JPH0434631B2 - - Google Patents

Info

Publication number
JPH0434631B2
JPH0434631B2 JP61098187A JP9818786A JPH0434631B2 JP H0434631 B2 JPH0434631 B2 JP H0434631B2 JP 61098187 A JP61098187 A JP 61098187A JP 9818786 A JP9818786 A JP 9818786A JP H0434631 B2 JPH0434631 B2 JP H0434631B2
Authority
JP
Japan
Prior art keywords
layer
steel sheet
plating
pure
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61098187A
Other languages
Japanese (ja)
Other versions
JPS62256992A (en
Inventor
Eiji Minbu
Masayuki Kojima
Toyofumi Watanabe
Hiroki Iwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP9818786A priority Critical patent/JPS62256992A/en
Publication of JPS62256992A publication Critical patent/JPS62256992A/en
Publication of JPH0434631B2 publication Critical patent/JPH0434631B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は溶接缶用表面処理鋼板の製造方法に関
する。 〔従来の技術〕 近年、食缶、飲料缶等の缶体を製造するための
方法は多様化しているが、そのなかで特にスード
ロニツク溶接法に代表される電気抵抗溶接法の発
展が著しい。このような製缶方法に供される溶接
缶用素材としては従来錫メツキ鋼板(ブリキ)が
用いられているが、ブリキ材は錫価格の高騰によ
り缶用素材としては高価なものとなりつつあり、
製缶コスト上の問題を生じている。このため最近
では、錫メツキ付着量を減じた薄メツキ化が進む
傾向にあるが、単に錫メツキ量を減じただけでは
塗装後耐食性等の面で次のような問題を生じる。 すなわち、極薄メツキブリキは内外面を塗装し
て使用することになるが、単に錫メツキ量を減じ
ただけでは素地鉄の露出を増大させることにな
り、缶内面においては塗膜を通して腐食性溶液
(缶内容物)が浸透してブリスターが発生し、こ
のため塗膜を通じて鉄が溶出し内容物中の鉄イオ
ンを増大させる結果となる。また塗膜の欠陥部に
おいては、鋼母材に孔のあく現象も認められる。
一方、缶外面では糸状錆が発生する等の問題があ
る。 このような問題に対し、塗装後耐食性及び溶接
性の両方を満足すべき表面処理鋼板として、特開
昭60−184688号において、鋼板の表面に下地層と
してSn−Fe−Ni3元合金層を有し、その上層に
島状の純Sn層を有し、且つ下地層及び純Sn層の
付着量と純Sn層の被覆面積率を所定の範囲に規
制したものが提案されている。 この表面処理鋼板は、Sn付着量を抑えつつ
#25ブリキ並の耐食性、溶接性とTFS並みの塗
料密着性を有しており、新溶接缶用鋼板(LTS
鋼板)として最近注目を集めている。 〔発明が解決しようとする問題点〕 しかし、この種の表面鋼板は、島状の不連続化
した純Sn層を安定して得ることが難しく、往々
にして純Sn層が連続化してしまい目標とするよ
うな耐食性能が得られない場合がある。 本発明はこのような従来の問題に鑑みなされた
もので、純Sn層が適切に不連続化したLTS鋼板
を安定して製造することができる方法を提供せん
とするものである。 このため、本願第一の発明は、鋼板面のNi−
Sn−Fe合金層上に純Sn層が不連続状に形成され
た溶接缶用表面処理鋼板の製造方法において、鋼
板表面にNiメツキを施した後、0.66〜1.12g/m2
のSn付着量で電気Snメツキを施し、添加剤を含
まない洗浄水で水洗後、235〜250℃の温度でリフ
ロー処理することをその基本的特徴とする。 また、本願第二の発明は、上記リフロー処理
後、金属クロムとその上層の水和酸化クロムとか
らなるクロメート処理層を形成させるクロメート
処理を施すことをその基本的特徴とする。 以下、本発明を詳細に説明する。 本発明では、脱脂酸洗等の必要な前処理を施し
た後、鋼板表面にNiメツキを行い、次いで電気
Snメツキを行う。このSnメツキは0.66g/m2
1.22g/m2のSn付着量でなされる。このSn付着
量が0.66g/m2未満では塗装焼付後所望の純錫が
残らず、溶接性に問題を生じる。一方、1.12g/
m2を超えたSn量は極薄Snメツキを基本とする本
発明範囲外の付着量であり、換言すれば、純Sn
の不連続化を伴わなくとも十分な塗装後耐食性を
満足できる。 この時点で、鋼板表面には下層にNiメツキ層、
上層に純Sn層が形成された状態にある。 ところで、上述した特開昭60−184688号公報に
は、その対象とする鋼板の製造方法としてNiメ
ツキした後、このNiメツキの加熱拡散処理を行
い、しかる後Snメツキ、リフロー処理を行う方
法が開示されており、この方法はNiの拡散層に
よつてリフロー処理時にSnの所謂はじき現象が
生じ易く、不連続状の純Sn層を得る上では有利
方法であると言える。 このような方法に対し、本発明はプロセスの連
続化という観点から、Niメツキ後、その加熱拡
散処理を行うことなくSnメツキを行う、所謂湿
式重ねメツキを行う。この方法はNiメツキとSn
メツキとの間に熱処理工程が入らないため、プロ
セスの連続化という面で有利である。しかし、
Niの加熱拡散処理を行う上記方法に較べてリフ
ロー処理時のSnのはじき現象が生じにくく、不
連続状の純Sn層を得にくいという問題がある。 このような問題に対し本発明では、Snメツキ
後、添加剤を含まない洗浄水(通常は温水)によ
り鋼板を水洗し、次いで特定の温度でリフロー処
理を行うものであり、これによつて不連続状の純
Sn層が生じにくい湿式重ねメツキ方式であつて
も適切に不連続状の純Sn層を形成させることが
可能となる。 上記水洗は通常は電気メツキ設備のドラツグア
ウトセクシヨンで行われる。一般のSnメツキ設
備におけるドラツクアウトセクシヨンでは、その
洗浄水中にメツキ液にも添加されている添加剤
(フエノールスルフオン酸等)が含まれているが、
本発明の水洗処理に用いられる洗浄水にはこのよ
うな添加剤は含まれない。この添加剤はリフロー
処理時に溶融したSnの流動化を助け、純Sn層を
均一にする作用がある。したがつて、このような
作用をする添加剤を用いないことにより純Sn層
の均一化を阻止し、純Sn層の不連続化を促すこ
とができる。 次いで、鋼板はリフロー処理されるが、本発明
ではこのリフロー処理を235〜250℃の範囲で行
う。一般にSnメツキ鋼板のリフロー処理は270〜
280℃の温度域で行われるが、本発明者等が検討
したところによれば、リフロー処理をSnの融点
に近い比較的低温域で行うことにより、純Sn層
の不連続化が安定して得られることが判つた。
Sn皮膜をリフロー時に不連続化させるためには
溶融Snの表面張力を利用する必要があり、この
表面張力は溶融Snの温度が融点(232℃)に近い
ほど大きく、したがつてリフロー温度をより融点
に近くするほどSnの不連続化を生じさせ易い。
このような不連続化したSn被膜を安定して得る
ためのリフロー温度の上限は250℃であり、これ
を超える温度では溶融Snの表面張力が小さ過ぎ、
不連続な被膜を安定して得ることが難しくなる。 リフロー処理の加熱によつて、Niメツキ層は
下地のFeおよび上層のSnの一部と反応して合金
化を開始するとともに、板温がSnの融点を超え
ると、Snは溶融を開始する。そして、このリフ
ロー処理によつて、下層側は上記合金化反応によ
りNi−Sn−Fe合金層に変化し、その上層に溶融
した純Sn層が残存する状態となるが、上述した
理由で純Sn層の流動化が阻害されるため、溶融
した純Sn層は不連続状になり、この結果、Ni−
Sn−Fe合金層上に不連続状の純Sn層が形成され
たメツキ被膜が得られる。 このようにして得られたメツキ鋼板には、通
常、耐食性向上を目的としてクロメート処理が施
され、金属クロムとその上層の水和酸化クロムと
からなるクロメート処理層を形成させる。このク
ロメート処理の代表的な方法としては、無水クロ
ム酸を主体とし、硫酸イオンまたはフツ素イオン
等の触媒イオン(アニオン)を含む水溶液中で陰
極電解を行う方法がある。このクロメート処理は
金属クロムが5〜10mg/m2、水和酸化クロムがク
ロム換算で10〜15mg/m2の付着量とすることが好
ましい。 以上の処理により、第1図に示すようにNi−
Sn−Fe合金層とその上部に不連続状(島状)に
形成されたSn層、さらにそれらの上部を均一に
覆う金属クロムと水和酸化クロムとのクロメート
処理層とを有する表面処理鋼板が得られる。 〔実施例〕 0.22mmの冷延鋼板に通常の脱脂酸洗を行い、電
気メツキによりNiメツキとSnメツキを連続して
施した後、ドラツグアウトセクシヨンにおける洗
浄処理及びこれに続くリフロー処理を第1表に示
す各条件にしたがつて行い、しかる後クロメート
処理を施し、得られたメツキ鋼板の純Sn層の不
連続化の有無、耐食性、溶接性等を調べた。その
結果を第1表に合せて示す。
[Industrial Field of Application] The present invention relates to a method for manufacturing a surface-treated steel sheet for welded cans. [Prior Art] In recent years, methods for manufacturing can bodies for food cans, beverage cans, etc. have diversified, and among these methods, electric resistance welding methods, represented by the Sudronik welding method, have made particularly remarkable progress. Traditionally, tin-plated steel sheets (tinplate) have been used as the material for welded cans used in this can-making method, but tinplate is becoming more expensive as a material for cans due to the soaring price of tin.
This is causing problems in can manufacturing costs. For this reason, there has recently been a trend toward thinner plating by reducing the amount of tin plating, but simply reducing the amount of tin plating causes the following problems in terms of post-painting corrosion resistance, etc. In other words, ultra-thin plating tin is used by painting the inside and outside surfaces, but simply reducing the amount of tin plating increases the exposure of the base iron, and corrosive solutions ( The contents of the can permeate and form blisters, which causes iron to be leached through the coating and increase the amount of iron ions in the contents. In addition, the phenomenon of holes forming in the steel base material is also observed in the defective areas of the coating film.
On the other hand, there are problems such as filamentous rust occurring on the outer surface of the can. In order to solve these problems, Japanese Patent Application Laid-Open No. 184688/1988 proposed a surface-treated steel sheet that satisfies both corrosion resistance and weldability after painting, which has a Sn-Fe-Ni ternary alloy layer as a base layer on the surface of the steel sheet. However, it has been proposed to have an island-shaped pure Sn layer on the upper layer, and to regulate the amount of the underlayer and pure Sn layer deposited and the coverage area ratio of the pure Sn layer within a predetermined range. This surface-treated steel sheet has corrosion resistance and weldability comparable to #25 tinplate, and paint adhesion comparable to TFS, while suppressing the amount of Sn attached.
Recently, it has been attracting attention as a steel sheet. [Problems to be solved by the invention] However, with this type of surface steel sheet, it is difficult to stably obtain a pure Sn layer with island-like discontinuous properties, and the pure Sn layer often becomes continuous, which does not meet the target goal. In some cases, it may not be possible to obtain the desired corrosion resistance. The present invention was made in view of such conventional problems, and it is an object of the present invention to provide a method that can stably produce an LTS steel sheet in which the pure Sn layer is appropriately discontinuous. For this reason, the first invention of the present application provides Ni-
In the method for manufacturing a surface-treated steel sheet for welded cans in which a pure Sn layer is discontinuously formed on a Sn-Fe alloy layer, after Ni plating is applied to the surface of the steel sheet, 0.66 to 1.12 g/m 2
Its basic feature is that it is electrically Sn-plated with an amount of Sn attached of , washed with additive-free washing water, and then subjected to reflow treatment at a temperature of 235 to 250°C. The basic feature of the second invention of the present application is that after the reflow treatment, a chromate treatment is performed to form a chromate treatment layer consisting of metallic chromium and an upper layer of hydrated chromium oxide. The present invention will be explained in detail below. In the present invention, after performing necessary pretreatment such as degreasing and pickling, the surface of the steel plate is plated with Ni, and then electrically
Perform Sn Metsuki. This Sn plating is 0.66g/m 2 ~
It is made with a Sn coating amount of 1.22g/ m2 . If the amount of Sn deposited is less than 0.66 g/m 2 , the desired amount of pure tin will not remain after baking the paint, causing a problem in weldability. On the other hand, 1.12g/
An amount of Sn that exceeds m 2 is outside the scope of the present invention based on ultra-thin Sn plating.
Sufficient corrosion resistance after painting can be achieved without any discontinuity. At this point, the steel plate surface has a Ni plating layer underneath,
A pure Sn layer is formed on the upper layer. By the way, the above-mentioned Japanese Unexamined Patent Publication No. 184688/1988 describes a method for manufacturing the target steel sheet, in which after Ni plating, the Ni plating is heated and diffused, and then Sn plating and reflow treatment are performed. This method can be said to be an advantageous method for obtaining a discontinuous pure Sn layer because the Ni diffusion layer tends to cause the so-called Sn repelling phenomenon during reflow processing. In contrast to such methods, the present invention performs so-called wet layer plating, in which Sn plating is performed after Ni plating without performing the heating diffusion treatment, from the viewpoint of process continuity. This method uses Ni and Sn
Since there is no heat treatment step between plating and plating, it is advantageous in terms of continuous process. but,
Compared to the above-mentioned method in which Ni is heated and diffused, there is a problem that Sn repelling phenomenon is less likely to occur during reflow treatment and it is difficult to obtain a discontinuous pure Sn layer. To solve this problem, in the present invention, after Sn plating, the steel plate is washed with washing water (usually warm water) that does not contain additives, and then reflow treatment is performed at a specific temperature. continuous net
Even with a wet layer plating method in which Sn layers are difficult to form, it is possible to appropriately form a discontinuous pure Sn layer. The washing is usually carried out in the dragout section of the electroplating equipment. In the dragout section of general Sn plating equipment, the wash water contains additives (phenolsulfonic acid, etc.) that are also added to the plating solution.
The washing water used in the washing process of the present invention does not contain such additives. This additive helps fluidize the molten Sn during reflow processing and has the effect of making the pure Sn layer uniform. Therefore, by not using an additive that has such an effect, it is possible to prevent the pure Sn layer from becoming uniform and to promote discontinuity in the pure Sn layer. Next, the steel plate is subjected to reflow treatment, and in the present invention, this reflow treatment is performed at a temperature in the range of 235 to 250°C. Generally, the reflow treatment of Sn-plated steel plate is 270~
The reflow process is carried out at a temperature of 280°C, but according to studies conducted by the present inventors, the discontinuity of the pure Sn layer can be stabilized by performing the reflow process at a relatively low temperature close to the melting point of Sn. I found out that I can get it.
In order to make the Sn film discontinuous during reflow, it is necessary to utilize the surface tension of molten Sn, and this surface tension increases as the temperature of molten Sn approaches its melting point (232°C). The closer the temperature is to the melting point, the easier it is to cause Sn to become discontinuous.
The upper limit of the reflow temperature to stably obtain such a discontinuous Sn film is 250°C; at temperatures above this, the surface tension of the molten Sn is too small.
It becomes difficult to stably obtain a discontinuous film. Due to the heating of the reflow process, the Ni plating layer reacts with the underlying Fe and part of the upper layer Sn to start alloying, and when the plate temperature exceeds the melting point of Sn, the Sn starts to melt. Through this reflow treatment, the lower layer side changes to a Ni-Sn-Fe alloy layer due to the above-mentioned alloying reaction, and the molten pure Sn layer remains on the upper layer. Since the fluidization of the layer is inhibited, the molten pure Sn layer becomes discontinuous, resulting in Ni−
A plating film is obtained in which a discontinuous pure Sn layer is formed on the Sn--Fe alloy layer. The plated steel sheet obtained in this way is usually subjected to chromate treatment for the purpose of improving corrosion resistance, forming a chromate treatment layer consisting of metallic chromium and an upper layer of hydrated chromium oxide. A typical method for this chromate treatment is to carry out cathodic electrolysis in an aqueous solution containing chromic anhydride as a main ingredient and catalyst ions (anions) such as sulfate ions or fluorine ions. In this chromate treatment, it is preferable that the metal chromium is deposited in an amount of 5 to 10 mg/m 2 and the hydrated chromium oxide is deposited in an amount of 10 to 15 mg/m 2 in terms of chromium. Through the above processing, Ni-
A surface-treated steel sheet has a Sn-Fe alloy layer, a Sn layer formed discontinuously (island-like) on top of the Sn-Fe alloy layer, and a chromate treatment layer of metallic chromium and hydrated chromium oxide that evenly covers the top of the Sn layer. can get. [Example] A 0.22 mm cold-rolled steel plate was subjected to normal degreasing and pickling, and then electroplated with Ni plating and Sn plating, followed by cleaning treatment in the dragout section and subsequent reflow treatment. Testing was carried out under the conditions shown in Table 1, followed by chromate treatment, and the presence or absence of discontinuity in the pure Sn layer of the resulting plated steel sheet, corrosion resistance, weldability, etc. were examined. The results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、湿式重ねメツキ方
式の所謂LTS鋼板の製造において、不連続化し
た純Sn層を安定して形成させることができ、こ
の種のメツキ鋼板を生産性良く、能率的に製造す
ることができる効果がある。
According to the present invention described above, it is possible to stably form a discontinuous pure Sn layer in the production of so-called LTS steel sheets using the wet layer plating method, and this type of plating steel sheets can be manufactured with high productivity and efficiency. There is an effect that can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が製造の対象とするメツキ鋼板
の被膜構造を示す説明図である。
FIG. 1 is an explanatory diagram showing the coating structure of a galvanized steel plate that is the object of manufacture of the present invention.

Claims (1)

【特許請求の範囲】 1 鋼板面のNi−Sn−Fe合金層上に純Sn層が不
連続状に形成された溶接缶用表面処理鋼板の製造
方法において、鋼板表面にNiメツキを施した後、
0.66〜1.12g/m2のSn付着量で電気Snメツキを施
し、添加剤を含まない洗浄水で水洗後、235〜250
℃の温度でリフロー処理することを特徴とする溶
接缶用表面処理鋼板の製造方法。 2 鋼板面のNi−Sn−Fe合金層上に純Sn層が不
連続状に形成された溶接缶用表面処理鋼板の製造
方法において、鋼板表面にNiメツキを施した後、
0.66〜1.12g/m2のSn付着量で電気Snメツキを施
し、添加剤を含まない洗浄水で水洗後、235〜250
℃の温度でリフロー処理し、次いで、金属クロム
とその上層の水和酸化クロムとからなるクロメー
ト処理層を形成させるクロメート処理を施すこと
を特徴とする溶接缶用表面処理鋼板の製造方法。
[Claims] 1. A method for manufacturing a surface-treated steel sheet for a welded can in which a pure Sn layer is discontinuously formed on a Ni-Sn-Fe alloy layer on the surface of the steel sheet, after the surface of the steel sheet is plated with Ni. ,
Electric Sn plating is applied with a Sn deposition amount of 0.66 to 1.12 g/ m2 , and after washing with washing water that does not contain additives, it is 235 to 250
A method for manufacturing a surface-treated steel sheet for welded cans, which is characterized by performing reflow treatment at a temperature of °C. 2. In the method for manufacturing a surface-treated steel sheet for welded cans in which a pure Sn layer is discontinuously formed on the Ni-Sn-Fe alloy layer on the steel sheet surface, after applying Ni plating to the steel sheet surface,
Electric Sn plating is applied with a Sn deposition amount of 0.66 to 1.12 g/ m2 , and after washing with washing water that does not contain additives, it is 235 to 250
A method for manufacturing a surface-treated steel sheet for welded cans, which comprises performing a reflow treatment at a temperature of °C, and then performing a chromate treatment to form a chromate treatment layer consisting of metallic chromium and an upper layer of hydrated chromium oxide.
JP9818786A 1986-04-30 1986-04-30 Production of surface treated steel sheet for welded can Granted JPS62256992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9818786A JPS62256992A (en) 1986-04-30 1986-04-30 Production of surface treated steel sheet for welded can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9818786A JPS62256992A (en) 1986-04-30 1986-04-30 Production of surface treated steel sheet for welded can

Publications (2)

Publication Number Publication Date
JPS62256992A JPS62256992A (en) 1987-11-09
JPH0434631B2 true JPH0434631B2 (en) 1992-06-08

Family

ID=14213014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9818786A Granted JPS62256992A (en) 1986-04-30 1986-04-30 Production of surface treated steel sheet for welded can

Country Status (1)

Country Link
JP (1) JPS62256992A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558823B2 (en) * 2007-09-26 2010-10-06 古河電気工業株式会社 Silver-coated composite material for movable contact and method for producing the same
US20100233506A1 (en) * 2007-09-26 2010-09-16 Furukawa Electric Co., Ltd. Silver-coated composite material for movable contact and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184688A (en) * 1984-03-01 1985-09-20 Kawasaki Steel Corp Surface treated steel sheet for welded can

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184688A (en) * 1984-03-01 1985-09-20 Kawasaki Steel Corp Surface treated steel sheet for welded can

Also Published As

Publication number Publication date
JPS62256992A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
JPS6254399B2 (en)
JPH0154437B2 (en)
CN212247239U (en) Tinplate with composite coating
JPH0434631B2 (en)
JPS624879A (en) Steel sheet coated with sn-base multilayered film and having superior corrosion resistance, weldability and paintability and its manufacture
JPH0140118B2 (en)
JPS5932556B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting
JPS6376896A (en) Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance
JPH0434630B2 (en)
JPH0472091A (en) Surface-treated steel sheet for two-piece can and production thereof
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPH0431039B2 (en)
JP3670844B2 (en) Chemical treatment of tin-plated steel sheet
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
CN111793812A (en) Production process of tinplate with composite coating and tinplate
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP2933815B2 (en) Manufacturing method of steel plate for welding can with excellent paint appearance
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPH07166398A (en) Production of steel sheet for welded can excellent in high speed seam weldability, corrosion resistance and coating adhesion
JPH0665789A (en) Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion
JPS5938315B2 (en) Manufacturing method of ultra-thin iron-tin alloy coated steel sheet
JPH0428796B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees