JP4666841B2 - Method for manufacturing thermoelectric material - Google Patents

Method for manufacturing thermoelectric material Download PDF

Info

Publication number
JP4666841B2
JP4666841B2 JP2001251974A JP2001251974A JP4666841B2 JP 4666841 B2 JP4666841 B2 JP 4666841B2 JP 2001251974 A JP2001251974 A JP 2001251974A JP 2001251974 A JP2001251974 A JP 2001251974A JP 4666841 B2 JP4666841 B2 JP 4666841B2
Authority
JP
Japan
Prior art keywords
sintered body
thermoelectric material
powder
energization
merit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001251974A
Other languages
Japanese (ja)
Other versions
JP2003069090A (en
Inventor
健一 田島
和博 西薗
広一 田中
正人 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001251974A priority Critical patent/JP4666841B2/en
Publication of JP2003069090A publication Critical patent/JP2003069090A/en
Application granted granted Critical
Publication of JP4666841B2 publication Critical patent/JP4666841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、熱電材料の比抵抗を低下させ性能指数を向上させる熱電材料の製造方法に関する。
【0002】
【従来技術】
従来より、ペルチェ効果を利用した熱電素子は、熱電モジュールとしてレーザーダイオードの温度制御、恒温槽あるいは冷蔵庫における冷却に多用されている。この室温付近で使用される冷却用熱電モジュールには、冷却特性が優れるという観点からBi2Te3(テルル化ビスマス)からなる熱電素子が一般的に用いられている。
【0003】
さらに、熱電素子はP型およびN型を対にして用いる必要があり、P型にはBi2Te3とSb2Te3(テルル化アンチモン)との固溶体が、N型にはBi2Te3とBi2Se3(セレン化ビスマス)との固溶体が特に優れた性能を示すことから、このA23型結晶(AはBi及び/又はSb、BはTe及び/又はSe)が冷却用熱電モジュール用熱電素子として広く用いられている。
【0004】
このA23型結晶は古くよりゾーンメルト法等の溶製法、一方向凝固などによって結晶粒子径の大きいインゴットあるいは単結晶として作製され、これをスライスしたものが用いられている。熱電モジュールに使用される熱電素子はこのスライスしたウェハーを更に数mm角の大きさに切断する必要があるため、この時、へき開面を持つこれら結晶の多くは加工歩留まりが極めて低く、近年では加工に対する強度を保たせるために多結晶体が用いられている。
【0005】
この多結晶体は、単結晶と比較して格段に強度が高いことから加工歩留まりを高めることができ、また容易に緻密体が得られるものの、多結晶体からなる熱電材料の性能を示す性能指数はたかだか2.0〜2.7×10-3/K程度と単結晶からなる熱電材料の性能指数2.8〜3.2×10-3/Kと比較して十分ではなく、特に比抵抗が大幅に増大し、性能指数が悪いという問題があった。
【0006】
そこで、ビスマス、テルル、セレン、アンチモンからなる群から選択される3種又は4種の元素を主成分とし、ホットプレスにて相対密度97%以上に緻密化させることで性能の優れた熱電材料の製造方法が特開平1−106478号公報で提案されている。
【0007】
また、半導体粉末と高耐熱性の電極用金属粉末とを層状に配置し、この成形体にパルス電流を流し、プラズマ放電させ焼結させることで生産性を高めるとともに、性能指数を改善することが特開平5−55640号公報に記載されている。
【0008】
さらに、ビスマス、テルル、セレン、アンチモンからなる群から選択される少なくとも2種の元素を含有した1〜100μmの合金粉末に、0.01〜10μmの非酸化物セラミック粒子を1〜20容量%添加することにより特性を高めようとする試みが特開平9−74229号公報に記載されている。
【0009】
これら提案の方法では、常圧焼成と比べはるかに高緻密体が容易に得られ、また単結晶並の性能指数が得られつつあるが、近年では更に冷却効率の高いモジュールが要求されており、これらの緻密な多結晶体の更なる性能指数の性能向上が求められている。
【0010】
そこで、従来は組成や製造方法等を改善していたが、最近は焼結後にも処理を加えて性能指数を向上させることが行われている。例えば、酸素濃度が30ppm以下の非酸化性ガス雰囲気に焼結体を配置し、350℃〜510℃で再度加熱することにより、P型熱電材料の比抵抗の増大を抑制することが特開平11−284237号公報で提案されている。
【0011】
また、焼結体を水素中で熱処理することにより、焼結体の粒界に存在する酸素を還元し、比抵抗を低下させて性能指数を改善することが特開平13−7414号公報で提案されている。
【0012】
【発明が解決しようとする課題】
しかしながら、特開平11−284237号公報に記載の方法では、再度加熱による性能指数の改善効果が充分とは言えず、また、過剰のTeを含むP型熱電材料に対してのみの効果であって、N型熱電材料に対しては用いることができないという問題があった。
【0013】
また、特開平13−7414号公報に記載の方法では、酸素還元によって水蒸気が発生し、試料の変形を招くという問題があった。
【0014】
さらに、いずれ方法であっても、焼結体の表面の性能指数を向上する効果はあるものの、内部の性能は変わらず、また処理時間も非常に長く、生産性に乏しいという問題点があった。
【0015】
従って、本発明は、P型、N型のいずれの熱電材料でも性能指数改善の効果があり、変形も無く、且つ表面も内部も性能指数に優れ、生産性に優れた熱電材料の製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は、パルス通電焼結法にて焼成して密度を制御した熱電材料に通電処理を施すことによって、通電処理前と比較し大幅に性能指数を改善し得ることができるという知見に基づく。
【0017】
即ち、本発明の熱電材料の製造方法は、Bi、Sb、Te及びSeのうち少なくとも2種を含む原料粉末にパルス電流を流しながら焼成して相対密度90%以上の焼結体を作製し、一旦冷却した後、前記焼結体に通電処理を行うことを特徴とするものである。これにより、電流密度を高めつつ、焼結体の急激な昇温を抑え、組成、組織の変動を抑えることができ、P型、N型いずれの熱電材料でも効果があり、加工時や熱電素子として用いられたときに変形も無く、加熱が不要で短時間で処理が終了するため、生産性を大幅に向上することができるとともに、熱電材料の全体の特性を改善できるため、冷却/発電用熱電モジュールとして好適に使用することができる。
【0020】
また、本発明の熱電材料の製造方法は、Bi、Sb、Te及びSeのうち少なくとも2種を含む原料粉末にパルス電流を流しながら焼成して相対密度90%以上の焼結体を作製し、次いで前記パルス電流を増加させて通電処理を行うことを特徴とするものである。これにより、比抵抗は単にパルス電流を流して焼成する方法に比べて大幅に小さくなり、熱電材料の表面も内部も性能指数を向上でき、冷却/発電用熱電モジュールとして好適に使用することができるとともに、P型、N型いずれの熱電材料でも効果があり、変形も無く、同一装置において短時間に処理が終了するため、生産性を大幅に向上することができる。
【0021】
特に、前記焼成の際に、前記原料粉末を加圧することが好ましい。これにより、緻密化を促進することができ、相対密度90%以上の焼結体が容易に得られる。
【0022】
また、前記通電処理において、150A/cm 2 以上の電流が印加されることが好ましい。これにより、短時間で比抵抗の低下を図ることができる。さらに、前記通電処理を少なくとも1分間行うことが好ましい。これにより、比抵抗の低下効果が充分発揮される。
【0023】
さらにまた、前記通電処理後の焼結体の平均結晶粒子径を20μm以下とすることが好ましい。これにより、熱伝導率、比抵抗ともに低減され、性能指数を充分高めることができる。
【0024】
【発明の実施の形態】
本発明の熱電材料の製造方法に用いられる材料は、Bi、Sb、Te、Seのうち少なくとも2種を含むことが重要である。このような材料は性能指数に優れ、特に、A23型金属間化合物であることが好ましく、例えばAがBi及び/又はSb、BがTe及び/又はSeからなる半導体結晶であって、組成比B/Aが1.4〜1.6であることが、室温における性能指数を高めるために好ましい。
【0025】
そこで、原料としては、A23型金属間化合物粉末を用いることが好ましい。即ち、公知であるBi2Te3、Sb2Te3、Bi2Se3の少なくとも1種であることが好ましく、固溶体としてBi2Te3とBi2Se3の固溶体であるBi2Te3-xSex(x=0.05〜0.25)、又はBi2Te3とSb2Te3の固溶体であるBixSb2-xTe3(x=0.1〜0.6)等を例示できる。
【0026】
また、金属間化合物を効率よく半導体化するために、不純物をドーパントとして添加することができる。例えば、原料粉末にI、Cl及びBr等のハロゲン元素を含む化合物を含有せしめることにより、N型半導体を製造することができる。例えば、AgI粉末、CuBr粉末、SbI3粉末、SbCl3粉末、SbBr3粉末、HgBr2粉末等を加えることにより、金属間化合物半導体中のキャリア濃度を調整することができ、その結果、性能指数を高めることが可能となる。上記のハロゲン元素は、効率的な半導体化の点で、0.01〜5重量%、特に0.05〜4重量%の割合で含むことが好ましい。
【0027】
さらに、P型半導体を製造する場合には、キャリア濃度調整のためにTeを添加することができ、N型半導体と同様に、性能指数を高めることができる。
【0028】
本発明によれば、まず、これらの組成からなる原料粉末を用いて焼結体を製造する。焼結方法はパルス通電焼結法である
【0029】
本発明によれば、この焼成後の相対密度が90%以上であることが重要である。相対密度が90%より小さいと比抵抗が高く、不均一なため後述する通電処理時の試料の温度制御が困難であり、また処理効果も小さいという問題がある。特に、通電処理の均一性を高めるため、相対密度が95%以上、更には97%以上、より好適には98%以上であることが好ましい。
【0030】
次いで、上記の焼成後、一旦冷却した後に通電処理をすることが重要である。ここで、冷却した後とは、焼成における最高保持温度又は最高到達温度からわずかでも冷却すればよく、粒成長を抑制するため最高到達温度の2/3以下、特に1/2以下、更には1/3以下であることが好ましい。
【0031】
この通電処理の方法としては、焼結体をカーボンなど導電性に優れる材料で挟み、通電する。通電は、試料の急昇温を抑えるために電流を断続的に、換言すればパルス状に通電することが好ましく、通電の総時間は少なくとも1分間行うことが好ましい。1分間の通電を行うと、後述する粒内、粒界におけるキャリア易動度を高める効果が充分であり、比抵抗の改善が得られ、その結果、性能指数を高くすることができる。
【0032】
また、印加する電流密度としては150A/cm2以上が通電処理の効果を得るために望ましい。電流密度は、150A/cm2未満では効果が小さく、また、通電処理をより効果的にするため、特に180A/cm2以上、更には200A/cm2以上、より好適には250A/cm2以上が特性をより高める上で好ましい。
【0033】
このような高い電流を印加するために1000A(アンペア)以上の電流が発生できる電源を用いて行う。
【0034】
また、パルス通電焼結では、従来のパルス通電焼結法と同様に、カーボンダイスに粉末あるいはあらかじめ成形した成形体を挿入し、上下のパンチで加圧する。加圧する圧力はパルス電流が通電できる程度で良く、20〜70MPaの圧力を好適に用いることができる。その後、パルス電流を通電させて粒子表面を加熱し、焼結させる。
【0035】
本発明によれば、上記のようにパルス電流を流して原料粉末を焼結し、90%以上の相対密度に達したところで、パルス電流を増大させ通電処理を行っても良い。このように、焼結と通電処理とを同一装置にて、連続的に行うことにより、生産性を更に高めることができる。
【0036】
なお、連続して処理を行う場合、焼結中の密度を測定する方法としては、あらかじめ温度等の焼成条件と密度との相関を調べておき、相対密度90%以上になる焼成条件を予測しても良く、また、上下パンチの変位から成形体の収縮を求め、その値から予測しても良い。
【0037】
これらの情報により、原料粉末が焼結し、相対密度が90%以上に達した時点で、パルス電流を増大させる必要があるが、この電流は手動によって制御しても良いし、より簡単に、昇温速度を変化させることで容易に高められる。例えば、相対密度が90%未満の温度域においては昇温速度を50℃/minとし、相対密度90%以上の温度域では昇温速度を100℃/min程度にすることでパルス電流の最大値を変化させることができる。なお、昇温速度を増大させた後、パルス電流の通電時間を1分以上行うことが特性を高める上で好ましいことは言うまでもない。
【0038】
これらの焼結体を作製するための原料の作製方法としては特に制限されないが、粒径が小さく、均一であることが好ましい。例えば、用いられる原料粉末は、累積重量比50%における粒子径(D50)が0.5〜10μm、且つ累積重量比90%における粒子径(D90)が0.7〜20μmであることが好ましい。また、さらに、D90とD50の粒子径比D90/D50が1.2〜4.0、特に1.5〜3.5、更には2〜3であることが好ましい。粒子径比D90/D50を上記の範囲に設定することで粒径が20μm以下と微細で均一な焼結体が容易に得られる。
【0039】
このような均一で微細な組織を有する焼結体は熱伝導率も低く、更に機械的強度にも優れることから、さらに通電処理を施すことで、比抵抗が低くなり、より優れた性能指数を示すことができるが、通電処理を過剰に行うと焼結体の結晶粒子径が20μmを超え、性能指数が低下することがあるため、通電処理後の焼結体の平均結晶粒子径を20μm以下にすることが好ましい。
【0040】
本発明の製造方法を用いて作製された熱電材料の性能指数Zは2.8×10-3/K以上が安定して得られる。焼結体に比較的大きな電流を流すことによって性能指数を改善する機構については明確ではないが、大電流が熱電材料の結晶粒子中を繰り返し流れ、熱、プラズマが発生することによって、電気抵抗の高い部位が絶縁破壊を起こして抵抗が小さくなり、さらに結晶粒子内の欠陥が少なくなり、キャリアの移動が容易になることで比抵抗が低下し、性能指数が高められると考えられる。
【0041】
ここで性能指数Zとは、ゼーベック係数をS、抵抗率をρ、熱伝導率をkとしたとき、Z=S2/ρkで定義されるもので、熱電素子を冷却素子あるいは発電素子として用いる場合の効率を示すものである。
【0042】
【実施例】
実施例1
原料粉末として、純度99.99%のBi2Te2.85Se0.15粉末、Bi0.5Sb1.5Te3粉末を準備した。また、ドーパントとして純度99.99%のHgBr2粉末及びSbI3粉末、Te粉末を準備した。
【0043】
上記の原料粉末とドーパントとを表1に示す組成でそれぞれ100gずつ調合した原料を、振動ミルで粉砕し、得られたスラリーを取り出して、乾燥後、40メッシュにて篩通した。なお、原料粉末同士はモル比で調合し、ドーパントは原料粉末全体と重量比で添加した。得られた粉末のD50、D90をレーザー回折法で求めた。
【0044】
上記の粉末を水素気流中で熱処理した後、カーボン型に充填し、パルス通電焼結法(PECS)、ホットプレス法(HP)、ガス圧焼結法(GPS)及び熱間静水圧プレス法(HIP)により焼成した。
【0045】
パルス通電焼結法(PECS)では上記粉末に電流を流し、温度420℃、加圧圧力50MPaで焼成した。また、ホットプレス法(HP)では上記粉末を温度300〜450℃、加圧圧力50MPaで焼成した。また、上記粉末をプレス圧150MPaで直径20mm、厚み15mmに成形し、成形体を水素気流中で熱処理した後、この成形体を温度500℃、圧力0.9MPaのAr雰囲気でガス圧焼結法(GPS)により、また、温度500℃、加圧圧力100MPaで熱間静水圧プレス法(HIP)により、それぞれ焼成した。
【0046】
得られた焼結体はアルキメデス法にて密度を測定し、理論密度から相対密度を算出後、カーボン電極で挟み、表1に示す条件で電流を印加した。
【0047】
得られた焼結体は再度相対密度を測定した後、これを切断して成形時のプレス方向に対して垂直な方向に対して熱伝導率、ゼーベック係数及び抵抗率を測定するために、それぞれ測定試料を作製した。なお、熱伝導率測定には、直径10mm、厚み1mmの円板試料を、ゼーベック係数、抵抗率測定には縦4mm、横4mm、長さ15mmの角柱試料を作製した。
【0048】
焼結体破面の走査型電子顕微鏡(SEM)写真からインターセプト法により、200個の粒子径を測定し、その平均値を平均粒子径とした。
【0049】
熱伝導率はレーザーフラッシュ法により、ゼーベック係数、比抵抗は真空理工社製熱電能評価装置により、それぞれ20℃の条件下で測定した。
【0050】
また、性能指数Zは、式Z=S2/ρk(Sはゼーベック係数、ρは抵抗率、kは熱伝導率である)により算出した。結果を表1に示す。なお、試料No.1〜9、12〜22は参考例である。
【0051】
【表1】

Figure 0004666841
【0052】
本発明の試料No.11及び24は、PECS後の通電処理により比抵抗が低下したため、性能指数Zが3.57×10-3/K以上に改善した。
【0053】
一方、焼結条件がPECSのみで通電処理を施さない試料No.10および23では性能指数Zが2.7×10-3/K以下と性能が低かった。
実施例2
実施例1と同様に原料粉末を作製し、この原料粉末を水素気流中で熱処理した後、カーボン型に充填し、PECSにより焼成し、その後同一装置にて通電処理を1分間実施した。
【0054】
焼成を表に示す条件で行った後、相対密度が90%以上になった時点でパルス電流を増大させた。相対密度の変化は、予め焼成中のカーボン電極の変位をモニターし、原料粉末の収縮量と相対密度との相関関係を測定しておき、この関係を用いてパルス電流を増大するタイミングを決定し、表2にパルス電流を増大させるときの焼結体の相対密度を開始密度として示した。
【0055】
【表2】
Figure 0004666841
【0056】
本発明の試料No.26〜29、31〜36及び38〜39は、比抵抗が1.58×10-5Ωm以下と小さいため、性能指数が2.8×10-3/K以上に改善した。特に、180A/cm2以上の電流を流した試料No.27〜29、31〜36及び38〜39は、性能指数を3.13×10-3/K以上に向上できた。さらに、相対密度97%以上の焼結体に250A/cm2以上の電流を流した試料No.28、29、32〜34及び39は、性能指数を3.52×10-3/K以上に改善でき、そのうちで相対密度98%以上の焼結体は、4.06×10-3/K以上にまで性能指数を高くすることができた。
【0057】
一方、通電処理を施さない試料No.25、30及び37では性能指数が2.76×10-3/K以下と低かった。
【0058】
【発明の効果】
本発明によれば、PECS法により焼成した相対密度90%以上の熱電材料からなる焼結体に通電処理を施すことによって、処理前と比較し比抵抗を小さくすることができ、その結果、性能指数を大きく改善することができる。
【0059】
即ち、Bi、Sb、Te及びSeのうち少なくとも2種を含み、PECS法により焼成した相対密度90%以上の焼結体を通電装置に移し、特に150A/cm2以上の電流を1分間以上流すことによって、比抵抗を大幅に低下することができ、性能指数を大幅に向上することができる。この方法は、半導体の種類を問わず性能指数を改善でき、また、通電処理を短時間で行うため、試料が変形するような加熱が不要であ、生産性を大幅に向上することができる。
【0060】
また、PECS法により焼成し、引き続き同一装置により通電処理を行うことによっても、同様の効果を得ることができる。特に、同一装置において焼成と通電処理とを連続して行えるため、さらに生産性を向上することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thermoelectric material that reduces the specific resistance of the thermoelectric material and improves the figure of merit.
[0002]
[Prior art]
Conventionally, thermoelectric elements using the Peltier effect are frequently used as thermoelectric modules for temperature control of laser diodes, cooling in a thermostatic bath or refrigerator. A thermoelectric element made of Bi 2 Te 3 (bismuth telluride) is generally used in the thermoelectric module for cooling used near the room temperature from the viewpoint of excellent cooling characteristics.
[0003]
Furthermore, it is necessary to use a thermoelectric element as a pair of P-type and N-type. The P-type has a solid solution of Bi 2 Te 3 and Sb 2 Te 3 (antimony telluride), and the N-type has Bi 2 Te 3. Since the solid solution of bismuth and Bi 2 Se 3 (bismuth selenide) exhibits particularly excellent performance, this A 2 B 3 type crystal (A is Bi and / or Sb, B is Te and / or Se) is used for cooling. Widely used as thermoelectric elements for thermoelectric modules.
[0004]
This A 2 B 3 type crystal has long been produced as an ingot or single crystal having a large crystal particle diameter by a melting method such as a zone melt method, unidirectional solidification, etc., and a slice of this is used. Since the thermoelectric element used in the thermoelectric module needs to cut this sliced wafer into a size of several mm square, many of these crystals having a cleavage plane at this time have a very low processing yield. In order to maintain the strength against the above, a polycrystal is used.
[0005]
The polycrystalline body, although it is possible to increase the processing yield because much strength as compared to the single crystal is high, also readily dense body is obtained, the performance indicating the performance of a thermoelectric material consisting of polycrystalline index is not sufficient as compared with the performance index 2.8~3.2 × 10 -3 / K of the thermoelectric material consisting of at most 2.0~2.7 × 10 -3 / K about the single crystal, in particular the ratio There was a problem that the resistance increased significantly and the figure of merit was bad.
[0006]
Therefore, a thermoelectric material having excellent performance by containing three or four elements selected from the group consisting of bismuth, tellurium, selenium and antimony as a main component and densifying to a relative density of 97% or higher by hot pressing. A manufacturing method is proposed in Japanese Patent Laid-Open No. 1-106478.
[0007]
In addition, semiconductor powder and highly heat-resistant metal powder for electrodes are arranged in layers, and a pulse current is passed through this compact to increase the productivity and improve the figure of merit by plasma discharge and sintering. This is described in JP-A-5-55640.
[0008]
Further, 1 to 20% by volume of non-oxide ceramic particles of 0.01 to 10 μm is added to an alloy powder of 1 to 100 μm containing at least two elements selected from the group consisting of bismuth, tellurium, selenium and antimony. An attempt to improve the characteristics by doing so is described in JP-A-9-74229.
[0009]
In these proposed methods, a much higher density body can be obtained easily compared to atmospheric pressure firing, and a figure of merit equivalent to that of a single crystal is being obtained, but in recent years, modules with higher cooling efficiency have been required, There is a demand for further improvement in performance index of these dense polycrystals.
[0010]
Therefore, conventionally, the composition and the manufacturing method have been improved, but recently, the performance index has been improved by adding treatment even after sintering. For example, it is possible to suppress an increase in specific resistance of a P-type thermoelectric material by disposing a sintered body in a non-oxidizing gas atmosphere having an oxygen concentration of 30 ppm or less and heating again at 350 ° C. to 510 ° C. This is proposed in Japanese Patent No. -284237.
[0011]
JP-A No. 13-7414 proposes to improve the figure of merit by reducing the specific resistance by reducing the oxygen present at the grain boundaries of the sintered body by heat-treating the sintered body in hydrogen. Has been.
[0012]
[Problems to be solved by the invention]
However, in the method described in JP-A-11-284237, it cannot be said that the effect of improving the figure of merit by heating again is sufficient, and it is an effect only for P-type thermoelectric materials containing excessive Te. There is a problem that it cannot be used for N-type thermoelectric materials.
[0013]
In addition, the method described in JP-A No. 13-7414 has a problem that water vapor is generated by oxygen reduction, causing deformation of the sample.
[0014]
Furthermore, in either method, although the effect of improving the performance index of the surface of the sintered body is, inside the performance does not change, also the processing time is also very long, a problem of poor productivity It was.
[0015]
Accordingly, the present invention provides a method for producing a thermoelectric material that has an effect of improving the performance index in both P-type and N-type thermoelectric materials, has no deformation, has an excellent performance index on the surface and inside, and is excellent in productivity. The purpose is to provide.
[0016]
[Means for Solving the Problems]
The present invention is based on the knowledge that the performance index can be greatly improved by applying an energization treatment to a thermoelectric material whose density is controlled by firing by a pulse energization sintering method as compared with that before the energization treatment.
[0017]
That is, in the method for producing a thermoelectric material of the present invention, a raw material powder containing at least two of Bi, Sb, Te and Se is fired while flowing a pulse current to produce a sintered body having a relative density of 90% or more. Once cooled, the sintered body is subjected to an energization treatment. As a result, it is possible to suppress the rapid temperature rise of the sintered body while suppressing the current density and suppress the variation of the composition and the structure, and it is effective for both P-type and N-type thermoelectric materials. As it is used without any deformation, heating is unnecessary and processing is completed in a short time, so that productivity can be greatly improved and overall characteristics of the thermoelectric material can be improved. It can be suitably used as a thermoelectric module.
[0020]
Moreover, the method for producing a thermoelectric material of the present invention produces a sintered body having a relative density of 90% or higher by firing a raw material powder containing at least two of Bi, Sb, Te and Se while flowing a pulse current. Next, the energization process is performed by increasing the pulse current. As a result, the specific resistance is significantly smaller than the method of firing simply by passing a pulse current, the performance index can be improved on both the surface and the interior of the thermoelectric material, and it can be suitably used as a thermoelectric module for cooling / power generation. In addition, both P-type and N-type thermoelectric materials are effective, have no deformation, and the processing is completed in a short time in the same apparatus, so that productivity can be greatly improved.
[0021]
In particular, it is preferable to pressurize the raw material powder during the firing. Thereby, densification can be promoted and a sintered body having a relative density of 90% or more can be easily obtained.
[0022]
In the energization process, it is preferable that a current of 150 A / cm 2 or more is applied. Thereby, the specific resistance can be reduced in a short time. Furthermore, it is preferable to perform the energization process for at least 1 minute. Thereby, the effect of reducing the specific resistance is sufficiently exhibited.
[0023]
Furthermore, it is preferable that the average crystal particle diameter of the sintered body after the energization treatment is 20 μm or less. Thereby, both thermal conductivity and specific resistance are reduced, and the figure of merit can be sufficiently increased.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
It is important that the material used in the method for producing a thermoelectric material of the present invention contains at least two of Bi, Sb, Te, and Se. Such a material has an excellent figure of merit, and is preferably an A 2 B 3 type intermetallic compound, for example, a semiconductor crystal in which A is Bi and / or Sb, B is Te and / or Se, The composition ratio B / A is preferably 1.4 to 1.6 in order to increase the figure of merit at room temperature.
[0025]
Therefore, it is preferable to use A 2 B 3 type intermetallic compound powder as a raw material. That is, it is preferably at least one of known Bi 2 Te 3 , Sb 2 Te 3 and Bi 2 Se 3 , and Bi 2 Te 3 -x is a solid solution of Bi 2 Te 3 and Bi 2 Se 3 as a solid solution. Examples include Se x (x = 0.05 to 0.25), or Bi x Sb 2−x Te 3 (x = 0.1 to 0.6), which is a solid solution of Bi 2 Te 3 and Sb 2 Te 3. it can.
[0026]
Moreover, in order to make an intermetallic compound into a semiconductor efficiently, an impurity can be added as a dopant. For example, an N-type semiconductor can be produced by incorporating a compound containing a halogen element such as I, Cl and Br into the raw material powder. For example, AgI powder, CuBr powder, SbI 3 powder, SbCl 3 powder, SbBr 3 powder, by addition of HgBr 2 powder or the like, it is possible to adjust the carrier concentration in the intermetallic compound semiconductor, as a result, the performance index It becomes possible to raise. The halogen element is preferably contained in an amount of 0.01 to 5% by weight, particularly 0.05 to 4% by weight in terms of efficient semiconductorization.
[0027]
Furthermore, when manufacturing a P-type semiconductor, Te can be added for carrier concentration adjustment, and the figure of merit can be increased as in the case of an N-type semiconductor.
[0028]
According to the present invention, first, a sintered body is manufactured using raw material powders having these compositions. Shoyuikata method is a pulse electric current sintering method.
[0029]
According to the present invention, it is important that the relative density after firing is 90% or more. If the relative density is less than 90%, the specific resistance is high and non-uniform, so that there is a problem that it is difficult to control the temperature of the sample during energization processing described later, and the processing effect is small. In particular, the relative density is preferably 95% or more, more preferably 97% or more, and more preferably 98% or more in order to improve the uniformity of the energization process.
[0030]
Next, after the firing, it is important to conduct an energization process after cooling once. Here, after cooling, it is sufficient to cool even a little from the maximum holding temperature or the maximum reached temperature in firing. In order to suppress grain growth, it is 2/3 or less of the maximum reached temperature, particularly 1/2 or less, and further 1 / 3 or less is preferable.
[0031]
As a method for this energization treatment, the sintered body is sandwiched between materials having excellent conductivity such as carbon and energized. In order to suppress the rapid temperature rise of the sample, it is preferable to apply current intermittently, in other words, in a pulsed manner, and the total energization time is preferably at least 1 minute. When energization is performed for 1 minute, the effect of increasing the carrier mobility in the grains and grain boundaries described later is sufficient, and an improvement in specific resistance is obtained. As a result, the figure of merit can be increased.
[0032]
Further, the applied current density is desirably 150 A / cm 2 or more in order to obtain the effect of the energization treatment. When the current density is less than 150 A / cm 2 , the effect is small, and in order to make the energization process more effective, in particular, 180 A / cm 2 or more, further 200 A / cm 2 or more, more preferably 250 A / cm 2 or more. Is preferable for further improving the characteristics.
[0033]
In order to apply such a high current, a power source capable of generating a current of 1000 A (ampere) or more is used.
[0034]
Further, the pulse electric current sintering, as with conventional pulsed electric current sintering method, by inserting a powder or pre-molded green body in a carbon die, pressurized with upper and lower punches. The pressurizing pressure may be such that a pulse current can be applied, and a pressure of 20 to 70 MPa can be suitably used. Thereafter, a pulse current is applied to heat the particle surface and sinter.
[0035]
According to the present invention, the raw material powder is sintered by passing a pulsed current as described above SL, was reached relative density of 90% or more, may be performed energization operation to increase the pulse current. Thus, productivity can be further improved by performing sintering and an electricity supply process continuously with the same apparatus.
[0036]
In addition, when processing continuously, as a method of measuring the density during sintering, the correlation between the firing conditions such as temperature and the density is examined in advance, and the firing conditions at which the relative density is 90% or more are predicted. Alternatively, the contraction of the molded body may be obtained from the displacement of the upper and lower punches and predicted from the value.
[0037]
With this information, when the raw material powder is sintered and the relative density reaches 90% or more, it is necessary to increase the pulse current. However, this current may be controlled manually or more easily. It can be easily increased by changing the heating rate. For example, in the temperature range where the relative density is less than 90%, the rate of temperature rise is 50 ° C./min, and in the temperature range where the relative density is 90% or more, the rate of temperature rise is about 100 ° C./min. Can be changed. In addition, it goes without saying that it is preferable to increase the temperature rise rate and then to carry out the energization time of the pulse current for 1 minute or more in order to improve the characteristics.
[0038]
The raw material production method for producing these sintered bodies is not particularly limited, but it is preferable that the particle size is small and uniform. For example, the raw material powder used preferably has a particle diameter (D50) at a cumulative weight ratio of 50% of 0.5 to 10 μm and a particle diameter (D90) at a cumulative weight ratio of 90% of 0.7 to 20 μm. Further, the particle size ratio D90 / D50 of D90 and D50 is preferably 1.2 to 4.0, particularly 1.5 to 3.5, and more preferably 2 to 3. By setting the particle diameter ratio D90 / D50 within the above range, a fine and uniform sintered body having a particle diameter of 20 μm or less can be easily obtained.
[0039]
Since the sintered body having such a uniform and fine structure has low thermal conductivity and excellent mechanical strength, the specific resistance is lowered by applying current treatment, and a better performance index is obtained. Although it can be shown that, if the energization treatment is excessively performed, the crystal particle diameter of the sintered body exceeds 20 μm and the figure of merit may decrease, so the average crystal particle diameter of the sintered body after the energization treatment is 20 μm or less. It is preferable to make it.
[0040]
The figure of merit Z of the thermoelectric material produced by using the production method of the present invention can be stably obtained as 2.8 × 10 −3 / K or more. Although the mechanism for improving the figure of merit by flowing a relatively large current through the sintered body is not clear, the large current repeatedly flows through the crystal grains of the thermoelectric material, and heat and plasma are generated. It is considered that a high portion causes dielectric breakdown to reduce resistance, further reduces defects in crystal grains, and facilitates carrier movement, thereby reducing specific resistance and increasing a figure of merit.
[0041]
Here, the figure of merit Z is defined as Z = S 2 / ρk where the Seebeck coefficient is S, the resistivity is ρ, and the thermal conductivity is k, and the thermoelectric element is used as a cooling element or a power generation element. Shows the efficiency of the case.
[0042]
【Example】
Example 1
Bi 2 Te 2.85 Se 0.15 powder and Bi 0.5 Sb 1.5 Te 3 powder with a purity of 99.99% were prepared as raw material powders. Also, HgBr 2 powder, SbI 3 powder, and Te powder with a purity of 99.99% were prepared as dopants.
[0043]
The raw materials prepared by mixing 100 g each of the above raw material powder and dopant with the composition shown in Table 1 were pulverized by a vibration mill, the resulting slurry was taken out, dried, and sieved through 40 mesh. In addition, raw material powders were prepared by molar ratio, and the dopant was added by the weight ratio with the whole raw material powder. D50 and D90 of the obtained powder were determined by a laser diffraction method.
[0044]
After heat-treating the above powder in a hydrogen stream, it is filled into a carbon mold and subjected to a pulse current sintering method (PECS), a hot pressing method (HP), a gas pressure sintering method (GPS), and a hot isostatic pressing method ( HIP).
[0045]
In the pulse current sintering method (PECS), an electric current was passed through the powder, and the powder was fired at a temperature of 420 ° C. and a pressure of 50 MPa. In the hot press method (HP), the powder was fired at a temperature of 300 to 450 ° C. and a pressure of 50 MPa. Further, after forming the powder into a diameter of 20 mm and a thickness of 15 mm at a press pressure of 150 MPa, and heat-treating the compact in a hydrogen stream, the compact is gas-pressure sintered in an Ar atmosphere at a temperature of 500 ° C. and a pressure of 0.9 MPa. It was fired by (GPS) and by a hot isostatic pressing method (HIP) at a temperature of 500 ° C. and a pressure of 100 MPa.
[0046]
The obtained sintered body was measured for density by the Archimedes method, the relative density was calculated from the theoretical density, sandwiched between carbon electrodes, and current was applied under the conditions shown in Table 1.
[0047]
The obtained sintered body was measured for relative density again, and then cut to measure the thermal conductivity, Seebeck coefficient, and resistivity in the direction perpendicular to the pressing direction during molding. A measurement sample was prepared. A disk sample having a diameter of 10 mm and a thickness of 1 mm was measured for the thermal conductivity measurement, and a prism sample having a length of 4 mm, a width of 4 mm, and a length of 15 mm was prepared for the Seebeck coefficient and resistivity measurement.
[0048]
From the scanning electron microscope (SEM) photograph of the sintered body fracture surface, 200 particle diameters were measured by the intercept method, and the average value was taken as the average particle diameter.
[0049]
The thermal conductivity was measured by a laser flash method, the Seebeck coefficient, and the specific resistance were each measured at 20 ° C. by a thermoelectricity evaluation apparatus manufactured by Vacuum Riko Co., Ltd.
[0050]
The figure of merit Z was calculated by the formula Z = S 2 / ρk (S is the Seebeck coefficient, ρ is the resistivity, and k is the thermal conductivity). The results are shown in Table 1. Sample No. Reference numerals 1 to 9 and 12 to 22 are reference examples.
[0051]
[Table 1]
Figure 0004666841
[0052]
Sample No. 1 of the present invention . 11及 beauty 24, since the specific resistance by energization treatment after PECS decreases, the performance index Z was improved more than 3.57 × 10 -3 / K.
[0053]
On the other hand, the sample sintering conditions are not subjected to energization process with only PEC S No. In 10 and 23, the figure of merit Z was 2.7 2 × 10 -3 / K or less and the performance was low.
Example 2
A raw material powder was prepared in the same manner as in Example 1, and this raw material powder was heat-treated in a hydrogen stream, filled in a carbon mold, fired with PECS, and then subjected to an energization treatment for 1 minute in the same apparatus.
[0054]
After firing under the conditions shown in Table 2 , the pulse current was increased when the relative density reached 90% or more. The change in relative density is determined by monitoring the displacement of the carbon electrode during firing in advance, measuring the correlation between the shrinkage of the raw material powder and the relative density, and using this relationship to determine when to increase the pulse current. Table 2 shows the relative density of the sintered body when increasing the pulse current as the starting density.
[0055]
[Table 2]
Figure 0004666841
[0056]
Sample No. of the present invention. Since 26-29, 31-36, and 38-39 have a small specific resistance of 1.58 × 10 −5 Ωm or less, the figure of merit improved to 2.8 × 10 −3 / K or more. In particular, sample No. 1 in which a current of 180 A / cm 2 or more was passed. 27-29, 31-36, and 38-39 were able to improve the figure of merit to 3.13 × 10 −3 / K or more. Further, sample No. 1 was obtained by flowing a current of 250 A / cm 2 or more through a sintered body having a relative density of 97% or more. 28, 29, 32-34 and 39 can improve the figure of merit to 3.52 × 10 −3 / K or higher, and among them, sintered bodies having a relative density of 98% or higher are 4.06 × 10 −3 / K. The figure of merit could be increased to the above.
[0057]
On the other hand, sample No. which is not subjected to energization treatment In 25, 30 and 37, the figure of merit was as low as 2.76 × 10 −3 / K or less.
[0058]
【The invention's effect】
According to the present invention, by applying a current treatment to a sintered body made of a thermoelectric material having a relative density of 90% or more fired by the PECS method , the specific resistance can be reduced as compared with that before the treatment. The index can be greatly improved.
[0059]
In other words, a sintered body containing at least two of Bi, Sb, Te and Se and sintered at a relative density of 90% or more fired by the PECS method is transferred to an energizing device, and in particular, a current of 150 A / cm 2 or more flows for 1 minute or more. As a result, the specific resistance can be greatly reduced, and the figure of merit can be greatly improved. This method can improve the type of matter without merit of semiconductors, also, for energizing process in a short time, Ri heating unnecessary der such sample is deformed, it possible to significantly improve the productivity it can.
[0060]
Moreover, the same effect can be acquired also by baking by PECS method and continuing with an electricity supply process with the same apparatus. In particular, since firing and energization treatment can be performed continuously in the same apparatus, productivity can be further improved.

Claims (6)

Bi、Sb、Te及びSeのうち少なくとも2種を含む原料粉末にパルス電流を流しながら焼成して相対密度90%以上の焼結体を作製し、一旦冷却した後、前記焼結体に通電処理を行うことを特徴とする熱電材料の製造方法。A raw material powder containing at least two of Bi, Sb, Te, and Se is fired while flowing a pulse current to produce a sintered body having a relative density of 90% or more, and after cooling, the sintered body is energized. The manufacturing method of the thermoelectric material characterized by performing. Bi、Sb、Te及びSeのうち少なくとも2種を含む原料粉末にパルス電流を流しながら焼成して相対密度90%以上の焼結体を作製し、次いで前記パルス電流を増加させて通電処理を行うことを特徴とする熱電材料の製造方法。A raw material powder containing at least two of Bi, Sb, Te, and Se is fired while flowing a pulse current to produce a sintered body having a relative density of 90% or more, and then the pulse current is increased to conduct an energization treatment. The manufacturing method of the thermoelectric material characterized by the above-mentioned. 前記原料粉末を加圧しながら焼成することを特徴とする請求項1または2記載の熱電材料の製造方法。The method for producing a thermoelectric material according to claim 1 or 2, wherein the raw material powder is fired while being pressed. 前記通電処理において、150A/cm2以上の電流が印加されることを特徴とする請求項1乃至のいずれかに記載の熱電材料の製造方法。In the energization process, the manufacturing method of the thermoelectric material according to any one of claims 1 to 3, characterized in that 150A / cm 2 or more current is applied. 前記通電処理を少なくとも1分間行うことを特徴とする請求項1乃至のいずれかに記載の熱電材料の製造方法。Method for producing a thermoelectric material according to any one of claims 1 to 4, characterized in that the energization process at least 1 minute. 前記通電処理後の焼結体の平均結晶粒子径を20μm以下とすることを特徴とする請求項1乃至のいずれかに記載の熱電材料の製造方法。The method for producing a thermoelectric material according to any one of claims 1 to 5 , wherein an average crystal particle diameter of the sintered body after the energization treatment is set to 20 µm or less.
JP2001251974A 2001-08-22 2001-08-22 Method for manufacturing thermoelectric material Expired - Fee Related JP4666841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251974A JP4666841B2 (en) 2001-08-22 2001-08-22 Method for manufacturing thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251974A JP4666841B2 (en) 2001-08-22 2001-08-22 Method for manufacturing thermoelectric material

Publications (2)

Publication Number Publication Date
JP2003069090A JP2003069090A (en) 2003-03-07
JP4666841B2 true JP4666841B2 (en) 2011-04-06

Family

ID=19080526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251974A Expired - Fee Related JP4666841B2 (en) 2001-08-22 2001-08-22 Method for manufacturing thermoelectric material

Country Status (1)

Country Link
JP (1) JP4666841B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072391A (en) * 2003-08-26 2005-03-17 Kyocera Corp N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
WO2008044320A1 (en) * 2006-10-13 2008-04-17 Mole's Act Co., Ltd. Work conduction heating method, method for producing bonded body, method for producing sintered body and work conduction heating device
WO2009001598A1 (en) * 2007-06-27 2008-12-31 Kyocera Corporation Thermoelectric module and its manufacturing method
JP7209167B2 (en) * 2017-05-08 2023-01-20 パナソニックIpマネジメント株式会社 Jintle phase thermoelectric conversion material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
JPH04365868A (en) * 1991-01-28 1992-12-17 Komatsu Electron Metals Co Ltd Production of silicon-germanium alloy
JPH1041554A (en) * 1996-07-19 1998-02-13 Yamaha Corp Preparation of thermo-electric refrigerating material
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP2001223397A (en) * 2000-02-10 2001-08-17 Aisin Seiki Co Ltd Manufacturing method of thermoelectric semiconductor sintered compact
JP2002353527A (en) * 2001-05-29 2002-12-06 Komatsu Ltd Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
JPH04365868A (en) * 1991-01-28 1992-12-17 Komatsu Electron Metals Co Ltd Production of silicon-germanium alloy
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JPH1041554A (en) * 1996-07-19 1998-02-13 Yamaha Corp Preparation of thermo-electric refrigerating material
JP2001223397A (en) * 2000-02-10 2001-08-17 Aisin Seiki Co Ltd Manufacturing method of thermoelectric semiconductor sintered compact
JP2002353527A (en) * 2001-05-29 2002-12-06 Komatsu Ltd Manufacturing method of thermoelectric material, and thermoelectric material obtained thereby

Also Published As

Publication number Publication date
JP2003069090A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
KR101616109B1 (en) Thermoelectric materials and Chalcogenide compounds
US6596226B1 (en) Process for producing thermoelectric material and thermoelectric material thereof
JP2000252526A (en) Skutterudite thermoelectric material, thermocouple and manufacture thereof
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP2003243734A (en) Thermoelectric conversion material and method for manufacturing the same
CN112335061B (en) Thermoelectric conversion material, thermoelectric conversion module using same, and method for producing thermoelectric conversion material
JP4666841B2 (en) Method for manufacturing thermoelectric material
Dadda et al. Electronic Properties as a Function of Ag/Sb Ratio in Ag 1− y Pb 18 Sb 1+ z Te 20 Compounds
US20230284532A1 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
JP3929880B2 (en) Thermoelectric material
JP4467584B2 (en) Thermoelectric material manufacturing method
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP4592209B2 (en) Method for producing crystal-oriented bulk ZnO-based sintered material and thermoelectric conversion device produced thereby
JP3523600B2 (en) Thermoelectric element manufacturing method
JP2013073960A (en) Magnesium silicide, thermoelectric conversion material, sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
JP4601206B2 (en) Method for manufacturing thermoelectric element
KR101469759B1 (en) Manufacturing method for Fe-Sb thermoelectric material doped with Yb
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
KR20110092762A (en) MANUFACTURING METHOD OF Mg2Si THERMOELECTRIC MATERIAL USING MECHANICAL ALLOYING AND Mg2Si THERMOELECTRIC MATERIAL
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method
US11171278B2 (en) Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
KR102536638B1 (en) Thermoelectric materials and method of manufacturing the same
JP2002164584A (en) Manufacturing method of peltier element material
KR20200109733A (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL BY USING MICROWAVE SINTERING AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees