JPH04365868A - Production of silicon-germanium alloy - Google Patents

Production of silicon-germanium alloy

Info

Publication number
JPH04365868A
JPH04365868A JP3008412A JP841291A JPH04365868A JP H04365868 A JPH04365868 A JP H04365868A JP 3008412 A JP3008412 A JP 3008412A JP 841291 A JP841291 A JP 841291A JP H04365868 A JPH04365868 A JP H04365868A
Authority
JP
Japan
Prior art keywords
germanium alloy
heat treatment
silicon
temperature
silicon germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3008412A
Other languages
Japanese (ja)
Other versions
JP2623172B2 (en
Inventor
Shinji Marutani
新治 丸谷
Harumi Shibata
晴美 柴田
Toru Takahashi
通 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP3008412A priority Critical patent/JP2623172B2/en
Publication of JPH04365868A publication Critical patent/JPH04365868A/en
Application granted granted Critical
Publication of JP2623172B2 publication Critical patent/JP2623172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the performance index of an Si-Ge alloy by heat-treating the alloy. CONSTITUTION:An Si-Ge alloy is formed on the surface of a substrate by a vapor growth method and this alloy is heat-treated by heating to a temp. above the growth temp. The durability of the Si-Ge alloy as well as the performance index is enhanced and an Si-Ge alloy for a thermoelectric element having satisfactory characteristics and high reliability can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、シリコンゲルマニウム
合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon germanium alloy.

【0002】0002

【従来の技術】P型半導体とN型半導体とを、接合して
PN素子対を形成し、このPN素子対の各端部を異なる
温度に保つとき、この温度差に応じて熱起電力が生じる
いわゆるゼーベック効果を利用した熱電発電素子は、小
型で構造が簡単なことから、いろいろなデバイスへの幅
広い利用が期待されている。
[Prior Art] When a P-type semiconductor and an N-type semiconductor are bonded to form a PN element pair, and each end of the PN element pair is maintained at a different temperature, a thermoelectromotive force is generated depending on the temperature difference. Thermoelectric power generation elements that utilize the so-called Seebeck effect that occurs are expected to be widely used in a variety of devices because they are small and have a simple structure.

【0003】このような熱電発電素子に用いられる材料
の代表的なものにシリコンゲルマニウムがある。
Silicon germanium is a typical material used in such thermoelectric generating elements.

【0004】シリコンゲルマニウムの製造方法には、粉
末焼結法(R.A.Lefever,G.L.Mcva
yand R.J.Baughman: “PREPA
RATION OF HOT SIRICON−GER
MANIUM INGOT :Part 3 Vacu
um Hot Prssing ”Mat,Res,B
ull 9 863(1974))あるいは気相成長法
(特開昭63−285923号公報)等がある。
[0004] As a method for producing silicon germanium, there is a powder sintering method (R.A. Lefever, G.L. Mcva).
yand R. J. Baughman: “PREPA
RATION OF HOT SIRICON-GER
MANIUM INGOT :Part 3 Vacu
um Hot Prssing ”Mat, Res, B
Ull 9 863 (1974)) or a vapor phase growth method (Japanese Unexamined Patent Publication No. 63-285923).

【0005】これらの方法のうち、粉末焼結法は、金属
シリコン、金属ゲルマニウムおよびドープ材を溶融し、
これを冷却して得られたシリコンゲルマニウム合金を1
0メッシュ程度まで破砕して粉末にし、このシリコンゲ
ルマニウム合金粉末を10−5Torr以下の真空容器
中約1300℃、約2000kg/cm2 分の高圧下
でホットプレスすることによってシリコンゲルマニウム
合金を得ようとするものである。
Among these methods, the powder sintering method melts metal silicon, metal germanium, and a dopant,
The silicon germanium alloy obtained by cooling this is 1
A silicon germanium alloy is obtained by crushing the silicon germanium alloy powder to about 0 mesh and hot pressing it in a vacuum container at 10-5 Torr or less under high pressure of about 1300°C and about 2000 kg/cm2. It is something.

【0006】また、気相成長法は、原料としてSiH4
 ガス、GeCl4 ガス、p型あるいはn型のドーピ
ングガスをキャリアガスと共に、基体を保持した反応容
器内に導入し、基体表面で還元反応を生起せしめ、堆積
させるようにしたものである。
[0006] Furthermore, the vapor phase growth method uses SiH4 as a raw material.
Gas, GeCl4 gas, p-type or n-type doping gas is introduced together with a carrier gas into a reaction vessel holding a substrate to cause a reduction reaction on the surface of the substrate and deposit it.

【0007】このような方法で得られたシリコンゲルマ
ニウム合金を用いて熱電素子を形成する場合、シリコン
ゲルマニウム合金中の歪のために電気伝導度が低くなり
、十分な出力特性を得ることができないという問題があ
った。
When a thermoelectric element is formed using a silicon germanium alloy obtained by such a method, it is said that the electrical conductivity becomes low due to the strain in the silicon germanium alloy, making it impossible to obtain sufficient output characteristics. There was a problem.

【0008】なお、熱電素子の性能指数Zは、次の式で
表される。
Note that the figure of merit Z of the thermoelectric element is expressed by the following formula.

【0009】z=ασ2 /K α:ゼーベック係数 σ:電気伝導度 K:熱伝導度 また、次式に示すように、性能指数が大きいほど熱電変
換効率も大きくなる。 η=2ΔT/(8/Z+3Th +Tc )η:熱電変
換効率 Th :高温側温度 Tc :低温側温度 ΔT:温度差 この性能指数を大きくすることによって熱電変換効率を
大きくすることができるわけであるが、熱電素子の高温
側では、熱により、性能の改善をはかることができるの
に対し、低温側では高温になることがないため、低性能
を継続してしまうという問題があった。
z=ασ2 /K α: Seebeck coefficient σ: Electrical conductivity K: Thermal conductivity Furthermore, as shown in the following equation, the larger the figure of merit, the greater the thermoelectric conversion efficiency. η=2ΔT/(8/Z+3Th+Tc) η: Thermoelectric conversion efficiency Th: High temperature side temperature Tc: Low temperature side temperature ΔT: Temperature difference By increasing this figure of merit, thermoelectric conversion efficiency can be increased. On the high-temperature side of the thermoelectric element, performance can be improved by heat, but on the low-temperature side, the temperature does not reach high, resulting in continued low performance.

【0010】0010

【発明が解決しようとする課題】このように従来のシリ
コンゲルマニウム合金は、歪のために電気伝導度が低く
なり、結果としてし性能指数が小さく、熱電装置として
用いる場合に十分な出力を得ることができないという問
題があった。
[Problems to be Solved by the Invention] As described above, conventional silicon germanium alloys have low electrical conductivity due to strain, resulting in a small figure of merit, making it difficult to obtain sufficient output when used as a thermoelectric device. The problem was that it was not possible.

【0011】本発明は、前記実情に鑑みてなされたもの
で、性能指数が大きく信頼性の高いシリコンゲルマニウ
ム合金を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a silicon-germanium alloy with a large figure of merit and high reliability.

【0012】0012

【課題を解決するための手段】そこで本発明では、気相
成長法により基体表面にシリコンゲルマニウム合金を形
成した後、成長温度よりも高温で熱処理するようにして
いる。
[Means for Solving the Problems] Accordingly, in the present invention, after a silicon germanium alloy is formed on the surface of a substrate by a vapor phase growth method, it is heat-treated at a higher temperature than the growth temperature.

【0013】望ましくは、真空中で熱処理を行うように
している。
[0013] Preferably, the heat treatment is performed in a vacuum.

【0014】また望ましくは、窒素、水素、アルゴン等
の不活性ガス雰囲気中で熱処理を行うようにしている。
Preferably, the heat treatment is performed in an atmosphere of an inert gas such as nitrogen, hydrogen, or argon.

【0015】また望ましくは、酸化性雰囲気中で熱処理
を行うようにしている。
Preferably, the heat treatment is performed in an oxidizing atmosphere.

【0016】また本発明では、気相成長工程後、基体温
度を降下せしめることなく成長温度よりもやや高い温度
に昇温したのち基体温度を降下せしめるようにしている
Further, in the present invention, after the vapor phase growth step, the temperature of the substrate is raised to a temperature slightly higher than the growth temperature without lowering it, and then the temperature of the substrate is lowered.

【0017】また、気相成長後、気相成長装置内で、真
空を破ることなくそのまま、直接シリコンゲルマニウム
合金に通電し加熱を行うようにしている。
Further, after the vapor phase growth, the silicon germanium alloy is heated by directly applying current to the silicon germanium alloy in the vapor phase growth apparatus without breaking the vacuum.

【0018】[0018]

【作用】上記方法によれば、シリコンゲルマニウム合金
を成長後熱処理するようにしているため、歪が減少する
ことで、電気伝導度が高くなり性能指数が向上する共に
機械的強度が向上する。
[Operation] According to the above method, since the silicon germanium alloy is heat-treated after growth, the strain is reduced, the electrical conductivity is increased, the figure of merit is improved, and the mechanical strength is improved.

【0019】真空中で熱処理を行うようにすることによ
り、上記効果に加え、雰囲気ガスを介しての伝導による
表面からの熱の放出が防止されるため、均一な加熱が可
能となり、歪の発生を大幅に抑制することができる上、
熱効率が良好となる。
By performing the heat treatment in a vacuum, in addition to the above effects, heat is prevented from being released from the surface due to conduction through the atmospheric gas, making uniform heating possible and reducing the occurrence of distortion. In addition to being able to significantly suppress
Thermal efficiency is improved.

【0020】また、窒素、水素、アルゴン等の不活性ガ
ス雰囲気中で熱処理を行うようにすれば、上記歪の減少
効果に加え、真空装置が不要となり、設備装置が簡単で
安価なものとなる。
[0020] Furthermore, if the heat treatment is performed in an inert gas atmosphere such as nitrogen, hydrogen, or argon, in addition to the effect of reducing the strain described above, a vacuum device is not required, and the equipment becomes simple and inexpensive. .

【0021】また、酸化性雰囲気中で熱処理を行うよう
にすれば、上記歪の減少効果に加え、表面に酸化膜を有
するシリコンゲルマニウム合金が形成される。
Furthermore, if the heat treatment is performed in an oxidizing atmosphere, in addition to the effect of reducing the strain described above, a silicon germanium alloy having an oxide film on the surface is formed.

【0022】さらにまた、従来の方法では、成長工程で
発生した歪は、温度降下時にさらに大きくなり、クラッ
ク発生の原因となっていたが、気相成長工程後、基体温
度を降下せしめることなく成長温度よりもやや高い温度
に昇温したのち基体温度を降下せしめるようにすれば、
この熱処理により消失せしめられるため、極めて歪の少
ないシリコンゲルマニウム合金を得ることができる。
Furthermore, in the conventional method, the strain generated during the growth process becomes even larger when the temperature drops, causing cracks to occur, but after the vapor phase growth process, the strain can be grown without lowering the substrate temperature. If the substrate temperature is lowered after raising the temperature to a temperature slightly higher than the above temperature,
Since it is eliminated by this heat treatment, a silicon germanium alloy with extremely low distortion can be obtained.

【0023】また、気相成長後、気相成長装置内で、真
空を破ることなくそのまま、直接シリコンゲルマニウム
合金に通電し加熱を行うようにすれば、極めて容易にか
つ表面の汚染なしに歪のない良好なシリコンゲルマニウ
ム合金を得ることができる。
[0023] Furthermore, if the silicon germanium alloy is directly heated in the vapor phase growth apparatus without breaking the vacuum after the vapor phase growth, it is possible to remove the strain extremely easily and without contaminating the surface. No good silicon-germanium alloy can be obtained.

【0024】[0024]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0025】実施例1 まず、原料としてSiH4 ガス、GeCl4 ガス、
p型あるいはn型のドーピングガスをキャリアガスと共
に、グラファイトからなる基体を保持した反応容器内に
導入し、基体表面で還元反応を生起せしめ、堆積させて
形成したシリコンゲルマニウム合金を、高周波誘電加熱
炉内に設置する。
Example 1 First, SiH4 gas, GeCl4 gas,
A p-type or n-type doping gas is introduced together with a carrier gas into a reaction vessel holding a graphite substrate to cause a reduction reaction on the substrate surface, and the deposited silicon-germanium alloy is heated in a high-frequency dielectric heating furnace. Installed inside.

【0026】この後炉内に、窒素ガス(N2 )を3リ
ットル/分で流しつつ、900℃に40分の熱処理を行
った。ここで炉の出口側は解放とし熱処理中加熱炉内は
1気圧に保持するようにした。
After that, a heat treatment was performed at 900° C. for 40 minutes while flowing nitrogen gas (N2) into the furnace at a rate of 3 liters/minute. Here, the outlet side of the furnace was opened, and the inside of the heating furnace was maintained at 1 atmosphere during the heat treatment.

【0027】そして所定の時間経過後ガスを停止しシリ
コンゲルマニウムを取り出す。
After a predetermined period of time has elapsed, the gas is stopped and the silicon germanium is taken out.

【0028】この様にして得られたシリコンゲルマニウ
ム合金を切断し電極形成などの加工をおこない素子を形
成する。
The silicon germanium alloy thus obtained is cut and processed to form electrodes to form elements.

【0029】なお、このときのシリコンゲルマニウム合
金の熱処理前および後の電気伝導度を測定し、その結果
を第1図に示す。
The electrical conductivity of the silicon germanium alloy was measured before and after the heat treatment, and the results are shown in FIG.

【0030】この結果から明らかなように、熱処理によ
って電気伝導度が大幅に改善されていることがわかる。 このため、性能指数が上がり高効率での熱電発電が可能
となる。
As is clear from the results, it can be seen that the electrical conductivity is significantly improved by the heat treatment. Therefore, the figure of merit increases and thermoelectric power generation becomes possible with high efficiency.

【0031】また、歪が除去されるため機械的な強度が
あがり耐久性が向上する。
[0031] Furthermore, since strain is removed, mechanical strength is increased and durability is improved.

【0032】実施例2 実施例1で用いたのと同様にして形成したシリコンゲル
マニウム合金を赤外線加熱炉内に設置し、アルゴンガス
(Ar)を3リットル/分で流しつつ赤外線ヒータに通
電することによって、950℃に30分の熱処理を行っ
た。ここでもここで炉の出口側は解放とし熱処理中加熱
炉内は1気圧に保持するようにした。
Example 2 A silicon germanium alloy formed in the same manner as used in Example 1 was placed in an infrared heating furnace, and electricity was applied to the infrared heater while flowing argon gas (Ar) at a rate of 3 liters/min. Heat treatment was performed at 950° C. for 30 minutes. Here again, the outlet side of the furnace was left open, and the inside of the heating furnace was maintained at 1 atmosphere during the heat treatment.

【0033】なお、このときのシリコンゲルマニウム合
金の熱処理前および後の電気伝導度を測定し、その結果
を第2図に示す。
The electrical conductivity of the silicon germanium alloy was measured before and after the heat treatment, and the results are shown in FIG.

【0034】この結果から明らかなように、実施例1と
同様熱処理によって電気伝導度が大幅に改善されている
ことがわかる。
As is clear from the results, it can be seen that the electrical conductivity was significantly improved by the heat treatment as in Example 1.

【0035】実施例3 実施例1および2で用いたのと同様にして形成したシリ
コンゲルマニウム合金を赤外線加熱炉内に設置し、炉内
を真空に吸引したのち赤外線ヒータに通電することによ
って、950℃に30分の熱処理を行った。ここでもこ
こで炉の出口側は解放とし熱処理中加熱炉内は1気圧に
保持するようにした。
Example 3 A silicon germanium alloy formed in the same manner as used in Examples 1 and 2 was placed in an infrared heating furnace, and after the inside of the furnace was evacuated, the infrared heater was energized. A heat treatment was performed at ℃ for 30 minutes. Here again, the outlet side of the furnace was left open, and the inside of the heating furnace was maintained at 1 atmosphere during the heat treatment.

【0036】なお、このときのシリコンゲルマニウム合
金の熱処理前および後の電気伝導度を測定し、その結果
を第3図に示す。
The electrical conductivity of the silicon germanium alloy was measured before and after the heat treatment, and the results are shown in FIG.

【0037】この結果から明らかなように、実施例1と
同様熱処理によって電気伝導度が大幅に改善されている
ことがわかる。
As is clear from the results, it can be seen that the electrical conductivity was significantly improved by the heat treatment as in Example 1.

【0038】実施例4 実施例で用いたのと同様にして形成したシリコンゲルマ
ニウム合金を赤外線加熱炉内に設置し、水蒸気(H2 
O)および酸素(O2 )の混合ガスを3リットル/分
で流しつつ高周波加熱ヒータに通電することによって、
950℃に30分の熱処理を行った。ここでもここで炉
の出口側は解放とし熱処理中加熱炉内は1気圧に保持す
るようにした。
Example 4 A silicon germanium alloy formed in the same manner as that used in Example was placed in an infrared heating furnace and heated with water vapor (H2
By supplying electricity to a high-frequency heater while flowing a mixed gas of O) and oxygen (O2) at a rate of 3 liters/min,
Heat treatment was performed at 950°C for 30 minutes. Here again, the outlet side of the furnace was left open, and the inside of the heating furnace was maintained at 1 atmosphere during the heat treatment.

【0039】なお、このときのシリコンゲルマニウム合
金の熱処理前および後の電気伝導度を測定し、その結果
を第4図に示す。
The electrical conductivity of the silicon germanium alloy was measured before and after the heat treatment, and the results are shown in FIG.

【0040】この結果から明らかなように、実施例1と
同様熱処理によって電気伝導度が大幅に改善されている
ことがわかる。
As is clear from the results, it can be seen that the electrical conductivity was significantly improved by the heat treatment as in Example 1.

【0041】この場合は、表面に酸化膜の形成されたシ
リコンゲルマニウム合金が得られる。  この酸化膜を
素子の絶縁膜として利用するようにダイシングを行い、
電極を形成して熱電素子を形成するようにすれば、絶縁
膜を形成する工程を節減することができる。
In this case, a silicon germanium alloy with an oxide film formed on the surface is obtained. Dicing is performed to use this oxide film as an insulating film for the element.
By forming the thermoelectric element by forming the electrode, the process of forming the insulating film can be reduced.

【0042】なお、前記実施例では、水蒸気+酸素雰囲
気中で熱処理を行うようにしたが、酸素のみの雰囲気中
で熱処理を行うようにしても同様に表面に酸化膜を形成
したシリコンゲルマニウム合金を得ることができる。
In the above embodiment, the heat treatment was carried out in a water vapor + oxygen atmosphere, but even if the heat treatment was carried out in an atmosphere containing only oxygen, the silicon germanium alloy with an oxide film formed on its surface could be treated in the same way. Obtainable.

【0043】この結果から明らかなように、実施例1と
同様熱処理によって電気伝導度が大幅に改善されている
ことがわかる。
As is clear from the results, it can be seen that the electrical conductivity was significantly improved by the heat treatment as in Example 1.

【0044】実施例5 まず、グラファイトからなる基体を、反応容器内の支持
台に設置し、この基体に直接通電して850℃に加熱し
つつ、この反応容器内に原料ガスとしてSiH4 ガス
、GeCl4 ガス、p型あるいはn型のドーピングガ
スをキャリアガスと共に流し、基体表面で還元反応を生
起せしめ、シリコンゲルマニウム合金を堆積する。
Example 5 First, a substrate made of graphite was placed on a support in a reaction vessel, and while heating the substrate to 850° C. by directly applying electricity, SiH4 gas and GeCl4 were introduced into the reaction vessel as raw material gases. A p-type or n-type doping gas is flowed together with a carrier gas to cause a reduction reaction on the surface of the substrate, thereby depositing a silicon germanium alloy.

【0045】この後、支持台に設置したまま降温させる
ことなく成長炉内から取り出すことなく原料ガスを水素
ガス(H2 )で置換し、水素ガスを1.5リットル/
分で流しつつこのシリコンゲルマニウム合金に直接通電
して加熱し、このシリコンゲルマニウム合金自体の温度
が970℃となるように電流供給量を増大し、30分の
熱処理を行った。ここでもここで炉の出口側は解放とし
熱処理中加熱炉内は1気圧に保持するようにした。
After that, the raw material gas was replaced with hydrogen gas (H2) without lowering the temperature and without taking it out of the growth furnace while it was placed on the support stand, and the hydrogen gas was reduced to 1.5 liters/hour.
The silicon germanium alloy was heated by directly applying current to it while flowing for 30 minutes, and the amount of current supplied was increased so that the temperature of the silicon germanium alloy itself reached 970° C., and heat treatment was performed for 30 minutes. Here again, the outlet side of the furnace was left open, and the inside of the heating furnace was maintained at 1 atmosphere during the heat treatment.

【0046】なお、このときのシリコンゲルマニウム合
金の熱処理前および後の電気伝導度を測定し、その結果
を第6図に示す。
The electrical conductivity of the silicon germanium alloy was measured before and after the heat treatment, and the results are shown in FIG.

【0047】この結果から明らかなように、熱処理によ
って電気伝導度がさらに大幅に改善されていることがわ
かる。
[0047] As is clear from the results, it can be seen that the electrical conductivity is further significantly improved by the heat treatment.

【0048】これは、気相成長後、気相成長装置内で、
真空を破ることなく降温させることなくそのまま、直接
シリコンゲルマニウム合金に通電し加熱を行うようにし
ているため、成長工程で発生した歪はこの熱処理により
消失せしめられ、極めて容易にかつ表面の汚染なしに歪
のない良好なシリコンゲルマニウム合金を得ることがで
きることによるものと思われる。
[0048] After vapor phase growth, in the vapor phase growth apparatus,
Since the silicon germanium alloy is directly heated by electricity without breaking the vacuum or lowering its temperature, the strain generated during the growth process is eliminated by this heat treatment, making it extremely easy to grow without contaminating the surface. This seems to be due to the fact that a good silicon-germanium alloy without distortion can be obtained.

【0049】なお、以上の実施例で示したものはいずれ
も一導電型のシリコンゲルマニウム合金のみであるが、
ドーピングガスを途中で切り替えることにより、pn接
合を有するシリコンゲルマニウム合金を形成することも
でき、この場合、本発明の熱処理を用いれば接合面での
歪を消失せしめることができ、極めて信頼性の高い熱電
素子の形成を行う事が可能となる。
[0049] Although all of the examples shown above are silicon-germanium alloys of one conductivity type,
By switching the doping gas midway, it is also possible to form a silicon germanium alloy with a pn junction. In this case, the heat treatment of the present invention can eliminate strain at the bonding surface, resulting in an extremely reliable process. It becomes possible to form a thermoelectric element.

【0050】[0050]

【発明の効果】以上説明してきたように、本発明の方法
によれば、気相成長法によって形成したシリコンゲルマ
ニウム合金を熱処理するようにしているため、性能指数
が向上すると共に耐久性が向上し、特性が良好で信頼性
の高い熱電素子用するゲルマニウム合金を得ることがで
きる。
[Effects of the Invention] As explained above, according to the method of the present invention, since the silicon germanium alloy formed by the vapor phase growth method is heat-treated, the performance index is improved and the durability is improved. , it is possible to obtain a germanium alloy for use in thermoelectric elements with good properties and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例の方法で得られたシリコ
ンゲルマニウム合金の電気伝導度と熱処理前の電気伝導
度を示す比較図である。
FIG. 1 is a comparison diagram showing the electrical conductivity of a silicon germanium alloy obtained by the method of the first example of the present invention and the electrical conductivity before heat treatment.

【図2】本発明の第2の実施例の方法で得られたシリコ
ンゲルマニウム合金の電気伝導度と熱処理前の電気伝導
度を示す比較図である。
FIG. 2 is a comparison diagram showing the electrical conductivity of a silicon germanium alloy obtained by the method of the second example of the present invention and the electrical conductivity before heat treatment.

【図3】本発明の第3の実施例の方法で得られたシリコ
ンゲルマニウム合金の電気伝導度と熱処理前の電気伝導
度を示す比較図である。
FIG. 3 is a comparison diagram showing the electrical conductivity of a silicon germanium alloy obtained by the method of the third example of the present invention and the electrical conductivity before heat treatment.

【図4】本発明の第4の実施例の方法で得られたシリコ
ンゲルマニウム合金の電気伝導度と熱処理前の電気伝導
度を示す比較図である。
FIG. 4 is a comparison diagram showing the electrical conductivity of a silicon germanium alloy obtained by the method of the fourth example of the present invention and the electrical conductivity before heat treatment.

【図5】本発明の第5の実施例の方法で得られたシリコ
ンゲルマニウム合金の電気伝導度と熱処理前の電気伝導
度を示す比較図である。
FIG. 5 is a comparison diagram showing the electrical conductivity of a silicon germanium alloy obtained by the method of the fifth example of the present invention and the electrical conductivity before heat treatment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基体表面に気相成長法によりシリコンゲル
マニウム合金を形成する気相成長工程と、前記シリコン
ゲルマニウム合金を成長温度以上の温度に加熱する熱処
理工程とを含むことを特徴とするシリコンゲルマニウム
合金の製造方法。
1. A silicon-germanium method comprising: a vapor-phase growth step of forming a silicon-germanium alloy on the surface of a substrate by a vapor-phase growth method; and a heat treatment step of heating the silicon-germanium alloy to a temperature equal to or higher than the growth temperature. Alloy manufacturing method.
【請求項2】前記熱処理工程が真空中で加熱する工程で
あることを特徴とする請求項1に記載のシリコンゲルマ
ニウム合金の製造方法。
2. The method for producing a silicon germanium alloy according to claim 1, wherein the heat treatment step is a step of heating in a vacuum.
【請求項3】前記熱処理工程が不活性ガス雰囲気中で加
熱する工程であることを特徴とする請求項1に記載のシ
リコンゲルマニウム合金の製造方法。
3. The method for producing a silicon germanium alloy according to claim 1, wherein the heat treatment step is a step of heating in an inert gas atmosphere.
【請求項4】前記熱処理工程が酸化性ガス雰囲気中で加
熱する工程であることを特徴とする請求項1に記載のシ
リコンゲルマニウム合金の製造方法。
4. The method for producing a silicon germanium alloy according to claim 1, wherein the heat treatment step is a step of heating in an oxidizing gas atmosphere.
【請求項5】基体表面に気相成長法によりシリコンゲル
マニウム合金を形成する気相成長工程と、前記気相成長
工程後、基体温度を降下せしめることなく成長温度より
もやや高い温度に昇温したのち基体温度を降下せしめる
加熱工程とを含むことを特徴とするシリコンゲルマニウ
ム合金の製造方法。
5. A vapor phase growth step of forming a silicon germanium alloy on the surface of a substrate by a vapor phase growth method, and after the vapor phase growth step, the temperature of the substrate is raised to a temperature slightly higher than the growth temperature without lowering the temperature. A method for producing a silicon-germanium alloy, the method comprising the step of subsequently lowering the substrate temperature.
JP3008412A 1991-01-28 1991-01-28 Method for producing silicon germanium alloy Expired - Lifetime JP2623172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008412A JP2623172B2 (en) 1991-01-28 1991-01-28 Method for producing silicon germanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008412A JP2623172B2 (en) 1991-01-28 1991-01-28 Method for producing silicon germanium alloy

Publications (2)

Publication Number Publication Date
JPH04365868A true JPH04365868A (en) 1992-12-17
JP2623172B2 JP2623172B2 (en) 1997-06-25

Family

ID=11692433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008412A Expired - Lifetime JP2623172B2 (en) 1991-01-28 1991-01-28 Method for producing silicon germanium alloy

Country Status (1)

Country Link
JP (1) JP2623172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215856A (en) * 1985-07-12 1987-01-24 Matsushita Electronics Corp Charge transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215856A (en) * 1985-07-12 1987-01-24 Matsushita Electronics Corp Charge transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material

Also Published As

Publication number Publication date
JP2623172B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US20180204702A1 (en) Phosphorus doped diamond electrode with tunable low work function for emitter and collector applications
TW201242050A (en) Process for conversion of semiconductor layers
US4857270A (en) Process for manufacturing silicon-germanium alloys
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
JP2623172B2 (en) Method for producing silicon germanium alloy
CN105420528B (en) One kind prepares high-performance AgInTe2The method of thermoelectric material
JP5983382B2 (en) Method for manufacturing a thermoelectric generator
CN106653572B (en) Preparation method of polycrystalline silicon thin film and photoelectric device
KR20230132455A (en) Method for manufacturing epitaxial wafers
JP2021072441A (en) Manufacturing method for semiconductor substrate, and semiconductor substrate
JP4070108B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2006287000A (en) Thermoelectric device and substrate therefor
JP2003282962A (en) Thermoelectric material and its manufacturing method
CN109742012A (en) It is a kind of for improving the low-temperature microwave method for annealing of silicon superlattice film photoelectric characteristic
Humphreys et al. Titanium silicide contacts on semiconducting diamond substrates
Choi et al. Thermoelectric properties of n-type (Pb/sub 1-x/Ge/sub x/) Te fabricated by hot pressing method
WO2023163078A1 (en) Production method for single crystal semiconductor film, production method for multilayer film of single crystal semiconductor film, and semiconductor element
JPS6313340B2 (en)
JP2675174B2 (en) Solar cell manufacturing method
CN106784284A (en) A kind of preparation method of molybdenum bisuphide composite thermoelectric material
JP2002076450A (en) Method for manufacturing thermoelectric material
CN112875659A (en) Method for realizing uniform fluorine doping of hexagonal boron nitride in situ
TW200415803A (en) Electrode for p-type SIC
JPH0281421A (en) Forming method for polycrystalline silicon film
JP2618407B2 (en) Manufacturing method of single crystal alloy thin film