JPH04356963A - Manufacture of semiconductor quantum fine wiring - Google Patents

Manufacture of semiconductor quantum fine wiring

Info

Publication number
JPH04356963A
JPH04356963A JP15958491A JP15958491A JPH04356963A JP H04356963 A JPH04356963 A JP H04356963A JP 15958491 A JP15958491 A JP 15958491A JP 15958491 A JP15958491 A JP 15958491A JP H04356963 A JPH04356963 A JP H04356963A
Authority
JP
Japan
Prior art keywords
growth
layer
growing
wirings
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15958491A
Other languages
Japanese (ja)
Inventor
Seigo Ando
精後 安藤
Marehiro Chiyou
張 希洽
Takashi Fukui
孝志 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15958491A priority Critical patent/JPH04356963A/en
Publication of JPH04356963A publication Critical patent/JPH04356963A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing semiconductor quantum fine wirings to be applied for a quantum fine wiring laser having an ultrahigh efficiency or a quantum fine wiring transistor, in which widths of wirings are easily made uniform by enhancing a density of the fine wirings and accurate control of the widths of the wirings. CONSTITUTION:A first step of depositing an insulating film 10 on a surface B of a compound semiconductor substrate 9 (111) and forming a stripelike opening of a direction {112}, and a second step of multilayer-growing at least two or more types of semiconductors 2, 3 having surfaces (110) on sidewalls on the surface B (111) of the substrate 9 by using an organic metal vapor growing method, are provided. A method for manufacturing semiconductor quantum fine wirings 6 comprising a third step of selectively etching the side face of a multilayer structure, and a fourth step of selectively sequentially growing at least two or more types of the semiconductors 2, 4, 5, 6 in a direction of the side face (110) by using a growing condition of no growth on the surface B (111), is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超高効率の量子細線レ
ーザ、或いは量子細線トランジスタに適用される半導体
量子細線の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor quantum wire that is applied to an ultra-high efficiency quantum wire laser or a quantum wire transistor.

【0002】0002

【従来の技術】材料としてAlGaAs/GaAsを例
にとって従来提案されている量子細線の構造を図5に示
す。これは、GaAs基板上にV溝を形成し、有機金属
気相成長法固有の成長速度の差を利用してV溝底部に量
子細線を実現するものである。
2. Description of the Related Art FIG. 5 shows the structure of a conventionally proposed quantum wire using AlGaAs/GaAs as an example. In this method, a V-groove is formed on a GaAs substrate, and a quantum wire is realized at the bottom of the V-groove by utilizing the difference in growth rate inherent in metal organic vapor phase epitaxy.

【0003】この構造の製造方法を図6乃至図8に示す
。まず、n+ 型GaAs基板上にストライプ状のエッ
チングマスクを下記数式1方向に配し、化学エッチング
によってV溝を形成する(図6)。次に、有機金属気相
成長法によって、ノンドープAlGaAs成長層2、ノ
ンドープGaAs成長層3、p型AlGaAs成長層4
、及びp型GaAs成長層5を順次成長する。この時、
ノンドープGaAs成長層3の成長の際に、V溝側面に
は、ノンドープGaAs成長層3は、ほとんど成長せず
、V溝底部のみ成長し、GaAs量子細線6を形成する
(図7)。
A method of manufacturing this structure is shown in FIGS. 6 to 8. First, a striped etching mask is placed on an n+ type GaAs substrate in the direction of the following formula 1, and a V-groove is formed by chemical etching (FIG. 6). Next, a non-doped AlGaAs grown layer 2, a non-doped GaAs grown layer 3, a p-type AlGaAs grown layer 4 are formed by metal-organic vapor phase epitaxy.
, and p-type GaAs growth layer 5 are sequentially grown. At this time,
During the growth of the non-doped GaAs growth layer 3, the non-doped GaAs growth layer 3 hardly grows on the side surfaces of the V-groove, and grows only at the bottom of the V-groove, forming a GaAs quantum wire 6 (FIG. 7).

【0004】0004

【数1】[Math 1]

【0005】次に、(001)面上のノンドープGaA
s成長層3からの発光を抑制するためにH+ イオン注
入層7を形成し、量子細線を実現する(図8)。
Next, undoped GaA on the (001) plane
In order to suppress light emission from the s-growth layer 3, an H+ ion implantation layer 7 is formed to realize a quantum wire (FIG. 8).

【0006】しかし、上記で説明した量子細線の製造方
法には、次のような問題点がある。まず、量子細線の高
密度化が技術的に以下の理由で困難なことである。 (1)線幅を正確にコントロールすることが難しいこと
、(2)V溝を利用するため幾何学的に量子細線間の距
離が長くなること、(3)電子ビーム露光法によりエッ
チングマスクの短周期化を図っても、露光時の近接効果
のため限界があること、(4)ノンドープGaAs成長
層3の成長の際に(001)面上にも、成長がおこるた
め、発光を抑制するためイオン注入等の電流狭窄手段が
必要になること、等である。また、化学エッチングによ
るV溝底部に量子細線を製造するため、100nm以下
の線幅の均一性が悪いことである。
However, the method for manufacturing quantum wires described above has the following problems. First, it is technically difficult to increase the density of quantum wires for the following reasons. (1) It is difficult to accurately control the line width, (2) the distance between the quantum wires becomes longer due to the use of V-grooves, and (3) the etching mask can be shortened by the electron beam exposure method. Even if periodization is attempted, there is a limit due to the proximity effect during exposure, and (4) growth also occurs on the (001) plane when the non-doped GaAs growth layer 3 is grown, so in order to suppress light emission. For example, a current confinement means such as ion implantation is required. Furthermore, because the quantum wire is manufactured at the bottom of the V-groove by chemical etching, the uniformity of the line width of 100 nm or less is poor.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、超高
効率の量子細線レーザ、或いは量子細線トランジスタに
適用される半導体量子細線の製造方法を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor quantum wire which is applied to an ultra-high efficiency quantum wire laser or a quantum wire transistor.

【0008】更に具体的に、本発明の目的の1つは、量
子細線の高密度化が容易な半導体量子細線の製造方法を
提供することである。
[0008] More specifically, one of the objects of the present invention is to provide a method for manufacturing semiconductor quantum wires that facilitates increasing the density of quantum wires.

【0009】更に具体的に、本発明の目的の1つは、量
子細線の高密度化と線幅の正確な制御による線幅の均一
化が容易な半導体量子細線の製造方法を提供することで
ある。
More specifically, one of the objects of the present invention is to provide a method for manufacturing semiconductor quantum wires in which it is easy to increase the density of quantum wires and make the line width uniform by accurately controlling the line width. be.

【0010】更に具体的に、本発明の目的の1つは、基
板温度等の形成条件により基板結晶面に対して選択的に
膜成長することを利用し、交互に積層した二種類の層の
片方の層に細線を形成し、細線幅、細線の密度を高精度
に制御可能な成長膜厚で決定できる半導体量子細線の製
造方法を提供することである。
More specifically, one of the objects of the present invention is to utilize the fact that the film grows selectively to the crystal plane of the substrate depending on the formation conditions such as the substrate temperature, and to form two types of layers stacked alternately. It is an object of the present invention to provide a method for manufacturing a semiconductor quantum wire in which a thin wire is formed in one layer and the width of the thin wire and the density of the thin wire can be determined by the growth film thickness that can be controlled with high precision.

【0011】[0011]

【課題を解決するための手段】本発明の量子細線の製造
方法は、高密度化と線幅の均一化をねらいとして提案さ
れたものであり、予め選択マスクを配置した基板上に、
有機金属気相成長法を使って矩形状にノンドープAlG
aAs成長層2、ノンドープGaAs成長層3を交互に
多層成長させた後、選択エッチングを用いてノンドープ
AlGaAs成長層2のみエッチングし、U溝を多数形
成する。
[Means for Solving the Problems] The method for manufacturing quantum wires of the present invention was proposed with the aim of increasing the density and making the line width uniform.
Non-doped AlG in a rectangular shape using organometallic vapor phase epitaxy
After the aAs growth layer 2 and the non-doped GaAs growth layer 3 are grown alternately, only the non-doped AlGaAs growth layer 2 is etched using selective etching to form a large number of U-grooves.

【0012】次に、再度、有機金属気相成長法により、
U溝部に量子細線を作ることを主要な特徴とした製造方
法である。
[0012] Next, again by the organometallic vapor phase epitaxy method,
This is a manufacturing method whose main feature is to create quantum wires in the U-groove.

【0013】本発明の構成は下記に示す通りである。即
ち、本発明は、(111)B化合物半導体基板(9)面
上に絶縁膜(10)を堆積し、{112}方向のストラ
イプ状の開口部を形成する第1の工程と、該半導体基板
(9)上に有機金属気相成長法を用いて、側壁に(11
0)面をもつ少なくとも2種類以上の半導体(2,3)
を(111)B面上に多層成長させる第2の工程(図2
)と、多層構造側面を選択的にエッチングする第3の工
程(図3)と、(111)B面上に成長のおこらない成
長条件を用いて少なくとも2種類以上の半導体(2,4
,5,6)を(110)側面方向に選択的に順次成長さ
せる第4の工程(図4)とからなることを特徴とする半
導体量子細線の製造方法としての構成を有するものであ
る。
The structure of the present invention is as shown below. That is, the present invention includes a first step of depositing an insulating film (10) on the (111)B compound semiconductor substrate (9) surface and forming striped openings in the {112} direction; (9) on the side wall using metal organic vapor phase epitaxy (11
0) at least two types of semiconductors (2, 3) with planes
The second step is to grow multilayers on the (111) B plane (Fig. 2
) and a third step (FIG. 3) of selectively etching the side surfaces of the multilayer structure, and a third step (FIG. 3) of selectively etching the side surfaces of the multilayer structure, and etching at least two or more types of semiconductors (2,4
, 5, 6) selectively and sequentially grown in the (110) side direction (FIG. 4).

【0014】[0014]

【作用】本発明の製造方法は、選択成長による矩形の成
長膜厚がU溝の幅として利用できるから、線幅の均一性
が向上し、かつ高密度の量子細線の製造が可能となる。 本発明の製造方法では、基板温度等の形成条件により基
板結晶面に対して選択的に膜成長することを利用し、交
互に積層した2種類の層の片方の層に細線を形成するた
め、細線幅、細線の密度を高精度に制御可能な成長膜厚
によって決定することができる。
[Function] In the manufacturing method of the present invention, since the thickness of the rectangular growth film by selective growth can be used as the width of the U-groove, the uniformity of the line width is improved and it is possible to manufacture quantum wires with high density. In the manufacturing method of the present invention, thin lines are formed in one layer of two types of layers stacked alternately by utilizing selective film growth on the substrate crystal plane depending on formation conditions such as substrate temperature. The width of the thin line and the density of the thin line can be determined by the growth film thickness, which can be controlled with high precision.

【0015】本発明による半導体量子細線の製造方法は
、成長温度及びV族原料とIII 族原料の濃度比(V
/III 比)によって選択成長の成長様式が変わるこ
とを巧みに利用したものである。連続した1回の成長工
程で一次元電子の蓄積領域を形成するものであるから、
電子の蓄積領域が加工ダメージや汚染から完全に逃れる
ことができるという利点がある。また、横方向の界面の
急峻性も単原子オーダで制御可能であることから、急峻
な界面を持った量子細線構造が実現できる。従って極微
細構造が極めて精度良く実現されている。
The method for manufacturing a semiconductor quantum wire according to the present invention is based on the growth temperature and the concentration ratio of the group V raw material and the group III raw material (V
This skillfully takes advantage of the fact that the growth pattern of selective growth changes depending on the ratio (/III ratio). Since a one-dimensional electron accumulation region is formed in one continuous growth process,
This has the advantage that the electron storage region can be completely protected from processing damage and contamination. Furthermore, since the steepness of the lateral interface can be controlled on the order of a single atom, a quantum wire structure with a steep interface can be realized. Therefore, an extremely fine structure is realized with extremely high precision.

【0016】[0016]

【実施例】以下、材料としてAlGaAs/GaAsを
例にとって本発明の実施例について詳細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail using AlGaAs/GaAs as an example of the material.

【0017】図1は本発明の方法によって作られた量子
細線の基本構造であり、GaAs量子細線は6の部分で
ある。図2乃至図4は、図1の構造を作製する手順を示
しており、以下順次説明する。
FIG. 1 shows the basic structure of a quantum wire made by the method of the present invention, and the GaAs quantum wire is part 6. 2 to 4 show a procedure for manufacturing the structure shown in FIG. 1, which will be explained in sequence below.

【0018】まず、(111)B面n+ 型GaAs基
板9上にSiO2 10をスパッタ法或いは、CVD法
で堆積させ、下記数式2方向に沿ったストライプ状の開
口部を作り、この基板上に有機金属気相成長法を使い、
V族原料とIII 族原料の濃度比(V/III 比)
40−150、800℃の成長温度でノンドープGaA
s成長層3、ノンドープAlGaAs成長層2を交互に
50nmずつ矩形に成長させる(図2)。この時、側面
には、(110)ファセット面があらわれる。
First, SiO2 10 is deposited on the (111) B-plane n+ type GaAs substrate 9 by sputtering or CVD to form striped openings along the direction of the following formula 2, and an organic layer is deposited on this substrate. Using metal vapor phase epitaxy,
Concentration ratio of group V raw material and group III raw material (V/III ratio)
Non-doped GaA at growth temperature of 40-150, 800℃
The S growth layer 3 and the non-doped AlGaAs growth layer 2 are grown alternately in a rectangular shape of 50 nm each (FIG. 2). At this time, a (110) facet surface appears on the side surface.

【0019】[0019]

【数2】[Math 2]

【0020】次に、沸酸系あるいは塩酸/過酸化水素系
の選択エッチング液を用いて、(110)側面のノンド
ープAlGaAs成長層2のみを選択的にエッチングし
、U溝を矩形側面に多数形成する(図3)。
Next, using a hydrochloric acid-based or hydrochloric acid/hydrogen peroxide-based selective etching solution, only the non-doped AlGaAs growth layer 2 on the (110) side surface is selectively etched to form a large number of U grooves on the rectangular side surface. (Figure 3).

【0021】次に、成長温度を650℃に下げ、(11
0)側面方向にのみノンドープAlGaAs成長層2を
30nm、GaAs層(GaAs量子細線)6を8nm
、p型AlGaAs成長層4を50nm、p型GaAs
成長層5を10nm順次成長する(図4)。650℃以
下の成長温度では(111)B面上には、全く成長がお
こらず(110)側面だけが選択的に成長する。また、
側面ではU溝の底部の成長速度が、(110)面の成長
速度よりも早いためU溝部のみにGaAs量子細線6を
選択的に成長することができる。量子細線の幅は最初の
成長工程である(111)B面上へのノンドープAlG
aAs成長層2の厚さとほぼ一致するため、図1のノン
ドープAlGaAs成長層2の成長時間だけで容易に制
御できる。
Next, the growth temperature was lowered to 650°C and (11
0) Non-doped AlGaAs growth layer 2 is 30 nm thick and GaAs layer (GaAs quantum wire) 6 is 8 nm thick only in the side direction.
, p-type AlGaAs growth layer 4 of 50 nm, p-type GaAs
Growth layers 5 are sequentially grown to a thickness of 10 nm (FIG. 4). At a growth temperature of 650° C. or lower, no growth occurs on the (111) B plane, and only the (110) side grows selectively. Also,
On the side surfaces, the growth rate at the bottom of the U-groove is faster than the growth rate at the (110) plane, so the GaAs quantum wire 6 can be selectively grown only in the U-groove. The width of the quantum wire is determined by the first growth step of undoped AlG on the (111)B plane.
Since the thickness almost matches the thickness of the aAs growth layer 2, it can be easily controlled only by the growth time of the non-doped AlGaAs growth layer 2 shown in FIG.

【0022】以上説明したように、本発明による半導体
量子細線の製造方法では、成長膜厚で量子細線の幅を決
定できるため、線幅の制御性と均一性が良好なこと、及
び高密度化を図れることが主要な特徴である。
As explained above, in the method for manufacturing a semiconductor quantum wire according to the present invention, since the width of the quantum wire can be determined by the thickness of the grown film, the controllability and uniformity of the line width are good, and the high density can be achieved. The main feature is that it is possible to achieve

【0023】本発明の実施例では、AlGaAs/Ga
As系材料で説明したが、GaInP/GaAs、Ga
InAs/InP等のIII −V族半導体及びその混
晶系、ZnSe/GaAs等のII−VI族半導体とそ
の混晶系材料でも実現できる。
In an embodiment of the present invention, AlGaAs/Ga
Although the explanation was made using As-based materials, GaInP/GaAs, Ga
It can also be realized with III-V group semiconductors such as InAs/InP and their mixed crystal systems, and II-VI group semiconductors and their mixed crystal materials such as ZnSe/GaAs.

【0024】また、図2の矩形の成長は、GaAs/A
lGaAs多層構造が成長できることと側面の非常にき
れいな(110)ファセット面を半導体レーザのミラー
面として利用できることからショートキャビティレーザ
を作製することも可能となる。
Furthermore, the rectangular growth shown in FIG.
Since a lGaAs multilayer structure can be grown and a very clean (110) facet on the side surface can be used as a mirror surface of a semiconductor laser, it is also possible to fabricate a short cavity laser.

【0025】[0025]

【発明の効果】本発明による半導体量子細線の製造方法
は、結晶成長だけで量子細線の幅と密度が決定できるた
めに、量子細線の均一性、高密度化が図れ、低しきい値
、高出力の量子細線レーザあるいは量子細線トランジス
タが得られる。
Effects of the Invention The method for manufacturing semiconductor quantum wires according to the present invention allows the width and density of the quantum wires to be determined only by crystal growth, so that uniformity and high density of the quantum wires can be achieved, and low threshold and high An output quantum wire laser or quantum wire transistor is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法で作成される量子細線構造図であ
る。
FIG. 1 is a diagram of a quantum wire structure created by the method of the present invention.

【図2】(111)BGaAs基板上に下記数式3方向
に沿ったストライプ状の開口部を作り、この基板上にG
aAs層(3)、AlGaAs層(2)を交互に50n
mずつ矩形に成長させた工程図である。
[Figure 2] Stripe-shaped openings are made on a (111) BGaAs substrate along the three directions of the following formula, and G
The aAs layer (3) and the AlGaAs layer (2) are alternately 50n
It is a process diagram of growing a rectangle by m.

【数3】[Math 3]

【図3】(110)側面のAlGaAs層(2)のみを
選択的にエッチングし、U溝を矩形側面に多数形成する
工程図である。
FIG. 3 is a process diagram in which only the AlGaAs layer (2) on the (110) side surface is selectively etched to form a large number of U grooves on the rectangular side surface.

【図4】(110)側面方向にのみAlGaAs層(2
)を30nm、GaAs層(6)を8nm、p型AlG
aAs層(4)を50nm、GaAs層(5)を10n
m順次成長する工程図である。
[Fig. 4] (110) AlGaAs layer (2) only in the side direction
) is 30 nm, GaAs layer (6) is 8 nm, p-type AlG
The aAs layer (4) is 50 nm thick, and the GaAs layer (5) is 10 nm thick.
It is a process diagram of growing m sequentially.

【図5】従来提案されている一次元量子細線構造図であ
る。
FIG. 5 is a diagram of a conventionally proposed one-dimensional quantum wire structure.

【図6】n+ 型GaAs基板上に化学エッチングによ
ってV溝を形成する工程図である。
FIG. 6 is a process diagram of forming a V-groove by chemical etching on an n+ type GaAs substrate.

【図7】AlGaAs層(2)、GaAs層(3)、p
型AlGaAs層(4)及びp型GaAs層(5)を順
次成長する工程図である。
FIG. 7: AlGaAs layer (2), GaAs layer (3), p
It is a process diagram of sequentially growing a type AlGaAs layer (4) and a p-type GaAs layer (5).

【図8】(001)面上のGaAs層(3)からの発光
を抑制するためにH+ イオン注入層を形成し、量子細
線を実現する工程図である。
FIG. 8 is a process diagram for realizing a quantum wire by forming an H+ ion implantation layer to suppress light emission from the GaAs layer (3) on the (001) plane.

【符号の説明】[Explanation of symbols]

1  (001)n+ 型GaAs基板2  ノンドー
プAlGaAs成長層 3  ノンドープGaAs成長層 4  p型AlGaAs成長層 5  p型GaAs成長層 6  GaAs量子細線 7  H+ イオン注入層 8  エッチングマスク 9  (111)B面n+ 型GaAs基板10  S
iO2 (マスク)
1 (001) n+ type GaAs substrate 2 Non-doped AlGaAs growth layer 3 Non-doped GaAs growth layer 4 P-type AlGaAs growth layer 5 P-type GaAs growth layer 6 GaAs quantum wire 7 H+ ion implantation layer 8 Etching mask 9 (111)B surface n+ type GaAs substrate 10S
iO2 (mask)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (111)B化合物半導体基板面上に
絶縁膜を堆積し、{112}方向のストライプ状の開口
部を形成する第1の工程と、該半導体基板上に有機金属
気相成長法を用いて、側壁に(110)面をもつ少なく
とも2種類以上の半導体を(111)B面上に多層成長
させる第2の工程と、多層構造側面を選択的にエッチン
グする第3の工程と、(111)B面上に成長のおこら
ない成長条件を用いて少なくとも2種類以上の半導体を
(110)側面方向に選択的に順次成長させる第4の工
程とからなることを特徴とする半導体量子細線の製造方
法。
1. A first step of depositing an insulating film on the surface of a (111)B compound semiconductor substrate and forming striped openings in the {112} direction, and metal organic vapor phase growth on the semiconductor substrate. a second step of growing multilayers of at least two types of semiconductors having (110) planes on the sidewalls on the (111)B plane using a method; and a third step of selectively etching the side surfaces of the multilayer structure. , a fourth step of selectively and sequentially growing at least two types of semiconductors in the (110) side direction using growth conditions that do not cause growth on the (111) B plane. Method of manufacturing thin wire.
JP15958491A 1991-06-03 1991-06-03 Manufacture of semiconductor quantum fine wiring Pending JPH04356963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15958491A JPH04356963A (en) 1991-06-03 1991-06-03 Manufacture of semiconductor quantum fine wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15958491A JPH04356963A (en) 1991-06-03 1991-06-03 Manufacture of semiconductor quantum fine wiring

Publications (1)

Publication Number Publication Date
JPH04356963A true JPH04356963A (en) 1992-12-10

Family

ID=15696909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15958491A Pending JPH04356963A (en) 1991-06-03 1991-06-03 Manufacture of semiconductor quantum fine wiring

Country Status (1)

Country Link
JP (1) JPH04356963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537091A (en) * 1991-08-01 1993-02-12 Tokyo Inst Of Technol Multi-dimensional quantum well device and its manufacture
JP2007531998A (en) * 2004-04-02 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Production and use of superlattices
US7829352B2 (en) 2003-10-07 2010-11-09 Hewlett-Packard Development Company, L.P. Fabrication of nano-object array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537091A (en) * 1991-08-01 1993-02-12 Tokyo Inst Of Technol Multi-dimensional quantum well device and its manufacture
US7829352B2 (en) 2003-10-07 2010-11-09 Hewlett-Packard Development Company, L.P. Fabrication of nano-object array
JP2007531998A (en) * 2004-04-02 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Production and use of superlattices
JP4796569B2 (en) * 2004-04-02 2011-10-19 サムスン エレクトロニクス カンパニー リミテッド Production and use of superlattices

Similar Documents

Publication Publication Date Title
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
JPH06291416A (en) Semiconductor laser and manufacture thereof
US4987094A (en) Method of making a macroscopic stepped structure on a vicinally cut crystal
JP2854607B2 (en) Semiconductor device and semiconductor laser device
JPS62200785A (en) Semiconductor laser device and manufacture thereof
JPH04356963A (en) Manufacture of semiconductor quantum fine wiring
JP2000031596A (en) Semiconductor laser and its manufacture
JPH04280629A (en) Manufacturing method of film stepwise structure and semiconductor device using the same
JP3042645B2 (en) Manufacturing method of semiconductor quantum box structure
JP2533777B2 (en) Method for manufacturing one-dimensional quantum wire
JP3783244B2 (en) III-V compound semiconductor light emitting device manufacturing method
JPH01186688A (en) Semiconductor laser device
JP3082444B2 (en) Manufacturing method of semiconductor laser
JP3188931B2 (en) Thin film growth method
JPH06151881A (en) Manufacture of quantum effect device
JP3030932B2 (en) Manufacturing method of semiconductor fine structure
JP2630273B2 (en) Distributed feedback semiconductor laser
Ono et al. Study of Selective MBE Growth on Patterned (001) InP Substrates Toward Realization of< 100>-Oriented InGaAs Ridge Quantum Wires
JPS6159736A (en) Manufacture of compound semiconductor device
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JPH05235463A (en) Distributed feedback type semiconductor laser device and fabrication thereof
JPH04243183A (en) Semiconductor laser and manufacture thereof
JPH0629619A (en) Manufacturing method of semiconductor laser
JPH02306668A (en) Semiconductor device with quantum fine wire and manufacture thereof
JPH04130692A (en) Semiconductor laser and manufacture thereof