JPH04371216A - Method for removing nitrogen oxide - Google Patents

Method for removing nitrogen oxide

Info

Publication number
JPH04371216A
JPH04371216A JP3171667A JP17166791A JPH04371216A JP H04371216 A JPH04371216 A JP H04371216A JP 3171667 A JP3171667 A JP 3171667A JP 17166791 A JP17166791 A JP 17166791A JP H04371216 A JPH04371216 A JP H04371216A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
exhaust gas
oxygen
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3171667A
Other languages
Japanese (ja)
Other versions
JP3242126B2 (en
Inventor
Yasuyuki Ooishi
庸之 大石
Hiroshi Kato
浩 加藤
Tadatoshi Sone
忠豪 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP17166791A priority Critical patent/JP3242126B2/en
Publication of JPH04371216A publication Critical patent/JPH04371216A/en
Application granted granted Critical
Publication of JP3242126B2 publication Critical patent/JP3242126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove NOx from waste combustion gas contg. oxygen. CONSTITUTION:Waste combustion gas contg. oxygen is brought into contact with a catalyst contg. one or more kinds of active metals selected among the groups Ib and VIII metals of the periodic table and sulfate groups in zeolite in coexistence with hydrocarbon to remove NOx from the waste combustion gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は酸素を含有する燃焼排ガ
スから窒素酸化物(NOx)を効果的に除去する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for effectively removing nitrogen oxides (NOx) from oxygen-containing combustion exhaust gas.

【0002】0002

【従来の技術】種々の燃料の燃焼時に排出される大気汚
染物質の除去は、環境上大きな社会的な課題である。大
気汚染物質の中で、固定発生源である工場や、移動発生
源である自動車から排出される燃焼ガス中のNOxは、
光化学スモッグの原因とされる人体に有害なガスであり
、その除去は現在の緊急課題である。
2. Description of the Related Art Removal of air pollutants emitted during the combustion of various fuels is a major environmental and social issue. Among air pollutants, NOx in combustion gases emitted from factories, which are stationary sources, and automobiles, which are mobile sources, is
It is a gas that is harmful to the human body and is said to be the cause of photochemical smog, and its removal is currently an urgent issue.

【0003】NOxの除去方法としては、これまでにも
幾つかの方法が考えられ、実施されている。例えば接触
還元法と呼ばれる方法は、アンモニアや水素などの還元
剤を用いて触媒上で、NOxを窒素と水にして除去する
方法である。しかし、この方法は還元剤を利用するため
、その回収や漏れの対策が必要で、規模が大きな固定発
生源については有効であるものの、自動車のような発生
源には適さない。一方、排気ガスが還元性ガスであるガ
ソリンエンジンの廃ガス浄化には、所謂三元触媒が一般
に使用されている。しかしながら、この触媒は酸素共存
下では活性がなく、NOxを有効に除去することができ
ない。
[0003] As a method for removing NOx, several methods have been considered and implemented so far. For example, a method called catalytic reduction method is a method in which NOx is removed by converting it into nitrogen and water on a catalyst using a reducing agent such as ammonia or hydrogen. However, since this method uses a reducing agent, measures must be taken to recover it and prevent leakage, and although it is effective for large-scale stationary sources, it is not suitable for sources such as automobiles. On the other hand, a so-called three-way catalyst is generally used to purify the exhaust gas of a gasoline engine whose exhaust gas is a reducing gas. However, this catalyst has no activity in the coexistence of oxygen and cannot effectively remove NOx.

【0004】これに対して、NOxの接触分解、すなわ
ちNOxを直接窒素と酸素に分解する方法は、排気ガス
を触媒層に通ずるだけですみ、極めて簡便に排ガスを処
理することができるため利用範囲が広い。この方法に使
用する触媒としては、Pt,CuO,Co系触媒が有効
であることが分かっている。しかしながら、これらの触
媒は多量の酸素が処理ガス中に存在すると活性低下を起
こすために、通常ディーゼルエンジンの排ガスや希薄燃
焼方式のガソリンエンジンの排ガスなど、酸素を含む排
ガスの処理には適さない。
On the other hand, NOx catalytic decomposition, that is, a method that directly decomposes NOx into nitrogen and oxygen, only requires passing the exhaust gas through a catalyst layer, and the exhaust gas can be treated very easily, so it is not widely used. is wide. It has been found that Pt, CuO, and Co-based catalysts are effective as catalysts used in this method. However, the activity of these catalysts decreases when a large amount of oxygen is present in the process gas, so they are not suitable for treating exhaust gases containing oxygen, such as the exhaust gases of diesel engines and the exhaust gases of lean-burn gasoline engines.

【0005】酸素を含む排ガスの処理技術に関しては、
例えば、特開昭60−125250 号公報に銅を含む
特異なゼオライトが有効であることが開示されている。 また、銅を含むペロブスカイトがこれに有効であること
も、CHMISTRY LETTER 誌の1988年
の1797−1800 ページに記載されている。これ
らの技術は、酸素を含む排ガスからでも、NOxを除去
できる旨を教示しているが、その効果は明確でなく、酸
素共存下では活性が著しく低いとの報告もある。
Regarding the treatment technology for exhaust gas containing oxygen,
For example, JP-A-60-125250 discloses that a special zeolite containing copper is effective. It is also stated in CHMISTRY LETTER magazine, 1988, pages 1797-1800, that perovskites containing copper are effective for this purpose. These techniques teach that NOx can be removed even from exhaust gas containing oxygen, but their effectiveness is not clear, and there are reports that the activity is extremely low in the coexistence of oxygen.

【0006】そこで、アンモニアなどの取扱いの難しい
還元剤を用いずに、炭化水素を存在させることでNOx
を除去する方法が脚光を浴び、その方法の従来技術とし
ては、例えば、米国特許第4297328 号、特開昭
63−1009194号、同63−283727 号等
を挙げることができる。しかしながら、これら従来技術
で使用される触媒は、活性が低く、さらなる活性向上が
望まれている。
[0006] Therefore, by making hydrocarbons exist without using reducing agents that are difficult to handle such as ammonia, NOx can be reduced.
A method for removing the above has been in the spotlight, and examples of prior art methods for this method include, for example, US Pat. However, the catalysts used in these conventional techniques have low activity, and further improvement in activity is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、酸素
を含有する燃焼排ガスから窒素酸化物を効果的に除去で
きる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that can effectively remove nitrogen oxides from oxygen-containing combustion exhaust gas.

【0008】[0008]

【課題を解決するための手段】本発明は、酸素を含有す
る燃焼排ガスから窒素酸化物を効率的に除去するに当り
、周期律表第Ib族および第VIII族から選ばれた一
種以上の活性金属および硫酸根をゼオライトに含有させ
た触媒と、酸素を含有する燃焼排ガスとを、炭化水素共
存下で接触させることを特徴とする。
[Means for Solving the Problems] The present invention provides a method for efficiently removing nitrogen oxides from oxygen-containing combustion exhaust gas by using at least one active compound selected from Group Ib and Group VIII of the Periodic Table. The method is characterized in that a catalyst in which zeolite contains metals and sulfate radicals is brought into contact with combustion exhaust gas containing oxygen in the coexistence of hydrocarbons.

【0009】本発明で言うゼオライトとは、結晶性アル
ミノ珪酸塩を意味し、組成は次の式で表される。 xM2/n O・Al2 O3 ・ySiO2 ・zH
2 O(nは陽イオンMの原子価、xは0.8 〜2.
0 の範囲の数、yは2.0 以上の数、zは0以上の
数である。)
[0009] Zeolite as used in the present invention means a crystalline aluminosilicate, and the composition is represented by the following formula. xM2/n O・Al2 O3 ・ySiO2 ・zH
2 O (n is the valence of the cation M, x is 0.8 to 2.
A number in the range of 0, y is a number of 2.0 or more, and z is a number of 0 or more. )

【0010】ゼオライトの基本構造は、S
i,Al,Oが規則正しく三次元的に結合したもので、
構造単位の違いにより、種々の結晶構造をとる。ゼオラ
イトには多くの種類があることが知られているが、それ
らはX線回折によって特徴づけられ、その結晶構造によ
り名称が異なる。例えば、天然品として、モルデナイト
、エリオナイト、シャバサイトがあり、合成品としては
A型、X型、ZSM−5 などが知られている。本発明
で使用するゼオライトは、特定な種類に限られることは
なく、天然品、合成品どちらでも使用可能であるが、前
者では不純物を含み精製に手間がかかることから、合成
品が好ましく用いられる。
The basic structure of zeolite is S
It is a regular three-dimensional combination of i, Al, and O.
It takes on various crystal structures depending on the difference in structural units. It is known that there are many types of zeolites, which are characterized by X-ray diffraction and have different names depending on their crystal structure. For example, natural products include mordenite, erionite, and chabasite, and synthetic products include type A, type X, and ZSM-5. The zeolite used in the present invention is not limited to a specific type, and both natural and synthetic products can be used; however, the former contains impurities and requires time and effort to purify, so synthetic products are preferably used. .

【0011】ゼオライトの合成は、適当なシリカ源、ア
ルミナ源、アルカリ源を混合し、場合によってはアルミ
ナ源の代わりに金属化合物(例えばFe,Ca等)を使
用して、100 〜250 ℃程度の水熱条件下で結晶
化させることで容易に得ることができる。また、前記の
混合物にテンプレートと呼ばれる有機物を添加して、水
熱合成によって得られるものもある。ゼオライトは一般
に市販されているので、本発明のゼオライトとしては、
市販品を用いてもよい。本発明で好ましく用いられるゼ
オライトは、Y型、モルデナイト型、メタロシリケート
、ZSM−5 などである。
[0011] Zeolite is synthesized by mixing appropriate silica sources, alumina sources, and alkali sources, and in some cases using metal compounds (for example, Fe, Ca, etc.) in place of the alumina sources, at a temperature of about 100 to 250°C. It can be easily obtained by crystallizing under hydrothermal conditions. In addition, some products can be obtained by hydrothermal synthesis by adding an organic substance called a template to the above-mentioned mixture. Since zeolites are generally commercially available, the zeolites of the present invention include:
Commercially available products may also be used. Zeolites preferably used in the present invention include Y type, mordenite type, metallosilicate, and ZSM-5.

【0012】本発明の活性金属とは、周期律表第Ib族
および第VIII族から選ばれた一種以上の金属を言う
。周期律表第Ib族の金属としては、Cu、Ag、Au
挙げられる。また、周期律表第VIII族の金属として
はFe、Co、Niの鉄族金属およびRu、Rh、Pd
、Os、Ir、Ptの白金族金属が挙げられる。特に、
Cu、Co、Niが好ましい。
The active metal of the present invention refers to one or more metals selected from Group Ib and Group VIII of the Periodic Table. Metals in group Ib of the periodic table include Cu, Ag, and Au.
Can be mentioned. In addition, metals in group VIII of the periodic table include iron group metals such as Fe, Co, and Ni, and Ru, Rh, and Pd.
, Os, Ir, and Pt. especially,
Cu, Co, and Ni are preferred.

【0013】本発明において、活性金属のゼオライトへ
の導入方法は、特に限定されることがない。従って、ゼ
オライト中のカチオンと活性金属カチオンとを交換する
イオン交換法や、活性金属を含む溶液にゼオライトを浸
す含浸法などを採用することができる。本発明で使用す
る活性金属の原料化合物は、水溶性塩であればどの様な
形でも使用でき、そうした原料化合物の具体例には、例
えば、硫酸塩、塩酸塩、硝酸塩、有機酸塩、金属の複合
塩などを挙げることができる。活性金属は1種類でも2
種以上を組み合わせて差し支えない。本発明で使用する
触媒の活性金属の含有量は、少なくとも0.5wt %
であり、好ましくは1.0 〜20wt%の範囲にある
In the present invention, the method of introducing the active metal into the zeolite is not particularly limited. Therefore, an ion exchange method in which cations in the zeolite are exchanged with active metal cations, an impregnation method in which the zeolite is immersed in a solution containing an active metal, etc. can be employed. The active metal raw material compound used in the present invention can be used in any form as long as it is a water-soluble salt. Specific examples of such raw material compounds include sulfates, hydrochlorides, nitrates, organic acid salts, metal salts, etc. Examples include complex salts of There are at least one active metal and two active metals.
You can combine more than one species. The active metal content of the catalyst used in the invention is at least 0.5 wt%
and is preferably in the range of 1.0 to 20 wt%.

【0014】硫酸根の供給源としては、触媒中に硫酸イ
オンの形で存在できる化合物が選ばれるが、硫酸根の触
媒への導入方法は任意であって、例えば、活性金属を硫
酸塩の形でゼオライトに導入することで、活性金属と同
時に硫酸根を触媒に含有させることができる。あるいは
、活性金属を含有させたゼオライトに硫酸や硫酸塩化合
物を含浸させてもよい。硫酸根の含有量は少なくとも0
.5wt%であり、好ましくは1.0 〜20wt%の
範囲にある。
As the source of the sulfate group, a compound that can exist in the form of sulfate ion in the catalyst is selected, but the method of introducing the sulfate group into the catalyst is arbitrary. By introducing this into the zeolite, the catalyst can contain a sulfate group at the same time as the active metal. Alternatively, zeolite containing an active metal may be impregnated with sulfuric acid or a sulfate compound. The content of sulfate radicals is at least 0
.. 5 wt%, preferably in the range of 1.0 to 20 wt%.

【0015】本発明の方法に用いる触媒はゼオライトに
活性金属および硫酸根を導入した後、たとえば、シリカ
・アルミナ等の無機酸化物や粘土をバインダーとして、
球状、柱状、ハニカム状等の適当な形に成型しても良く
、またゼオライトに該バインダーを添加して予め成型し
、その後活性金属および硫酸根を導入しても良い。
The catalyst used in the method of the present invention is prepared by introducing an active metal and a sulfate group into zeolite, and then using an inorganic oxide such as silica or alumina or clay as a binder.
The zeolite may be formed into an appropriate shape such as spherical, columnar, or honeycomb, or the binder may be added to the zeolite and the zeolite may be formed in advance, and then the active metal and sulfate radical may be introduced.

【0016】本発明で用いる炭化水素とは、炭素と水素
から構成される化合物を意味し、通常はオレフィン類、
パラフィン類、シクロパラフィン類、芳香族類及びこれ
らの混合物が使用される。これらのなかでも、反応条件
下で気体となっているものが好ましいが、特にこれに限
られることはない。炭化水素の添加量は燃焼排ガスに対
して10〜10000ppm、好ましくは20〜500
0ppm の範囲である。10ppm 未満であると効
果がなく、10000ppmを超えると触媒に対して好
ましくない影響を及ぼす。
[0016] The hydrocarbon used in the present invention means a compound composed of carbon and hydrogen, and usually includes olefins,
Paraffins, cycloparaffins, aromatics and mixtures thereof are used. Among these, those that are gaseous under the reaction conditions are preferred, but are not particularly limited thereto. The amount of hydrocarbon added is 10 to 10,000 ppm, preferably 20 to 500 ppm based on the combustion exhaust gas.
It is in the range of 0 ppm. If it is less than 10 ppm, there is no effect, and if it exceeds 10,000 ppm, it will have an unfavorable effect on the catalyst.

【0017】また、本発明で言う酸素を含有する燃焼排
ガスとは、酸素を少なくとも0.5wt%以上含有する
燃焼排ガスのことである。これらは通常の内燃機関やボ
イラーなどから排出されるものである。本発明の方法は
、とりわけ、ディーゼルエンジン、希薄燃焼方式のガソ
リンエンジンからの排ガスのように、酸素を多量に含有
する排ガスの処理に有効である。本発明による処理温度
は、200 〜500 ℃の範囲、好ましくは230 
〜450 ℃の範囲にある。この温度が200 ℃より
低いとNOxの除去ができず、また500 ℃より高い
と共存させた炭化水素が燃焼を起こし、NOxの除去率
が低下する。本発明では触媒と処理ガスとの接触時間が
限定されることがはない。
[0017] Furthermore, the combustion exhaust gas containing oxygen as used in the present invention refers to combustion exhaust gas containing at least 0.5 wt% or more of oxygen. These are the emissions from normal internal combustion engines and boilers. The method of the present invention is particularly effective in treating exhaust gas containing a large amount of oxygen, such as exhaust gas from diesel engines and lean-burn gasoline engines. The processing temperature according to the invention ranges from 200 to 500 °C, preferably 230 °C.
~450°C. If this temperature is lower than 200°C, NOx cannot be removed, and if it is higher than 500°C, the coexisting hydrocarbons will cause combustion, reducing the NOx removal rate. In the present invention, the contact time between the catalyst and the process gas is not limited.

【0018】本発明の方法を実施する場合は、触媒を充
填した反応処理装置にクーラーなどで所定の温度にした
燃焼排ガスを導入し、専用タンクに入った所定の炭化水
素を該処理部あるいはそれより前の適当なラインに添加
すれば良い。排ガスが所定温度にない場合は、処理部を
加熱しても良い。また本発明をエンジンからの排ガスに
適用した場合、既設の燃料タンクに入ったガソリン等の
燃料油の一部をエンジンをバイパスして、エンジンの出
口側に設けた処理部に添加しても良く、また該バイパス
に設けた改質部で改質処理などを施してから処理部に添
加することもできる。
When carrying out the method of the present invention, combustion exhaust gas heated to a predetermined temperature using a cooler or the like is introduced into a reaction treatment device filled with a catalyst, and a predetermined hydrocarbon in a dedicated tank is introduced into the treatment section or Just add it to an appropriate line earlier. If the exhaust gas is not at a predetermined temperature, the processing section may be heated. Furthermore, when the present invention is applied to exhaust gas from an engine, part of the fuel oil such as gasoline that has entered the existing fuel tank may be added to a processing section provided at the outlet side of the engine, bypassing the engine. Alternatively, it can be added to the processing section after being subjected to a reforming treatment in a reforming section provided in the bypass.

【0019】次に、実施例によって本発明を更に詳しく
述べる。 実施例1 種々のゼオライトに硫酸コバルト、硫酸ニッケル、硫酸
銅溶液を含浸させたものを、400 ℃で2時間焼成し
、これを触媒に使用して、所定の反応温度で一酸化窒素
1000ppm および酸素を10.0%含有するガス
を処理した。炭化水素として、プロピレンを約1000
ppm 前記のガス中に添加した。どの触媒も金属担持
量は約8wt%であった。
Next, the present invention will be described in more detail with reference to examples. Example 1 Various zeolites impregnated with solutions of cobalt sulfate, nickel sulfate, and copper sulfate were calcined at 400 °C for 2 hours, and used as a catalyst to produce 1000 ppm of nitrogen monoxide and oxygen at a predetermined reaction temperature. A gas containing 10.0% of As a hydrocarbon, propylene is about 1000
ppm added into the above gas. The amount of metal supported in each catalyst was about 8 wt%.

【0020】比較例1 実施例1の硫酸塩溶液を使用する代わりに、硝酸塩溶液
を使用した以外は、実施例1と同様なガスを同様な条件
で処理した。本例で使用した触媒の金属担持量は、実施
例1と同様いずれも約8wt%であった。
Comparative Example 1 The same gas as in Example 1 was treated under the same conditions, except that a nitrate solution was used instead of the sulfate solution in Example 1. The amount of metal supported on the catalysts used in this example was about 8 wt %, similar to Example 1.

【0021】実施例1および比較例1の結果を表1に示
す。実施例1から明らかなように、硫酸根を有する触媒
の活性が高いことがわかる。
Table 1 shows the results of Example 1 and Comparative Example 1. As is clear from Example 1, the activity of the catalyst having a sulfate group is high.

【0022】[0022]

【表1】               触      媒   
               実施例1      
  比較例1ゼオライト  活性金属    硫酸根(
wt%)     NO除去率(%)     NO除
去率(%) Y型          Co     
     8.0          43     
       28              Ni
          8.0          41
            26           
   Cu          7.5       
   55            35モルデナイト
  Co          8.2        
  50            32       
       Ni          7.8   
       42            31  
            Cu          7
.0          60           
 45ZSM−5    Co          7
.8          64           
 42              Ni      
    8.1          71      
      46              Cu 
         7.3          80 
           65       注)比較例1は硫酸根を含まず。
[Table 1] Catalyst
Example 1
Comparative Example 1 Zeolite Active metal Sulfate radical (
wt%) NO removal rate (%) NO removal rate (%) Y type Co
8.0 43
28 Ni
8.0 41
26
Cu 7.5
55 35 mordenite Co 8.2
50 32
Ni 7.8
42 31
Cu 7
.. 0 60
45ZSM-5 Co 7
.. 8 64
42 Ni
8.1 71
46 Cu
7.3 80
65 Note) Comparative Example 1 does not contain sulfate groups.

【0023】実施例2 ZSM−5 型ゼオライトを硝酸銅溶液中に分散し、希
釈したアンモニア水を少量づつ滴下してpHを約7に調
節した。 その後ゼオライトを濾過し、イオン交換水で十分洗浄し
た。得られたゼオライトを減圧乾燥して触媒を得た。こ
の触媒に希硫酸を含浸して十分乾燥した。その触媒を用
いて、実施例1と同様な反応を行った。なお、銅担持量
は約8wt%であり、硫酸根含量は約6wt%であった
Example 2 ZSM-5 type zeolite was dispersed in a copper nitrate solution, and diluted ammonia water was added dropwise little by little to adjust the pH to about 7. Thereafter, the zeolite was filtered and thoroughly washed with ion-exchanged water. The obtained zeolite was dried under reduced pressure to obtain a catalyst. This catalyst was impregnated with dilute sulfuric acid and thoroughly dried. A reaction similar to that in Example 1 was carried out using the catalyst. Note that the amount of copper supported was about 8 wt%, and the content of sulfate groups was about 6 wt%.

【0024】比較例2 実施例2と希硫酸を含浸する以外は全く同様な方法で反
応した。
Comparative Example 2 A reaction was carried out in exactly the same manner as in Example 2, except that dilute sulfuric acid was impregnated.

【0025】実施例2と比較例2の結果を表2にまとめ
る。この結果から明らかなように、後から硫酸根を加え
てもNO除去率が高くなることから、硫酸根を含む触媒
は含まない触媒よりNO除去能が優れていることが分か
る。
The results of Example 2 and Comparative Example 2 are summarized in Table 2. As is clear from this result, the NO removal rate increases even if sulfate groups are added later, indicating that the catalyst containing sulfate groups has better NO removal ability than the catalyst that does not.

【0026】[0026]

【表2】                          
                 No除去率(%)
                    実施例2 
               63        
            比較例2         
       47
[Table 2]
No removal rate (%)
Example 2
63
Comparative example 2
47

【0027】[0027]

【発明の効果】本発明により、酸素を含有する燃焼排ガ
スから窒素酸化物、特にNOx を効率的に除去するこ
とができた。
[Effects of the Invention] According to the present invention, nitrogen oxides, particularly NOx, can be efficiently removed from combustion exhaust gas containing oxygen.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ゼオライトに周期律表第Ib族および
第VIII族から選ばれた一種以上の活性金属および硫
酸根を含有させた触媒と、酸素を含有する燃焼排ガスと
を炭化水素共存下で接触させることからなる窒素酸化物
の除去方法。
Claim 1: A catalyst in which zeolite contains one or more active metals selected from Group Ib and Group VIII of the Periodic Table and a sulfate group is brought into contact with combustion exhaust gas containing oxygen in the coexistence of hydrocarbons. A method for removing nitrogen oxides, which consists of:
JP17166791A 1991-06-17 1991-06-17 Nitrogen oxide removal method Expired - Fee Related JP3242126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17166791A JP3242126B2 (en) 1991-06-17 1991-06-17 Nitrogen oxide removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17166791A JP3242126B2 (en) 1991-06-17 1991-06-17 Nitrogen oxide removal method

Publications (2)

Publication Number Publication Date
JPH04371216A true JPH04371216A (en) 1992-12-24
JP3242126B2 JP3242126B2 (en) 2001-12-25

Family

ID=15927470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17166791A Expired - Fee Related JP3242126B2 (en) 1991-06-17 1991-06-17 Nitrogen oxide removal method

Country Status (1)

Country Link
JP (1) JP3242126B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309235A (en) * 1991-10-25 1993-11-22 Agency Of Ind Science & Technol Method for removing nitrogen oxide in exhaust gas
WO2012007914A3 (en) * 2010-07-15 2012-03-08 Basf Se Copper containing zsm-34, off and /or eri zeolitic material for selective reduction of nox
US9289756B2 (en) 2010-07-15 2016-03-22 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309235A (en) * 1991-10-25 1993-11-22 Agency Of Ind Science & Technol Method for removing nitrogen oxide in exhaust gas
WO2012007914A3 (en) * 2010-07-15 2012-03-08 Basf Se Copper containing zsm-34, off and /or eri zeolitic material for selective reduction of nox
US9289756B2 (en) 2010-07-15 2016-03-22 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx

Also Published As

Publication number Publication date
JP3242126B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JPH0483516A (en) Removal of nitrogen oxide
JP2691643B2 (en) Exhaust gas purification method
JPH04371216A (en) Method for removing nitrogen oxide
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JPH04244218A (en) Method for purifying exhaust gas
JP2852667B2 (en) Method for producing nitrogen oxide decomposition catalyst
JPH02251247A (en) Catalyst for decomposing nitrogen oxide
JP2892396B2 (en) Nitrogen oxide decomposition catalyst
JP3511638B2 (en) Exhaust gas purification method
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JPH04260441A (en) Catalyst and method for purifying exhaust gas
JPH03217218A (en) Method for removing nitrogen oxide
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides
JPH04118030A (en) Method of removing nitrogen oxide
JP2892410B2 (en) Method for producing nitrogen oxide decomposition catalyst
JPH0780314A (en) Waste gas purification catalyst, its production and method for removing nox
JPH05137964A (en) Method for removing nox
JPH05245387A (en) Method for purifying nitrogen oxides
JP3395220B2 (en) Nitrogen oxide removal method
JPH06269675A (en) Catalyst for purifying exhaust gas and purification of nitrogen oxide
JP2601018B2 (en) Exhaust gas purification catalyst
JP2892395B2 (en) Nitrogen oxide decomposition catalyst
JPH06198133A (en) Purifying method of nitrogen oxide
JPH06277521A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees