JP2006287000A - Thermoelectric device and substrate therefor - Google Patents

Thermoelectric device and substrate therefor Download PDF

Info

Publication number
JP2006287000A
JP2006287000A JP2005105584A JP2005105584A JP2006287000A JP 2006287000 A JP2006287000 A JP 2006287000A JP 2005105584 A JP2005105584 A JP 2005105584A JP 2005105584 A JP2005105584 A JP 2005105584A JP 2006287000 A JP2006287000 A JP 2006287000A
Authority
JP
Japan
Prior art keywords
substrate
thermoelectric
thermoelectric device
compound semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105584A
Other languages
Japanese (ja)
Inventor
Jun Komiyama
純 小宮山
Yoshihisa Abe
芳久 阿部
Shunichi Suzuki
俊一 鈴木
Hideo Nakanishi
秀夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005105584A priority Critical patent/JP2006287000A/en
Publication of JP2006287000A publication Critical patent/JP2006287000A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a thermoelectric device capable of reducing the heat conduction in the direction perpendicular to the current direction and improving the thermoelectric conversion efficiency, and to provide a thermoelectric device using it. <P>SOLUTION: In the substrate for the thermoelectric device, a compound semiconductor thin film 2 with thickness of ≥0.5 μm and ≤10 μm is formed on a porous single-crystal substrate 1 with a thickness of ≥1 μm and ≤1,000 μm and a porosity of ≥5% and ≤95%. Electrodes 3 and an insulating film 4 are formed on the surface of the compound semiconductor thin film 2, and a cooled material 5 is laminated on the insulating film 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ゼーベック効果を利用した熱発電や、ペルチェ効果を利用した吸熱・冷却等の熱電変換に好適に用いられる熱電デバイス用基板およびそれを用いた熱電デバイスに関する。   The present invention relates to a thermoelectric device substrate suitably used for thermoelectric conversion such as thermoelectric generation using the Seebeck effect and heat absorption / cooling using the Peltier effect, and a thermoelectric device using the same.

熱電デバイスは、熱エネルギーと電気エネルギーの直接相互変換、すなわち、熱電変換を行うために、特殊な半導体や金属材料を用いて構成されるデバイスであり、熱機関と異なり、原理的にマイクロ化が可能であり、効率良く相互エネルギー変換を行うことができるという利点を有している。   Thermoelectric devices are devices that use special semiconductors or metal materials to perform direct mutual conversion between heat energy and electrical energy, that is, thermoelectric conversion. It is possible and has the advantage that mutual energy conversion can be performed efficiently.

前記熱電デバイスには、主に、熱電材料に温度差を設けることによって、電気担体(キャリア)により熱エネルギーが輸送され、これにより生じる電圧を取り出す、いわゆるゼーベック効果を利用した熱発電デバイスと、これとは逆に、熱電材料に電圧を印加して電流を流すことによって、キャリアにより熱エネルギーを輸送させる、いわゆるペルチェ効果を利用した冷却デバイスとがある。   The thermoelectric device mainly includes a thermoelectric power generation device using a so-called Seebeck effect in which thermal energy is transported by an electric carrier (carrier) by taking a temperature difference in the thermoelectric material, and a voltage generated thereby is taken out. On the other hand, there is a cooling device using a so-called Peltier effect in which heat energy is transported by carriers by applying a voltage to a thermoelectric material to flow current.

前記熱電材料としては、低い熱伝導性および良好な電気伝導性を有する固体が理想的であり、従来は、テルル系、シリサイド系材料、SiGe系材料等の特殊な半導体や金属材料が用いられ、焼結または基板上への薄層成長により作製されていた。
例えば、特許文献1には、Si/Ge超格子構造に特定元素を高濃度でドープして不完全エピタキシャル成長させたSiGe系材料からなる熱電材料が開示されている。
特開2003−282977号公報
As the thermoelectric material, a solid having low thermal conductivity and good electrical conductivity is ideal, and conventionally, a special semiconductor or metal material such as tellurium-based, silicide-based material, SiGe-based material is used, It was produced by sintering or growing a thin layer on a substrate.
For example, Patent Document 1 discloses a thermoelectric material made of a SiGe-based material in which a specific element is doped at a high concentration in a Si / Ge superlattice structure and is incompletely epitaxially grown.
JP 2003-282777 A

しかしながら、上記のような従来の熱電材料を用いたデバイスにおいては、電流方向に対して垂直の方向の熱伝導が遮断されておらず、この方向への熱の漏れによって、熱電デバイスの性能が低下するという課題を有していた。   However, in the devices using the conventional thermoelectric materials as described above, the heat conduction in the direction perpendicular to the current direction is not cut off, and the performance of the thermoelectric device deteriorates due to heat leakage in this direction. Had the problem of doing.

本発明は、上記技術的課題を解決するためになされたものであり、電流方向に対して垂直な方向の熱伝導が低減され、熱電変換効率の向上を図ることができる熱電デバイス用基板およびそれを用いた熱電デバイスを提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and a thermoelectric device substrate capable of reducing the heat conduction in the direction perpendicular to the current direction and improving the thermoelectric conversion efficiency, and the same. It aims at providing the thermoelectric device using this.

本発明に係る熱電デバイス用基板は、厚さ1μm以上1000μm以下、気孔率5%以上95%以下の多孔質単結晶基板上に、厚さ0.5μm以上10μm以下の化合物半導体薄膜が形成されていることを特徴とする。
このような構成からなる基板を熱電材料として用いることにより、電流方向に対して垂直の方向の熱伝導の低減化を図ることができ、また、化合物半導体膜のキャリアトラップが低減され、キャリア濃度を高くすることができる。
The substrate for thermoelectric devices according to the present invention has a compound semiconductor thin film having a thickness of 0.5 μm or more and 10 μm or less formed on a porous single crystal substrate having a thickness of 1 μm or more and 1000 μm or less and a porosity of 5% or more and 95% or less. It is characterized by being.
By using a substrate having such a structure as a thermoelectric material, heat conduction in a direction perpendicular to the current direction can be reduced, carrier traps in the compound semiconductor film can be reduced, and carrier concentration can be reduced. Can be high.

前記多孔質単結晶基板はSiからなることが好ましい。
多孔質Si基板作製技術は確立しており、また、結晶性に優れたSiを用いることによって、前記化合物半導体膜のキャリアトラップをより低減することができることから、Siは好適な材料である。
The porous single crystal substrate is preferably made of Si.
A porous Si substrate manufacturing technique has been established, and Si is a suitable material because carrier trapping of the compound semiconductor film can be further reduced by using Si having excellent crystallinity.

あるいはまた、前記多孔質単結晶基板は、GaAsからなることが好ましい。
GaAsは、結晶性がSiと同程度であり、しかも、熱伝導率はSiよりも小さいことから、熱電変換効率の観点から、より好適に用いることができる材料である。
Alternatively, the porous single crystal substrate is preferably made of GaAs.
GaAs is a material that can be used more suitably from the viewpoint of thermoelectric conversion efficiency because it has the same crystallinity as Si and has a lower thermal conductivity than Si.

また、前記熱電デバイス用基板においては、化合物半導体薄膜が、SiC、SiGe、GaN、BP、BSbのうちの少なくとも1種からなることが好ましい。
これらの化合物は、半導体として、優れた熱電変換能を有していることから、本発明における化合物半導体薄膜に好適な材料である。
In the thermoelectric device substrate, the compound semiconductor thin film is preferably made of at least one of SiC, SiGe, GaN, BP, and BSb.
Since these compounds have excellent thermoelectric conversion ability as semiconductors, they are suitable materials for the compound semiconductor thin film in the present invention.

また、本発明に係る熱電デバイスは、上記熱電デバイス用基板が用いられていることを特徴とする。
このような熱電デバイスによれば、従来の熱電デバイスよりも熱電変換効率の向上が図られる。
The thermoelectric device according to the present invention is characterized in that the thermoelectric device substrate is used.
According to such a thermoelectric device, the thermoelectric conversion efficiency can be improved as compared with the conventional thermoelectric device.

前記熱電デバイスは、化合物半導体薄膜の表面に、電極および絶縁膜が形成され、該絶縁膜上に被冷却物が積層されていることが好ましい。
本発明に係る熱デバイス用基板を用いて、上記のような構成とすることにより、より高性能の熱電デバイスを得ることができる。
In the thermoelectric device, it is preferable that an electrode and an insulating film are formed on the surface of the compound semiconductor thin film, and an object to be cooled is laminated on the insulating film.
By using the thermal device substrate according to the present invention and having the above-described configuration, a higher-performance thermoelectric device can be obtained.

前記熱電デバイスによれば、熱電性能指数(ZT)≧1のものを得ることができる。
ここで、ZT=S2T/(ρ・κ)の式により定義される値であり、S:ゼーベック係数(V/K)、T:動作温度(K)、ρ:抵抗率(Ωm)、κ:熱伝導度(W/mK)である。
従来の熱電デバイスは、一般に、熱伝導性能指数(ZT)<1であるが、本発明によれば、ZT≧1であるより熱電変換効率の高い熱電デバイスとすることができる。
According to the thermoelectric device, a thermoelectric figure of merit (ZT) ≧ 1 can be obtained.
Here, ZT is a value defined by the formula of S 2 T / (ρ · κ), S: Seebeck coefficient (V / K), T: operating temperature (K), ρ: resistivity (Ωm), κ: Thermal conductivity (W / mK).
Conventional thermoelectric devices generally have a thermal conductivity figure of merit (ZT) <1, but according to the present invention, a thermoelectric device with higher thermoelectric conversion efficiency than ZT ≧ 1 can be obtained.

上述したとおり、本発明に係る熱電デバイス用基板によれば、電流方向に対して垂直な方向の熱伝導が低減され、熱電変換効率の向上を図ることができる。
したがって、前記基板を用いた本発明に係る熱電デバイスは、高効率の熱電効果が得られるため、排熱等の熱エネルギーを有用な電気エネルギーに変換する発電技術や省エネルギー技術等の次世代エネルギー技術の確立にも寄与するものとなり得る。
As described above, according to the thermoelectric device substrate according to the present invention, the heat conduction in the direction perpendicular to the current direction is reduced, and the thermoelectric conversion efficiency can be improved.
Therefore, since the thermoelectric device according to the present invention using the substrate can obtain a high-efficiency thermoelectric effect, next-generation energy technologies such as power generation technology and energy saving technology that convert thermal energy such as exhaust heat into useful electrical energy. Can also contribute to the establishment of

以下、本発明について、図面を参照して、より詳細に説明する。
図1に、本発明に係る熱電デバイスの概略を示す。図1に示す熱電デバイスは、多孔質単結晶基板1上に、化合物半導体薄膜2が形成された本発明に係る熱電デバイス用基板の表面に、電極3および絶縁膜4が形成され、該絶縁膜4上に、被冷却物5が積層されている構造からなるものである。
すなわち、多孔質単結晶基板1上に、化合物半導体薄膜2が形成された基板を熱電材料として用いるものである。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 schematically shows a thermoelectric device according to the present invention. In the thermoelectric device shown in FIG. 1, an electrode 3 and an insulating film 4 are formed on the surface of a substrate for a thermoelectric device according to the present invention in which a compound semiconductor thin film 2 is formed on a porous single crystal substrate 1, and the insulating film 4 has a structure in which an object to be cooled 5 is laminated.
That is, a substrate in which the compound semiconductor thin film 2 is formed on the porous single crystal substrate 1 is used as a thermoelectric material.

前記熱電デバイス用基板における多孔質単結晶基板1は、厚さが1μm以上1000μm以下であり、気孔率が5%以上95%以下のものを用いる。
このような多孔質単結晶基板を用いることにより、電流方向に対して垂直の方向の熱伝導の低減化を図ることができる。また、この基板上に形成される化合物半導体膜2のキャリアトラップを低減し、キャリア濃度を高くすることができる。
これにより、従来の熱電デバイス用基板を用いた場合に比べて、熱電デバイスの熱電性能を2倍程度向上させることが可能となる。
The porous single crystal substrate 1 in the substrate for thermoelectric devices has a thickness of 1 μm or more and 1000 μm or less, and a porosity of 5% or more and 95% or less.
By using such a porous single crystal substrate, heat conduction in a direction perpendicular to the current direction can be reduced. Further, the carrier trap of the compound semiconductor film 2 formed on the substrate can be reduced and the carrier concentration can be increased.
Thereby, compared with the case where the conventional substrate for thermoelectric devices is used, it becomes possible to improve the thermoelectric performance of a thermoelectric device about 2 times.

前記多孔質単結晶基板1の厚さが1μm未満である場合、電流方向に対して垂直の方向の熱伝導を十分に抑制することが困難である。
一方、前記厚さが1000μmを超える場合、原材料およびエネルギー等の浪費となり、経済的な損失となる。
When the thickness of the porous single crystal substrate 1 is less than 1 μm, it is difficult to sufficiently suppress the heat conduction in the direction perpendicular to the current direction.
On the other hand, when the thickness exceeds 1000 μm, raw materials and energy are wasted, resulting in an economic loss.

前記多孔質単結晶基板1はSiからなることが好ましい。
多孔質(ポーラス)Siは、スポンジ状のSi結晶であり、直径数nm程度の微細な孔が形成されたものであり、Si基板にその表面からの深さ数nm〜数μmまでの範囲としてもよく、あるいはまた、全体を多孔質Siとしてもよい。
結晶性に優れたSiを用いることにより、その上に形成される化合物半導体膜2は、キャリアトラップがより低減され、キャリア濃度がより高くなり、従来の熱電デバイス用基板を用いた場合に比べて、熱電デバイスの熱電性能を3倍程度向上させることが可能となる。
The porous single crystal substrate 1 is preferably made of Si.
Porous Si is a sponge-like Si crystal in which fine pores with a diameter of several nanometers are formed, and the Si substrate has a depth ranging from several nanometers to several micrometers from its surface. Alternatively, the whole may be made of porous Si.
By using Si having excellent crystallinity, the compound semiconductor film 2 formed thereon has a reduced carrier trap and a higher carrier concentration, compared with the case where a conventional thermoelectric device substrate is used. The thermoelectric performance of the thermoelectric device can be improved about three times.

上記のような多孔質Si基板は、例えば、フッ酸(HF)およびエタノールを含む水溶液中で、白金電極を陰極とし、直流バイアスでSi基板の陽極化成処理を行うことにより作製することができる。
その他、硝酸やHF中に基板をSi浸漬させる化学エッチング法等によっても、Si基板表面に多孔質層を形成することができるが、電流方向および熱伝導方向を制御する観点から、気孔の配向性が得られる上記のような陽極化成方法を用いることが好ましい。
The porous Si substrate as described above can be produced, for example, in an aqueous solution containing hydrofluoric acid (HF) and ethanol, using a platinum electrode as a cathode and anodizing the Si substrate with a direct current bias.
In addition, a porous layer can be formed on the surface of the Si substrate by a chemical etching method in which the substrate is immersed in nitric acid or HF, but from the viewpoint of controlling the current direction and the heat conduction direction, the orientation of the pores It is preferable to use the anodizing method as described above in which

また、上記のようにして得られる多孔質Si基板は、水素(H2)または減圧雰囲気下で、800〜1400℃程度の高温熱処理を施すことにより、多孔質層表面の原子が再配列し、内部に多孔質層を残存させた状態で、表面を平滑な非多孔質層とすることも可能である。
なお、このような熱処理は、通常、気相成長における前処理として、自然酸化膜を除去する工程として行われるH2またはHClによる1000℃前後の熱処理においても、同様の効果が得られる。
Further, the porous Si substrate obtained as described above is subjected to high-temperature heat treatment at about 800 to 1400 ° C. in hydrogen (H 2 ) or a reduced pressure atmosphere, so that atoms on the surface of the porous layer are rearranged, It is also possible to form a non-porous layer having a smooth surface with the porous layer remaining inside.
Such a heat treatment usually has the same effect as a heat treatment at around 1000 ° C. with H 2 or HCl, which is performed as a step of removing the natural oxide film as a pretreatment in vapor phase growth.

あるいはまた、前記多孔質単結晶基板1は、GaAsからなるものでもよい。多孔質GaAs基板も、上記Si基板と同様の方法により、作製することができる。
GaAsは、結晶性がSiと同程度であり、しかも、熱伝導率はSiよりも小さいため、電流方向に対して垂直方向の熱伝導をより低減化することができる。
これにより、従来の熱電デバイス用基板を用いた場合に比べて、熱電デバイスの熱電性能を4倍程度向上させることが可能となる。
Alternatively, the porous single crystal substrate 1 may be made of GaAs. The porous GaAs substrate can also be produced by the same method as that for the Si substrate.
Since GaAs has the same degree of crystallinity as Si and has a thermal conductivity smaller than that of Si, thermal conduction in the direction perpendicular to the current direction can be further reduced.
Thereby, compared with the case where the conventional substrate for thermoelectric devices is used, it becomes possible to improve the thermoelectric performance of a thermoelectric device about 4 times.

本発明に係る熱電デバイス用基板においては、上記のような多孔質単結晶基板1上に、厚さ0.5μm以上10μm以下の化合物半導体薄膜2を形成する。
この化合物半導体薄膜2は、p伝導型、n伝導型のいずれでもよいが、熱電変換効率の観点から、pn両伝導型を使用することが好ましい。また、非晶質、多結晶、単結晶のいずれでもよいが、熱伝導性および電気伝導性の方向性の制御の観点から、単結晶であることが好ましい。
In the substrate for thermoelectric devices according to the present invention, the compound semiconductor thin film 2 having a thickness of 0.5 μm or more and 10 μm or less is formed on the porous single crystal substrate 1 as described above.
The compound semiconductor thin film 2 may be either a p-conduction type or an n-conduction type, but it is preferable to use a pn both-conduction type from the viewpoint of thermoelectric conversion efficiency. Any of amorphous, polycrystalline, and single crystals may be used, but single crystals are preferable from the viewpoint of controlling the directionality of thermal conductivity and electrical conductivity.

前記化合物半導体薄膜2の材料としては、SiC、SiGe、GaN、BP、BSbのうちの少なくとも1種からなることが好ましい。
これらの材料は、熱電変換能が高く、従来の熱電デバイス用基板を用いた場合に比べて、熱電デバイスの熱電性能を5倍程度向上させることが可能となる。
特に、SiC、GaN等のワイドギャップ半導体を用いることにより、500〜1000℃程度の高温での使用が可能となり、熱電性能を10倍程度にまで向上する。
The material of the compound semiconductor thin film 2 is preferably made of at least one of SiC, SiGe, GaN, BP, and BSb.
These materials have a high thermoelectric conversion capability, and can improve the thermoelectric performance of the thermoelectric device by about 5 times compared to the case where a conventional thermoelectric device substrate is used.
In particular, by using a wide gap semiconductor such as SiC or GaN, use at a high temperature of about 500 to 1000 ° C. is possible, and the thermoelectric performance is improved to about 10 times.

前記化合物半導体膜2は、前記多孔質単結晶基板1上に、気相成長法、スパッタ法、CVD法、PVD法、真空蒸着法、MBE法等の各種成膜方法を用いて形成することができる。
例えば、水素アニール処理した厚さ10μmの多孔質単結晶Si基板上に、800〜1400℃で、原料ガスとしてシランおよびプロパンを用いて、化合物半導体膜として厚さ1μmの3C−SiC膜を気相成長させることにより、熱電デバイス用基板を形成することができる。
The compound semiconductor film 2 may be formed on the porous single crystal substrate 1 by using various film forming methods such as a vapor deposition method, a sputtering method, a CVD method, a PVD method, a vacuum deposition method, and an MBE method. it can.
For example, on a porous single crystal Si substrate having a thickness of 10 μm that has been subjected to hydrogen annealing, silane and propane are used as source gases at 800 to 1400 ° C., and a 3C—SiC film having a thickness of 1 μm is formed as a gas phase. By making it grow, a substrate for a thermoelectric device can be formed.

上記のような熱電デバイス用基板の化合物半導体膜2の表面に、陽極および陰極の2個の電極3と、絶縁膜4を形成し、該絶縁膜4上に被冷却物5を積層させた図1に示すような構成からなる熱電デバイスによれば、熱電性能指数(ZT)≧1であり、かつ、従来の熱電デバイスよりも、熱電性能を20倍程度向上させることが可能となる。
なお、前記電極3は、真空蒸着、電子線銃加熱法等により、また、絶縁膜4は、CVD法、絶縁物塗布法等により形成することができる。
A diagram in which two electrodes 3 of an anode and a cathode and an insulating film 4 are formed on the surface of the compound semiconductor film 2 of the substrate for a thermoelectric device as described above, and an object to be cooled 5 is laminated on the insulating film 4. According to the thermoelectric device having the configuration shown in FIG. 1, the thermoelectric figure of merit (ZT) ≧ 1, and the thermoelectric performance can be improved by about 20 times compared to the conventional thermoelectric device.
The electrode 3 can be formed by vacuum deposition, an electron beam gun heating method, or the like, and the insulating film 4 can be formed by a CVD method, an insulator coating method, or the like.

本発明に係る熱電デバイスの構成を概略的に示した断面図である。It is sectional drawing which showed roughly the structure of the thermoelectric device which concerns on this invention.

符号の説明Explanation of symbols

1 多孔質単結晶基板
2 化合物半導体薄膜
3 電極
4 絶縁膜
5 被冷却物
1 Porous single crystal substrate 2 Compound semiconductor thin film 3 Electrode 4 Insulating film 5 Object to be cooled

Claims (7)

厚さ1μm以上1000μm以下、気孔率5%以上95%以下の多孔質単結晶基板上に、厚さ0.5μm以上10μm以下の化合物半導体薄膜が形成されていることを特徴とする熱電デバイス用基板。   A substrate for a thermoelectric device, wherein a compound semiconductor thin film having a thickness of 0.5 μm to 10 μm is formed on a porous single crystal substrate having a thickness of 1 μm to 1000 μm and a porosity of 5% to 95%. . 前記多孔質単結晶基板がSiからなることを特徴とする請求項1記載の熱電デバイス用基板。   The thermoelectric device substrate according to claim 1, wherein the porous single crystal substrate is made of Si. 前記多孔質単結晶基板がGaAsからなることを特徴とする請求項1記載の熱電デバイス用基板。   2. The thermoelectric device substrate according to claim 1, wherein the porous single crystal substrate is made of GaAs. 化合物半導体薄膜が、SiC、SiGe、GaN、BP、BSbのうちの少なくとも1種からなることを特徴とする請求項1から請求項3までのいずれかに記載の熱電デバイス用基板。   The thermoelectric device substrate according to any one of claims 1 to 3, wherein the compound semiconductor thin film is made of at least one of SiC, SiGe, GaN, BP, and BSb. 請求項1から請求項4までのいずれかに記載の熱電デバイス用基板が用いられていることを特徴とする熱電デバイス。   A thermoelectric device using the thermoelectric device substrate according to any one of claims 1 to 4. 前記化合物半導体薄膜の表面に、電極および絶縁膜が形成され、該絶縁膜上に被冷却物が積層されていることを特徴とする請求項5記載の熱電デバイス。   6. The thermoelectric device according to claim 5, wherein an electrode and an insulating film are formed on the surface of the compound semiconductor thin film, and an object to be cooled is laminated on the insulating film. 熱電性能指数(ZT)≧1であることを特徴する請求項5または請求項6記載の熱電デバイス。   The thermoelectric device according to claim 5, wherein the thermoelectric figure of merit (ZT) ≧ 1.
JP2005105584A 2005-04-01 2005-04-01 Thermoelectric device and substrate therefor Pending JP2006287000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105584A JP2006287000A (en) 2005-04-01 2005-04-01 Thermoelectric device and substrate therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105584A JP2006287000A (en) 2005-04-01 2005-04-01 Thermoelectric device and substrate therefor

Publications (1)

Publication Number Publication Date
JP2006287000A true JP2006287000A (en) 2006-10-19

Family

ID=37408555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105584A Pending JP2006287000A (en) 2005-04-01 2005-04-01 Thermoelectric device and substrate therefor

Country Status (1)

Country Link
JP (1) JP2006287000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174813A (en) * 2011-02-18 2012-09-10 Kyushu Univ Thermoelectric conversion material and method for manufacturing the same
WO2014007225A1 (en) * 2012-07-06 2014-01-09 国立大学法人九州工業大学 Method for producing thermoelectric conversion material
WO2014132844A1 (en) * 2013-02-27 2014-09-04 リンテック株式会社 Thermoelectric conversion material, method for producing same, and thermoelectric conversion module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174813A (en) * 2011-02-18 2012-09-10 Kyushu Univ Thermoelectric conversion material and method for manufacturing the same
WO2014007225A1 (en) * 2012-07-06 2014-01-09 国立大学法人九州工業大学 Method for producing thermoelectric conversion material
JPWO2014007225A1 (en) * 2012-07-06 2016-06-02 国立大学法人九州工業大学 Method for producing thermoelectric conversion material
WO2014132844A1 (en) * 2013-02-27 2014-09-04 リンテック株式会社 Thermoelectric conversion material, method for producing same, and thermoelectric conversion module
JP2014165465A (en) * 2013-02-27 2014-09-08 Lintec Corp Thermoelectric conversion material and method for manufacturing the same, and thermoelectric conversion module
US9608190B2 (en) 2013-02-27 2017-03-28 Lintec Corporation Thermoelectric conversion material, method for producing same, and thermoelectric conversion module
TWI595688B (en) * 2013-02-27 2017-08-11 Lintec Corp Thermoelectric conversion material and manufacturing method thereof, and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5458509B2 (en) Silicon carbide semiconductor substrate
JP4843854B2 (en) MOS device
JP5344873B2 (en) Method for manufacturing silicon carbide semiconductor device
TWI311814B (en) Silicon carbide semiconductor device and method for producing the same
JP2018107480A (en) Solar cell having emitter region containing wide bandgap semiconductor material
JP3930561B2 (en) Ohmic contact and method for manufacturing a semiconductor device comprising such an ohmic contact
JP2009088223A (en) Silicon carbide semiconductor substrate and silicon carbide semiconductor device using the same
JP2009123753A (en) Semiconductor device and method for manufacturing semiconductor device
JP6108588B2 (en) Method for manufacturing silicon carbide semiconductor element
CN113690298A (en) Semiconductor composite substrate, semiconductor device and preparation method
JP2006196577A (en) Method for manufacturing orientational thermoelectric thin film and semiconductor device provided therewith
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
JP2005311347A (en) Process for producing schottky junction semiconductor device
JP4762911B2 (en) Thermoelectric conversion material and method for producing thermoelectric conversion material
JP4857697B2 (en) Silicon carbide semiconductor device
JP2007095858A (en) Substrate for compound semiconductor device, and compound semiconductor device using it
Tao et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si
JP3733792B2 (en) Method for manufacturing silicon carbide semiconductor element
WO2019119959A1 (en) Preparation method for sic schottky diode and structure thereof
JP2009212366A (en) Method of manufacturing semiconductor device
JP4872050B2 (en) Thermoelectric element
JP2006287000A (en) Thermoelectric device and substrate therefor
JP2006313850A (en) Silicon carbide semiconductor device and its fabrication process
CN114628523B (en) Gallium nitride-based CMOS field effect transistor and preparation method thereof
CN112864300B (en) Bismuth telluride base alloy film-perovskite oxide heterojunction composite thermoelectric material and preparation and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105