0752699B2/en
Priority to US07/683,857 priority patent/US5103371A/en
Priority to DE69116717T priority patent/DE69116717T2/en
Priority to EP91106343A priority patent/EP0452955B1/en
Publication of JPH043907A publication Critical patent/JPH043907A/en
Publication of JPH0752699B2 publication Critical patent/JPH0752699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Abstract

PURPOSE:To improve the resistance to humidity and the breakdown voltage and to reduce the cost by covering an electrode surface with a chemical adsorption monomolecular film consisting of a chlorosilane surface active agent or a chemical adsorption monomolecular accumulation film directly or through an arbitrary thin film. CONSTITUTION:By a chemical adsorption method, a chlorosilane surface adsorbent is adsorbed on a metal film 1 which will become a thin-film electrode for a capacitor directly or through an arbitrary thin film, for example, such as a natural oxide film 2, so that a dielectric film 3 of monomolecular-film form consisting of a chlorosilane surface active agent is formed. Further, if a little bit thicker film thickness is required, after one layer of a monomolecular film 4 is formed, it is dipped in a THF solution of diborane 1Mol/1 concentration at room temperature, for example. Furthermore, it is dipped, for example, in a 30% H2O2 solution of a sodium hydroxide (NaOH)0.1Mol/1 concentration, in order to add a hydroxyl group (OH)8 to a vinyl group on the surface of the monomolecular film. Then, a chemical adsorption process and an OH-group adding process are repeated so as to obtain a monomolecular accumulation film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(表 コンデンサーおよびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a capacitor and its manufacturing method.

さらに詳しくは コンデンサー製造における薄膜電極上
への誘電体薄膜の製造方法に関するものである。
More specifically, the present invention relates to a method for producing a dielectric thin film on a thin film electrode in capacitor production.

従来の技術 従来 コンデンサー製造における誘電体薄膜の製造には
 薄膜電極上にポリエステル樹脂やエポキシ樹脂をコー
トする方法や、ポリエステル薄膜を薄膜電極に挟む方法
が一般的であっt4発明が解決しようとする課題 しかしながら、従来の方法で(よ 性能が悪く信頼性が
十分得られないことが明かとなっf。
Conventional Technology Conventional methods for manufacturing dielectric thin films in capacitor manufacturing generally include methods of coating polyester resin or epoxy resin on thin film electrodes, or methods of sandwiching polyester thin films between thin film electrodes.The problem to be solved by the t4 invention. However, it became clear that the conventional method had poor performance and insufficient reliability.

すなわ板 従来のコーティング方法で(よ 静電容量を
大きくするた取 フィルムのコート厚を薄くすると機械
的強度は十分得られているが、 ピンホール不良が多数
発生し歩留まりが悪くなったり、さらに耐環境性、耐電
圧性が大幅に劣化することが明かとなっ九 本発明(ミ このような従来のコンデンサーの欠点に鑑
へ 小型で高性能な薄膜コンデンサーを低コストで提供
することを目的とする。
In other words, with the conventional coating method (which increases capacitance), sufficient mechanical strength can be obtained by reducing the film coating thickness, but many pinhole defects occur, resulting in poor yield, and It has become clear that the environmental resistance and voltage resistance are significantly degraded, and the present invention (mi) is aimed at providing a small, high-performance thin film capacitor at low cost in view of these shortcomings of conventional capacitors. do.

課題を解決するための手段 本発明は 上述のような従来の欠点を解消するものであ
り、コンデンサー製造における誘電体膜コーティング工
程において、クロロシラン系界面活性剤を用い、化学吸
着法により薄膜電極表面にピンホールフリーで、耐電圧
性の高い単分子膜を1層または複数層形成する工程を含
むことを特徴とする。
Means for Solving the Problems The present invention solves the above-mentioned conventional drawbacks.In the dielectric film coating process in capacitor manufacturing, a chlorosilane surfactant is used to coat the surface of a thin film electrode by chemical adsorption. It is characterized by including a step of forming one or more layers of a monomolecular film that is pinhole-free and has high voltage resistance.

すなわ板 クロロシラン系界面活性剤より成る化学吸着
単分子膜または化学吸着単分子累積膜で、電極表面を直
接または任意の薄膜を介して間接に覆われていることを
特徴としたコンデンサー 及びその製造方法を提供する
ものである。
In other words, a capacitor characterized in that the electrode surface is covered directly or indirectly through an arbitrary thin film with a chemically adsorbed monomolecular film or a chemically adsorbed monomolecular cumulative film made of a chlorosilane surfactant, and its production. The present invention provides a method.

作用 本発明において(友 化学吸着法を用いることにより、
耐湿性が高く、耐電圧性に優れた 薄膜誘電体材料の形
成が可能であり、小型で高性能なコンデンサーを提供で
きも しかも薄膜金属電極用基板に クロロシラン系界面活性
剤を化学吸着するだけであるた嵌 本発明のコンデンサ
ーを低コストで容易に製造できる。
In the present invention, by using chemisorption method,
It is possible to form a thin film dielectric material with high moisture resistance and excellent voltage resistance, and it is possible to provide a small, high-performance capacitor by simply chemically adsorbing a chlorosilane surfactant onto a thin film metal electrode substrate. Alta-fitting The capacitor of the present invention can be easily manufactured at low cost.

実施例 以下、実施例を第1〜11図を用いて説明すも第1図に
示すようへ 例えば圧延法などにより作成されたコンデ
ンサー用の薄膜電極となる金属(Al、  Sn、  
Cu、  あるいはそれらを含むステンレスなどの合金
)フィルムl上番!  例えば自然酸化膜2等の任意の
薄膜を介してもしくは直接へ化学吸着法によりクロロシ
ラン系界面吸着剤を吸着させてクロロシラン系界面活性
剤よりなる単分子膜状の誘電体膜3を形成すも な耘 このとき自然酸化膜2の代わり凶 前記金属フィ
ルム表面を電解酸化して電解酸化膜を形成しておいたり
、あるいはSiO2やAlaOsなどの酸化物薄膜をス
パッター蒸着法などで数千オングストロームの厚みで付
けておくと、更に高性能なコンデンサーが得られる。
EXAMPLES Hereinafter, examples will be explained using FIGS. 1 to 11. As shown in FIG. 1, metals (Al, Sn,
Cu, or alloys containing them such as stainless steel) film l number! For example, a dielectric film 3 in the form of a monomolecular film made of a chlorosilane surfactant may be formed by adsorbing a chlorosilane surfactant through an arbitrary thin film such as the natural oxide film 2 or directly by chemical adsorption.还 At this time, as an alternative to the natural oxide film 2, the surface of the metal film may be electrolytically oxidized to form an electrolytic oxide film, or a thin film of oxide such as SiO2 or AlaOs may be deposited to a thickness of several thousand angstroms by sputter deposition. If you attach it, you will get an even higher performance capacitor.

化学吸着条件は 親水性の金属フィルム1を、よく乾燥
した後、例えばクロロシラン系界面活性剤として、直鎖
状の長い炭素鎖を持つCH2=CH(CH2)n−5i
 CI s (nは整数で10〜25程度が最も扱いや
すい)を用し\ 例えばn−ヘキサデカン、四塩化炭素
及びクロロホルムの混合重量比80:  12:  8
の混合溶媒に 2X10−”〜5X10−”Mol/1
程度の濃度で溶かした溶液を調整し前記金属フィルム1
を室温で1時間程度浸漬する。
The chemical adsorption conditions are as follows: After thoroughly drying the hydrophilic metal film 1, for example, CH2=CH(CH2)n-5i having a long linear carbon chain is used as a chlorosilane surfactant.
Using CI s (n is an integer and is easiest to handle), for example, a mixture weight ratio of n-hexadecane, carbon tetrachloride, and chloroform is 80: 12: 8.
2X10-"~5X10-"Mol/1 in the mixed solvent of
The metal film 1 is prepared by preparing a solution with a concentration of about
Soak for about 1 hour at room temperature.

このとき、前記金属フィルム1は表面に酸化物が形成さ
れていれば親水性であり、表面には=CH基が含まれて
いる。
At this time, the metal film 1 is hydrophilic if an oxide is formed on the surface, and the surface contains =CH groups.

従って、−3i Cis基と=CHが脱塩酸反応しされ
 第2図に示すよう番ミ クロロシラン系界面活性剤に
よる単分子吸着膜4よりなる誘電体膜3が、 20〜3
0Aの厚みで1層金属フィルム1表面に形成される。
Therefore, the -3i Cis group and =CH undergo a dehydrochloric acid reaction, and as shown in FIG.
A single-layer metal film with a thickness of 0A is formed on the surface of the metal film 1.

なおこのとき第3図に示したよう番ミ  例えばヘリウ
ム等の不活性ガス中で、例えば電子線 x樵ガンマ線 
紫外線 イオン線等のエネルギービームを5〜10Mr
 ad照射して、表面に並んだビニル基(CH2=CH
−)5を架橋6させることにより、単分子膜4を強化安
定化できる。
At this time, as shown in Figure 3, for example, in an inert gas such as helium, electron beam x gamma ray
Energy beams such as ultraviolet rays and ion beams of 5 to 10 Mr.
By ad irradiation, vinyl groups (CH2=CH
-) By crosslinking 5, the monomolecular film 4 can be strengthened and stabilized.

また第4図に示したよう&ミ クロロシラン界面活性剤
として例えばCFs−(CF2)ロー(CH2)SiC
ls(m及びnは整数で合計10〜25程度が最も扱い
やすい)や、CFs−(CF2)−−(CH2)、−〇
SiCls(m及びnは整数で合計10〜25程度が最
も扱いやすい)等フッ素を含む界面活性剤を用いれば 
フッ素を含んだ吸着膜を作成でき、誘電率を向上させる
ことが可能となる。
In addition, as shown in Figure 4, microchlorosilane surfactants such as CFs-(CF2) rho(CH2)SiC
ls (m and n are integers and a total of about 10 to 25 is easiest to handle), CFs-(CF2)--(CH2), -〇SiCls (m and n are integers and a total of about 10 to 25 is easiest to handle) ) If you use a surfactant containing fluorine,
It is possible to create an adsorption film containing fluorine and improve the dielectric constant.

さらに もう少し膜厚を厚くしたい場合には第5図に示
したように 単分子膜4を1層形成した徽 例えば室温
でジボランI Mol/lの濃度のTHF溶液を用1.
X、単分子膜4の形成された金属フィルムを浸漬し そ
の後さらに例えば水酸化ナトリウム(NaOH)0. 
 lMo1ハの濃度の30%H2O2水溶液に室温で1
時間程度浸漬することにより、単分子膜の表面のビニル
基に水酸基(OH)3を付加させることができ、以下前
記吸着工程と同じ反応液を用いた化学吸着工程 及びO
H基材付加工程繰り返すことにより、第6図に示したよ
うに誘電体膜として必要な膜厚の単分子累積膜を得るこ
とができる。
Furthermore, if you want to make the film a little thicker, as shown in Figure 5, use a THF solution with a concentration of diborane I mol/l at room temperature.
X, the metal film on which the monomolecular film 4 has been formed is immersed, and then further immersed in, for example, sodium hydroxide (NaOH) 0.
1 at room temperature in a 30% H2O2 aqueous solution with a concentration of 1Mo1
Hydroxyl groups (OH) can be added to the vinyl groups on the surface of the monomolecular film by soaking for about an hour, and in the following chemical adsorption step using the same reaction solution as in the adsorption step.
By repeating the step of adding the H base material, it is possible to obtain a monomolecular cumulative film having the necessary thickness as a dielectric film, as shown in FIG.

な抵 水酸基8の付加工程で、薬品を用いた酸化工程の
代わりに 例えば酸素 窒素または水蒸気等の活性ガス
雰囲気で、例えは電子線 X撒ガンマ線またはイオン線
等の放射線を1〜IOMrad照射すると、 ビニル基
の部分にクロロシリル(−8iCI)基に活性なOH暴
 アミノ基(NH2)またはイミノ基(NH)等を付加
させることができ、同じ反応液を用いた化学及着工1’
b  及びエネルギービーム照射による付加工程を繰り
返すことにより、同様に誘電体膜として必要な膜厚を得
ることができる。
In the process of adding hydroxyl groups 8, instead of the oxidation process using chemicals, for example, if radiation such as electron beams, X-rays, gamma rays, or ion beams is irradiated with 1 to IOMrad in an active gas atmosphere such as oxygen, nitrogen, or water vapor, It is possible to add an active OH-based amino group (NH2) or imino group (NH) to the chlorosilyl (-8iCI) group on the vinyl group.
By repeating the additional steps of b and energy beam irradiation, it is possible to similarly obtain the required film thickness for the dielectric film.

またこのとき放射線照射の代わりに 活性ガス雰囲気中
でl OOWI O分程度のプラズマ処理を行なってL
 同様の効果があっ九 な耘 化学吸着単分子膜の比誘電率を大きくしたい場合
には クロロシラン系界面活性剤の直鎖状の炭素鎖の一
部ζQ 液晶分子のような分子内ダイポールの大きな化
学構造を含ませてたクロロシラン系界面活性剤を吸着試
薬として用いれはよい。
At this time, instead of radiation irradiation, plasma treatment for about 1 OOWI O minutes is performed in an active gas atmosphere.
A similar effect can be obtained if you want to increase the dielectric constant of a chemisorbed monolayer. A chlorosilane surfactant containing a structure may be used as an adsorption reagent.

このような液晶分子を有するクロロシラン系界面活性剤
としては 例えはネマティック液晶やアゾメチン粟 ア
ゾキシ系またはエステル系の強誘電液晶に 炭素鎖を介
してトリクロロシリル基を付加した吸着試薬を用いれは
 それぞれ第7図あるいは第8図に示すような単分子膜
を作成できる。
Examples of chlorosilane-based surfactants having such liquid crystal molecules include nematic liquid crystals, azomethine millet, azoxy-based or ester-based ferroelectric liquid crystals, and adsorption reagents in which trichlorosilyl groups are added via carbon chains. A monomolecular film as shown in the figure or FIG. 8 can be created.

(但し第7図および第8図中、R1及びR2は置換基を
表わす。) このとき液晶分子を含む吸着試薬の化学吸着を、予め前
述の単分子累積膜を形成した後で行なえば最表面に液晶
分子を含む単分子累積膜を作成できる。
(However, in Figures 7 and 8, R1 and R2 represent substituents.) At this time, if the chemical adsorption of the adsorption reagent containing liquid crystal molecules is carried out after forming the monomolecular cumulative film described above, the uppermost surface A monomolecular cumulative film containing liquid crystal molecules can be created.

また 第7図もしくは第8図における化学吸着用クロロ
シラン系界面活性剤の分子内のR1もしくはR2を、 
ビニル展 アセチレン基またはシアノ基としておけは 
前述の薬品で処理して化学吸着を行なう単分子膜累積法
あるい(i、放射線照射して化学吸着を行なう単分子膜
累積法てミ 全での単分子膜内に液晶分子を含む誘電体
膜用単分子累積膜かえられる。
In addition, R1 or R2 in the molecule of the chlorosilane surfactant for chemisorption in FIG. 7 or 8 is
Vinyl expansion as an acetylene group or cyano group
A monomolecular film accumulation method in which chemical adsorption is performed by treatment with the above-mentioned chemicals, or a monomolecular film accumulation method in which chemical adsorption is performed by irradiation with radiation. Monomolecular cumulative film for membranes can be changed.

しかもこのようにして得られた誘電体膜は 各層の単分
子吸着膜を構成している分子の分子内グイイポールか揃
った状態で作成されているたべ極めて比誘電率の高い誘
電体膜か得られる。
Moreover, the dielectric film obtained in this way is created in such a way that the intramolecular poles of the molecules constituting the monomolecular adsorption film of each layer are aligned, resulting in a dielectric film with an extremely high dielectric constant. .

また 上述の工程を連続で行なう方法としてζ表第9図
に示すように 金属インゴット(例えはAlやAlを含
む合金)11を圧延機12にかけてフィルム化した後、
キャプスタン13を介して、順次、吸着槽14、洗浄槽
15、電子線照射装置16、吸着槽17、洗浄槽18・
・・・・・と繰り返して処理して、最後に必要とする単
分子膜の層数を得た後、 ドラム19で誘電体薄膜の形
成されたコンデンサー用薄膜電極2oを巻取る工程を連
続して行なうことが可能である。
In addition, as a method of performing the above-mentioned steps continuously, as shown in Figure 9 of the ζ table, after a metal ingot (for example, Al or an alloy containing Al) 11 is rolled into a film by a rolling mill 12,
Via the capstan 13, the adsorption tank 14, cleaning tank 15, electron beam irradiation device 16, adsorption tank 17, cleaning tank 18,
After repeating this process to finally obtain the required number of monomolecular film layers, the process of winding up the capacitor thin film electrode 2o on which the dielectric thin film has been formed is continued using the drum 19. It is possible to do so.

な耘 圧延直後の金属フィルム表面に自然酸化膜が十分
形成されてない場合に1山 希硝酸などの水溶液に短時
間浸漬する槽を圧延機の後に設置する必要がある。ある
いは吸着工程の前に前記金属フィルム表面を電解酸化す
る工程や、8102などの酸化物薄膜をスパッター蒸着
する工程を追加してもよい。
If a natural oxide film is not sufficiently formed on the surface of the metal film immediately after rolling, it is necessary to install a tank after the rolling mill for short-term immersion in an aqueous solution such as dilute nitric acid. Alternatively, a step of electrolytically oxidizing the surface of the metal film or a step of sputter-depositing an oxide thin film such as 8102 may be added before the adsorption step.

また本実施例で1よ 吸着試薬に付いてはCH2=CH
(CH2)、−3i CI3を例に示しため(ビニル基
かアセチレン基またはシアノ基でも良いしトリクロロシ
リル基がジクロロシリル基またはモノクロロシリル基 
あるいはこれらに反応基が混合して含まれた試薬を用い
ることも可能である。
In addition, in this example, 1. Regarding the adsorption reagent, CH2=CH
(CH2), -3i To show CI3 as an example (a vinyl group, an acetylene group, or a cyano group may be used, and a trichlorosilyl group may be a dichlorosilyl group or a monochlorosilyl group)
Alternatively, it is also possible to use a reagent containing a mixture of these and reactive groups.

最後に第10図に示したようlへ 前記誘電体膜の形成
された薄膜電極を2枚重ねて円筒状に巻き上げる力\ 
第11図に示したように2枚重ねて圧着して、それぞれ
にリード電極22及び23を接続すればコンデンサーが
完成される。
Finally, as shown in Figure 10, a force is applied to roll up the two thin film electrodes on which the dielectric film is formed into a cylindrical shape.
As shown in FIG. 11, the capacitor is completed by stacking and crimping two sheets and connecting lead electrodes 22 and 23 to each.

なお単分子膜または単分子累積膜の形成された電極に 
グリセリンやエチレングリコールに水やほう酸を数パー
セント溶解した電解液等を挟み込んでおけ(fS  電
解コンデンサーを提供できる。
In addition, for electrodes formed with monomolecular films or monomolecular cumulative films,
An electrolytic solution, etc. in which several percent of water or boric acid is dissolved in glycerin or ethylene glycol, is sandwiched (fS electrolytic capacitor can be provided).

発明の効果 本発明(よ クロロシラン系界面活性剤より成る化学吸
着膜または化学吸着単分子累積膜で、電極表面を直接ま
たは任意の薄膜を介して間接的に覆われたコンデンサ〜
及びその製造方法であるた数金属薄膜電極表面に非常に
薄くて比誘電率の高い誘電体膜を、高密度無欠陥でしか
も容易に形成できる効果かある。
Effects of the Invention The present invention (I) A capacitor whose electrode surface is covered directly or indirectly through an arbitrary thin film with a chemically adsorbed film or a chemically adsorbed monomolecular cumulative film made of a chlorosilane surfactant.
And its manufacturing method has the advantage that a very thin dielectric film with a high dielectric constant can be easily formed on the surface of a metal thin film electrode at high density and without defects.

また この誘電体膜は 強力なシロキサン結合を介して
電極表面に結合されているた敦 耐湿性が高く、耐電圧
性に優れた小型で高性能なコンデンサーをきわめて低コ
ストで提供できる。
This dielectric film is also bonded to the electrode surface through strong siloxane bonds.It has high moisture resistance and can provide small, high-performance capacitors with excellent voltage resistance at an extremely low cost.

さらに 吸着形成された誘電体膜に法 分子内ダイポー
ルを大きくするような化学構造(例えばネマティック液
晶分子や強誘電液晶分子など)を組み込むことが可能な
ので、誘電体膜として比誘電率を制御できる効果もあも
Furthermore, it is possible to incorporate chemical structures (such as nematic liquid crystal molecules and ferroelectric liquid crystal molecules) that increase the size of intramolecular dipoles into the adsorbed dielectric film, making it possible to control the relative dielectric constant as a dielectric film. Moamo

【図面の簡単な説明】[Brief explanation of drawings]

第1図は誘電膜として化学吸着単分子膜の形成されたコ
ンデンサー用薄膜電極の概念は 第2図〜第8図は各々
第1図中のA部を分子レベルまで拡大して示す工程概念
医 第9図は誘電体膜が形成されたコンデンサー用薄膜
電極を連続で製造する場合の工場概念医 第1O図は本
発明の実施例におけるコンデンサーの斜視医 第11図
は同性の実施例のコンデンサー断面概念図を示す。 1・・・金属フィルな 2・・・自然酸化風 3・・・
誘電体11U411.単分子吸着[5・・・ビニル基 
7・・・ネマチック液晶皿 8・・・・・・強誘電液晶
部。 代理人の氏名 弁理士 粟野重孝 はか1名画 図 第 図 第 図 6v惟 弔 図 第10図 第11図
Figure 1 shows the concept of a thin film electrode for a capacitor in which a chemically adsorbed monomolecular film is formed as a dielectric film. Fig. 9 is a factory concept diagram for continuous production of thin film electrodes for capacitors on which dielectric films are formed. Fig. 1O is a perspective view of a capacitor in an embodiment of the present invention. Fig. 11 is a cross section of a capacitor in an embodiment of the same sex. A conceptual diagram is shown. 1... Metal fill 2... Natural oxidation style 3...
Dielectric 11U411. Single molecule adsorption [5...vinyl group
7... Nematic liquid crystal dish 8... Ferroelectric liquid crystal section. Name of agent: Patent attorney Shigetaka Awano Haka 1 Famous Painting Figure Figure 6 v Funeral Figure Figure 10 Figure 11

Claims (20)

【特許請求の範囲】[Claims] (1)クロロシラン系界面活性剤より成る化学吸着単分
子膜または化学吸着単分子累積膜で、電極表面を直接ま
たは任意の薄膜を介して間接に覆われていることを特徴
としたコンデンサー。
(1) A capacitor characterized in that the electrode surface is covered directly or indirectly with a chemically adsorbed monomolecular film or a chemically adsorbed monomolecular cumulative film made of a chlorosilane surfactant.
(2)クロロシラン系界面活性剤が、炭素数が10〜2
5の直鎖状の炭素鎖を有することを特徴とした、請求項
1記載のコンデンサー。
(2) The chlorosilane surfactant has 10 to 2 carbon atoms.
A capacitor according to claim 1, characterized in that it has 5 straight carbon chains.
(3)クロロシラン系界面活性剤が、一端に任意の置換
基を、他の一端にクロロシリル基を含むことを特徴とし
た、請求項1または2何れかに記載のコンデンサー。
(3) The capacitor according to claim 1 or 2, wherein the chlorosilane surfactant contains an arbitrary substituent at one end and a chlorosilyl group at the other end.
(4)クロロシラン系界面活性剤が、液晶分子の一部に
炭素鎖を介してクロロシリル基を結合した化合物である
ことを特徴とした、請求項1記載のコンデンサー。
(4) The capacitor according to claim 1, wherein the chlorosilane surfactant is a compound in which a chlorosilyl group is bonded to a part of a liquid crystal molecule via a carbon chain.
(5)液晶分子が、ネマティック液晶であることを特徴
とした、請求項4記載のコンデンサー。
(5) The capacitor according to claim 4, wherein the liquid crystal molecules are nematic liquid crystals.
(6)液晶分子が、強誘電液晶であることを特徴とした
、請求項4記載のコンデンサー。
(6) The capacitor according to claim 4, wherein the liquid crystal molecules are ferroelectric liquid crystals.
(7)強誘電液晶が、アゾメチン系,アゾキシ系または
エステル系の内の何れかであることを特徴とした、請求
項6記載のコンデンサー。
(7) The capacitor according to claim 6, wherein the ferroelectric liquid crystal is one of azomethine type, azoxy type, and ester type.
(8)クロロシラン系界面活性剤が、CH_2=CH−
(CH_2)_n−SiCl_3(nは整数)を用いる
ことを特徴とした、請求項1記載のコンデンサー。
(8) The chlorosilane surfactant is CH_2=CH-
The capacitor according to claim 1, characterized in that (CH_2)_n-SiCl_3 (n is an integer) is used.
(9)クロロシラン系界面活性剤を化学吸着して形成さ
れた一対の対向する電極に、電解液が挟まれていること
を特徴とする、請求項1記載のコンデンサー。
(9) The capacitor according to claim 1, wherein the electrolytic solution is sandwiched between a pair of opposing electrodes formed by chemically adsorbing a chlorosilane surfactant.
(10)金属電極用フィルム表面に直接または任意の薄
膜を介して間接的に非水系の有機溶媒中のクロロシラン
系界面活性剤を化学吸着させ、前記金属電極表面にクロ
ロシラン基を化学結合させて単分子膜を一層形成する工
程を含むことを特徴とする、コンデンサーの製造方法。
(10) A chlorosilane surfactant in a non-aqueous organic solvent is chemically adsorbed onto the surface of a metal electrode film directly or indirectly through an arbitrary thin film, and a chlorosilane group is chemically bonded to the surface of the metal electrode. A method for manufacturing a capacitor, comprising the step of forming one layer of a molecular film.
(11)電極用金属フィルムがAlまたはAlを含む合
金で形成されていることを特徴とした特許請求の範囲第
10項記載のコンデンサーの製造方法。
(11) The method for manufacturing a capacitor according to claim 10, wherein the metal film for the electrode is made of Al or an alloy containing Al.
(12)クロロシラン系界面活性剤が、直鎖状の炭化水
素鎖を有することを特徴とする、請求項10記載のコン
デンサーの製造方法。
(12) The method for manufacturing a capacitor according to claim 10, wherein the chlorosilane surfactant has a linear hydrocarbon chain.
(13)直鎖状の炭素鎖の一端が任意の置換基で、他の
一端がクロロシリル基のであることを特徴とした、請求
項12記載のコンデンサーの製造方法。
(13) The method for producing a capacitor according to claim 12, wherein one end of the linear carbon chain is an arbitrary substituent and the other end is a chlorosilyl group.
(14)クロロシラン系界面活性剤が、液晶分子の一部
に炭素鎖を介してクロロシリル基を結合したことを特徴
とした、請求項10もしくは12何れかに記載のコンデ
ンサーの製造方法。
(14) The method for producing a capacitor according to claim 10 or 12, wherein the chlorosilane surfactant has a chlorosilyl group bonded to a part of the liquid crystal molecule via a carbon chain.
(15)液晶分子が、ネマティック液晶であることを特
徴とした、請求項14記載のコンデンサーの製造方法。
(15) The method for manufacturing a capacitor according to claim 14, wherein the liquid crystal molecules are nematic liquid crystals.
(16)液晶分子が、強誘電液晶であることを特徴とし
た、請求項14記載のコンデンサーの製造方法。
(16) The method for manufacturing a capacitor according to claim 14, wherein the liquid crystal molecules are ferroelectric liquid crystals.
(17)強誘電液晶が、アゾメチン系,アゾキシ系また
はエステル系の何れかであることを特徴とした、請求項
16記載のコンデンサーの製造方法。
(17) The method for manufacturing a capacitor according to claim 16, wherein the ferroelectric liquid crystal is one of azomethine, azoxy, or ester.
(18)クロロシラン系界面活性剤が、一端にビニル基
,アセチレン基またはシアノ基の何れかの置換基を有し
、他の一端にクロロシリル基を有し、前記クロロシラン
系界面活性剤を金属電極表面に化学吸着させて単分子膜
を一層形成させる工程の後で、薬品で処理することで前
記置換基を反応し水酸基を付加させた後、クロロシラン
系界面活性剤を化学吸着させる工程を含むことを特徴と
する、請求項10記載のコンデンサーの製造方法。
(18) A chlorosilane-based surfactant has a substituent such as a vinyl group, an acetylene group, or a cyano group at one end and a chlorosilyl group at the other end, and the chlorosilane-based surfactant is applied to the surface of a metal electrode. After the step of chemically adsorbing the chlorosilane surfactant to form a monomolecular film, the substituent is treated with a chemical to react with the substituent to add a hydroxyl group, and then the chlorosilane surfactant is chemically adsorbed. A method for manufacturing a capacitor according to claim 10, characterized in that:
(19)置換基の反応が、放射線照射またはプラズマ処
理であり、クロロシラン系界面活性剤を化学吸着させる
工程を含むことを特徴とする、請求項10記載のコンデ
ンサーの製造方法。
(19) The method for manufacturing a capacitor according to claim 10, wherein the reaction of the substituents is radiation irradiation or plasma treatment, and includes a step of chemically adsorbing a chlorosilane surfactant.
(20)クロロシラン系界面活性剤としてCH_2=C
H−(CH_2)_n−SiCl_3(nは整数)を用
いることを特徴とした請求項18もしくは19何れかに
記載のコンデンサーの製造方法。
(20) CH_2=C as a chlorosilane surfactant
20. The method for manufacturing a capacitor according to claim 18, wherein H-(CH_2)_n-SiCl_3 (n is an integer) is used.
JP2106163A 1990-04-20 1990-04-20 Capacitor and its manufacturing method Expired - Lifetime JPH0752699B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2106163A JPH0752699B2 (en) 1990-04-20 1990-04-20 Capacitor and its manufacturing method
US07/683,857 US5103371A (en) 1990-04-20 1991-04-11 Capacitor and process for production thereof
DE69116717T DE69116717T2 (en) 1990-04-20 1991-04-19 Capacitor and process for its manufacture
EP91106343A EP0452955B1 (en) 1990-04-20 1991-04-19 Capacitor and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106163A JPH0752699B2 (en) 1990-04-20 1990-04-20 Capacitor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH043907A true JPH043907A (en) 1992-01-08
JPH0752699B2 JPH0752699B2 (en) 1995-06-05

Family

ID=14426616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106163A Expired - Lifetime JPH0752699B2 (en) 1990-04-20 1990-04-20 Capacitor and its manufacturing method

Country Status (4)

Country Link
US (1) US5103371A (en)
EP (1) EP0452955B1 (en)
JP (1) JPH0752699B2 (en)
DE (1) DE69116717T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098406A (en) * 2011-11-02 2013-05-20 Murata Mfg Co Ltd Capacitor
JP2015164188A (en) * 2014-02-03 2015-09-10 エルジー・ケム・リミテッド Wound type laminate body for high electrostatic capacity capacitor and laminate wound type capacitor
WO2022034870A1 (en) * 2020-08-14 2022-02-17 国立研究開発法人理化学研究所 Dielectric material and capacitor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE463077B (en) * 1988-06-03 1990-10-08 Boliden Contech Ab the emission electrodes
CA2060294C (en) * 1991-02-06 2000-01-18 Kazufumi Ogawa Chemically absorbed film and method of manufacturing the same
JP2741804B2 (en) * 1991-06-14 1998-04-22 松下電器産業株式会社 Capacitor and manufacturing method thereof
JPH0517595A (en) * 1991-07-15 1993-01-26 Matsushita Electric Ind Co Ltd Ultra-thin film of polymer electret and its production
JPH0786493B2 (en) * 1992-04-24 1995-09-20 松下電器産業株式会社 Humidity sensor
JP3098651B2 (en) * 1993-03-31 2000-10-16 松下電器産業株式会社 Polymer electric device
GB9724235D0 (en) * 1997-11-05 1998-01-14 Secr Defence High storage capacitors
US6265058B1 (en) 1998-03-11 2001-07-24 Tpl, Inc. Polymer/paper capacitor film
US6483694B1 (en) * 1999-06-22 2002-11-19 Showa Denko Kabushiki Kaisha Electrode for electrolytic capacitor, electrolytic capacitor, and manufacturing method therefor
US20050067532A1 (en) * 2003-09-25 2005-03-31 Hindel James T. Radar absorbing electrothermal de-icer
US7658975B2 (en) * 2003-12-12 2010-02-09 Intel Corporation Sealing porous dielectric materials
DE102004005082B4 (en) 2004-02-02 2006-03-02 Infineon Technologies Ag A capacitor comprising a self-assembled monolayer organic compound dielectric and a method of making the same
JP4383227B2 (en) * 2004-03-31 2009-12-16 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
WO2006108125A2 (en) * 2005-04-04 2006-10-12 Goodrich Corporation Electrothermal deicing apparatus and a dual function heater conductor for use therein
US7633450B2 (en) * 2005-11-18 2009-12-15 Goodrich Corporation Radar altering structure using specular patterns of conductive material
US7455261B2 (en) * 2006-03-08 2008-11-25 Prudential Co., Ltd. Tightening mechanism for adjustably setting a tape holder to an immovable state on a tape dispenser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084860A (en) * 1973-11-30 1975-07-09
JPS62221103A (en) * 1986-03-24 1987-09-29 松下電器産業株式会社 Capacitor and manufacture of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1266671B (en) * 1964-09-30 1968-04-18 Dr Hans Kuhn Process for the manufacture of devices for optical and / or electrical purposes, such as thin film capacitors, interference filters and photoresistors
JPH0697571B2 (en) * 1987-12-07 1994-11-30 信越化学工業株式会社 Organic high dielectric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084860A (en) * 1973-11-30 1975-07-09
JPS62221103A (en) * 1986-03-24 1987-09-29 松下電器産業株式会社 Capacitor and manufacture of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098406A (en) * 2011-11-02 2013-05-20 Murata Mfg Co Ltd Capacitor
JP2015164188A (en) * 2014-02-03 2015-09-10 エルジー・ケム・リミテッド Wound type laminate body for high electrostatic capacity capacitor and laminate wound type capacitor
WO2022034870A1 (en) * 2020-08-14 2022-02-17 国立研究開発法人理化学研究所 Dielectric material and capacitor

Also Published As

Publication number Publication date
EP0452955B1 (en) 1996-01-31
DE69116717T2 (en) 1996-08-14
JPH0752699B2 (en) 1995-06-05
EP0452955A3 (en) 1992-08-19
EP0452955A2 (en) 1991-10-23
US5103371A (en) 1992-04-07
DE69116717D1 (en) 1996-03-14

Similar Documents

Publication Publication Date Title
JPH043907A (en) Capacitor and manufacture thereof
Mohtasebi et al. Interfacial charge transfer between phenyl-capped aniline tetramer films and iron oxide surfaces
US5338571A (en) Method of forming self-assembled, mono- and multi-layer fullerene film and coated substrates produced thereby
Uosaki et al. Electrochemical characteristics of a gold electrode modified with a self-assembled monolayer of ferrocenylalkanethiols
US7781028B2 (en) Thin film materials of amorphous metal oxides
JPH04367210A (en) Capacitor
EP0523503B1 (en) Ultra thin polymer film electret and method of manufacturing the same
Louault et al. The electrochemical grafting of a mixture of substituted phenyl groups at a glassy carbon electrode surface
Kravets et al. A novel technique for fabrication of nanofluidic devices with polymer film formed by plasma polymerization
JP2967112B2 (en) Organic thin film manufacturing method
EP0539731A1 (en) Probe of scanning electrochemical microscope and method of manufacturing the same
EP1712298A1 (en) Organic thin film insulator
JPH0513530B2 (en)
Forget et al. Tuning the reactivity of nanostructured indium tin oxide electrodes toward chemisorption
Romann et al. Formation of the bismuth thiolate compound layer on bismuth surface
KR20040035592A (en) Electrical potential-assisted assembly of molecular devices
JP3405564B2 (en) Method for producing ion conductive thin film
Hozuki et al. Room-Temperature Preparation of Ta Ions-Containing Ionic Liquid and its Vapor Deposition toward Ta-Oxide Film Coating
Wasalathanthri et al. Adsorption Processes during Electrochemical Atomic Layer Deposition of Gold
JPH0560994B2 (en)
Kondo et al. Formation and electrochemical characteristics of multilayers of Au nanoclusters covered by mixed self-assembled monolayers of three kinds of alkanethiols with methyl, ferrocene, or carboxylate terminal group on Au (111) surface
JPH0215101A (en) Ultra fine particle and manufacture thereof
JP3158008B2 (en) Orientation controlled organic thin film and film forming method
JP3284241B2 (en) Organic thin film manufacturing method
JPH04223315A (en) Capacitor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15

EXPY Cancellation because of completion of term