JPS6376896A - Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance - Google Patents

Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance

Info

Publication number
JPS6376896A
JPS6376896A JP61220521A JP22052186A JPS6376896A JP S6376896 A JPS6376896 A JP S6376896A JP 61220521 A JP61220521 A JP 61220521A JP 22052186 A JP22052186 A JP 22052186A JP S6376896 A JPS6376896 A JP S6376896A
Authority
JP
Japan
Prior art keywords
plating
steel sheet
distribution
corrosion resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220521A
Other languages
Japanese (ja)
Other versions
JPH0214438B2 (en
Inventor
Kazuya Ezure
江連 和哉
Takao Saito
斎藤 隆穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61220521A priority Critical patent/JPS6376896A/en
Priority to DE87104231T priority patent/DE3788178T2/en
Priority to EP87104231A priority patent/EP0260374B1/en
Priority to CA000532926A priority patent/CA1331962C/en
Priority to AU70712/87A priority patent/AU573122B2/en
Publication of JPS6376896A publication Critical patent/JPS6376896A/en
Publication of JPH0214438B2 publication Critical patent/JPH0214438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Abstract

PURPOSE:To produce the title surface-treated steel sheet having excellent seam weldability and corrosion resistance by applying then uneven island plating of Ni on the surface of a steel sheet, plating Sn thereon, alloying the metals, and then electrolytically chromating the sheet. CONSTITUTION:The surface of a steel sheet is cleaned, and an undulated discontinuous Ni plating or island plating is applied on the surface at 2-100mg/m<2> per face. In the case of the discontinuous plating, the thickness hmax at the highest part and the thickness hmin at the lowest part are limited to conform to hmax>=2hmin, and the area of the plating having 0.001mum thickness is controlled at least to <=90% of the total area. In the case of the island plating, the hmax is controlled to >=0.002mum, and the area of the Ni plated part is adjusted to <=90% of the total area. Sn is plated thereon at 200-2,000mg/m<2> per face, then the material is heated at a temp. above the m.p. of Sn to alloy a part of Sn with Ni and Fe. An electrolytically chromated film is further formed thereon, and a surface-treated steel sheet appropriate for the shell of a three- piece can is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシーム溶接性、耐食性に優れた表面処理鋼板の
製造方法に関するもので、特に缶胴をシーム溶接法で接
合する金属容器用素材としての利用価値が大きい。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a surface-treated steel sheet with excellent seam weldability and corrosion resistance, and particularly as a material for metal containers in which can bodies are joined by seam welding. has great utility value.

〔従来の技術〕[Conventional technology]

従来電解Snメッキ鋼板(以下ブリキと称す)、電解ク
ロム酸処理鋼板(以下TFS−CTと称す)、又一部に
電解N1メッキ鋼板(以下TFS−NT )が知られて
おり、3ピ一ス缶製缶法としてそれぞれハンダ接合、接
着接合、シーム溶接等によって製缶されてきた。
Conventionally, electrolytic Sn-plated steel sheets (hereinafter referred to as tinplate), electrolytic chromic acid treated steel sheets (hereinafter referred to as TFS-CT), and some electrolytic N1-plated steel sheets (hereinafter referred to as TFS-NT) are known. Cans have been manufactured by solder joining, adhesive joining, seam welding, etc. as can manufacturing methods.

ブリキは従来製缶用素材として最も広く使用されてきた
が、製缶コスト節減の中でSn”が薄メツキ化され、製
缶法も従来のハンダ付に替シシーム溶接法が採用され始
めたが、Snメッキ量が片面当90620μm厚以下に
なる厚塗下耐食性、シーム溶接性共劣化し、又シーム溶
接缶用素材として一部で使用されているTFS−NT 
(N1メッキ鋼板)はシーム溶接性能が実用可能な範囲
ではあるが十分ではなく、又塗装耐食性も強酸性食品等
腐食性が高い内容物の場合不十分であることから、低コ
ストでしかも塗装耐食性、シーム溶接性に優れた製缶用
表面処理銅板が要望されている。
Tinplate has traditionally been the most widely used material for can manufacturing, but in order to reduce can manufacturing costs, Sn'' has been made thinner, and seam welding has begun to be used instead of the traditional soldering method for can manufacturing. , TFS-NT, which has a Sn plating amount of less than 90620 μm per side, deteriorates both corrosion resistance and seam weldability, and is also used in some parts as a material for seam welded cans.
(N1 plated steel plate) has seam welding performance that is within a practical range but is not sufficient, and paint corrosion resistance is also insufficient for highly corrosive contents such as strongly acidic foods, so it is low cost and has good paint corrosion resistance. There is a demand for a surface-treated copper plate for can making that has excellent seam weldability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これに対し本発明者は特開昭60−75586号等で鋼
板上に微量Niメッキ被覆を行った後Snメッキする手
法を発明し、加熱時に形成されるFe−Sn合金層が微
量のNiによって緻密化することから耐食性が向上し、
そして加熱時のFe−Sn合金化反応が抑制されること
で、シーム溶接性も向上することを知見した。さらに本
発明者はこれらシーム溶接缶用素材としての特性には表
面に存在する金属Snの分布状態が影響し、金属Snの
分布状態が均一であるより不均一な凹凸分布を有する方
が特性が良好となることも見い出し、特願昭61−16
471号にて既に出願した。
In response to this, the present inventor invented a method in which a small amount of Ni plating is applied to a steel plate and then Sn plating is applied in JP-A No. 60-75586, etc., and the Fe-Sn alloy layer formed during heating is Corrosion resistance improves due to densification,
It has also been found that seam weldability is also improved by suppressing the Fe-Sn alloying reaction during heating. Furthermore, the inventors have found that the characteristics of these materials for seam-welded cans are affected by the distribution state of metal Sn present on the surface, and that the characteristics are better when the distribution state of metal Sn is uneven and uneven than when the distribution state is uniform. It was also found that it was good, and a patent application was filed in 1986-16.
I have already filed an application under No. 471.

これらは確かに従来の単純な薄Snメッキ鋼板と比較し
て、シーム溶接性等に効果を有するが、得られる特性が
一定でなくバラツキを持つため、シーム溶接性、耐食性
等特性が安定して良好な築材が望まれていた。このため
本発明者は鋼板上に微量のN1メッキ処理を施した後、
Snメッキを重層被覆する鋼板の特性をさらに改善すべ
くその製造条件の詳細を鋭意検討し、本発明に到達した
のである。
These do have an effect on seam weldability, etc. compared to conventional simple thin Sn-plated steel sheets, but the properties obtained are not constant and vary, so seam weldability, corrosion resistance, etc. are not stable. Good construction materials were desired. For this reason, the inventor applied a small amount of N1 plating on the steel plate, and
In order to further improve the characteristics of the steel plate coated with Sn plating in multiple layers, the present invention was achieved by intensively studying the details of the manufacturing conditions.

〔問題点を解決するための手段・作用〕本発明表面処理
鋼板は鋼板底面に片面当92〜100 ml/m2のN
1を不連続な島状に被覆した後、引き続き片面当’) 
200〜2000 mg/m2のSnメッキを施こし、
さらにSnメッキ層融点以上での加熱処理を施こした後
、電解クロメート処理を施すものであり、本発明の一イ
ンドは、鋼板表面に形成する片面当シ2〜100mg7
m2のN1層を不均一な島状に被覆する点にある。この
ように本発明はNiを下地メッキする薄Snメッキ鋼板
の最適な製造方法を提供するものであり、本発明と同量
のN1を連続な均一層として被覆する場合と比較し、シ
ーム溶接性、耐食性等特性が安定して良好となる。本発
明?さらに詳しく説明する。
[Means/effects for solving the problem] The surface-treated steel sheet of the present invention is coated with 92 to 100 ml/m2 of N per one side on the bottom surface of the steel sheet.
After coating 1 in a discontinuous island shape, continue to apply on one side')
Apply Sn plating of 200 to 2000 mg/m2,
Furthermore, after heat treatment is performed at a temperature higher than the melting point of the Sn plating layer, electrolytic chromate treatment is performed.
The point is that the N1 layer of m2 is coated in a non-uniform island shape. As described above, the present invention provides an optimal manufacturing method for a thin Sn-plated steel sheet with Ni underplating, and has improved seam weldability compared to the case of coating the same amount of N1 as a continuous uniform layer as in the present invention. , properties such as corrosion resistance become stable and good. Invention? I will explain in more detail.

溶接缶用素材として使用される片面当り 200〜20
00mg/m2のSnメッキ鋼板に要求される特性で最
も重要なのは、シーム溶接性でらシ、そして塗膜下目等
の耐食性である。これら特性には、Fe、y’sn界面
に形成されるFe−Sn合金層又金属Sn層等の構造、
形態、分布が大きく影響することが知られでいる。この
ためSnメッキを施す前に片面当り2〜100〜7m2
のNiメッキ処理を施す手法が考案され、このNiメッ
キ前処理によってFe/Sn界面に形成されるFe−S
n合金層が緻密化し、耐食性の向上、さらに塗装焼付等
加熱工程でのFe−Sn合金化反応が抑制されることで
シーム溶接性向上に寄与する金属Snの確保が同−Sn
メッキ層の場合に容易となるのである。
200 to 20 per side used as material for welded cans
The most important characteristics required for a 00 mg/m2 Sn-plated steel sheet are seam weldability and corrosion resistance of the underside of the coating. These characteristics include the structure of the Fe-Sn alloy layer or metal Sn layer formed at the Fe, y'sn interface,
It is known that morphology and distribution have a large influence. For this reason, before applying Sn plating, 2 to 100 to 7 m2 per side
A method of performing Ni plating treatment was devised, and the Fe-S formed at the Fe/Sn interface by this Ni plating pretreatment was devised.
The n-alloy layer becomes denser, improving corrosion resistance, and suppressing the Fe-Sn alloying reaction during heating processes such as paint baking, thereby securing the metal Sn that contributes to improving seam weldability.
This becomes easy in the case of a plated layer.

このように溶接缶用薄Snメッキ鋼板の特性はNiメッ
キ前処理によって確かに向上し、さらに本発明者が%願
昭60−24749号、特願昭61−16471号で既
に出願したようにSnメッキ層の分布状態を不均一な凹
凸分布とすることで特性はより向上する。そしてこのよ
うなSnメッキ層の凹凸分布状態を安定して得るため藤
本らは「鉄と鋼J (Vol 72. A55445)
でN1メッキ処理前にアルカリ浴中で陽極処理を施す必
要があることを報告し、さらに一般的にはSnメッキ後
のフラックス処理条件の影響も大きいことが知られてい
る。しかしこのような対策を取っても安定した特性を得
ることはできず、本発明者は鋼板上に施こす微量のNi
メッキ処理に着目して研究を行ない、Niの分布状態と
不連続な島状とすることで、溶接缶用素材としての特性
を安定して満足できることを見い出したのである。
In this way, the properties of thin Sn-plated steel sheets for welded cans are certainly improved by Ni plating pretreatment, and furthermore, as the present inventor has already filed in Patent Application No. 60-24749 and Japanese Patent Application No. 61-16471, Sn Characteristics are further improved by making the distribution state of the plating layer uneven. In order to stably obtain such an uneven distribution state of the Sn plating layer, Fujimoto et al.
reported that it is necessary to perform anodization in an alkaline bath before N1 plating, and it is generally known that the flux treatment conditions after Sn plating have a large influence. However, even if such measures were taken, stable characteristics could not be obtained, and the inventor decided to
They conducted research focusing on the plating process and found that by making the Ni distribution state discontinuous and island-like, the properties as a material for welded cans could be stably satisfied.

シーム溶接缶用薄Snメッキ鋼板に要求される特性は、
シーム溶接性、耐食性であるが、前述したようにこれら
特性には緻密で耐食性に優れたFe−Sn合金屓の形成
及び本発明者が特願昭61−16471号で既に知見し
たような凹凸分布と有するSnメッキ層形態の影響が大
きく、これにはN1メッキ処理時のNi分布状態が大き
く影響することを本発明者は知見した。鋼板上に片面当
り2〜100 mg7m  のNiを被覆する際、この
Niを均一に連続して被覆する場合と不均一な島状に被
覆する場合では、Fe/Sn’界面に形成されるFe−
Sn合金層の形成状況そしてSnメッキ層の分布状況が
大きく異なp、Niを不均一な島状に分布させると緻密
で耐食性に優れたFa−Sn合金層、及び凹凸分布を持
つSnメッキ層が、製造工程中のanメッキ処理条件、
Snメッキ後の溶融加熱処理条件等の若干の変動が有り
ても安定して形成され、その結果シーム溶接缶用素材と
しての特性が安定して優れたものになる。次にこのNi
メッキ層の不均一な島状分布状態及びNi分布状態がS
nメッキ層の凹凸分布等に大きく影響する理由について
さらに詳しく説明する。
The characteristics required for thin Sn-plated steel sheets for seam welded cans are:
Seam weldability and corrosion resistance are important, but as mentioned above, these characteristics include the formation of a dense Fe-Sn alloy layer with excellent corrosion resistance and the unevenness distribution as already discovered by the inventor in Japanese Patent Application No. 16471/1983. The inventor of the present invention found that the form of the Sn plating layer has a large influence on the shape of the Sn plating layer, and that the state of Ni distribution during the N1 plating treatment has a large effect on this. When coating a steel plate with 2 to 100 mg/7m of Ni per side, the Fe-
The formation conditions of the Sn alloy layer and the distribution conditions of the Sn plating layer are greatly different. When p and Ni are distributed in an uneven island shape, a dense Fa-Sn alloy layer with excellent corrosion resistance and a Sn plating layer with an uneven distribution are formed. , an plating treatment conditions during the manufacturing process,
Even if there are slight variations in the melting heat treatment conditions after Sn plating, it is stably formed, and as a result, the properties as a material for seam welded cans are stable and excellent. Next, this Ni
The non-uniform island-like distribution state of the plating layer and the Ni distribution state are S
The reason why this greatly affects the unevenness distribution of the n-plated layer will be explained in more detail.

Niメッキ層の不均一な島状分布であるが、これには様
々な分布状況が有シ、その例を第1図。
Although the Ni plating layer has a non-uniform island-like distribution, there are various distribution situations, examples of which are shown in Fig. 1.

第2図に示す。第1図は素地鋼板1上に連続したN1層
を有するが、その分布が不均一な凹凸状をなす場合であ
シ、この場合N1層凹部の最低厚をhmin及び凸部の
最大厚を一8Xとした時hmaX≧”m1nの関係を持
つことが必須となり’ hma工≧0.002μmの範
囲を満足する必要がある。さらにNiメッキ厚が0.0
01μm以上である領域が鋼板表面の面積率にして少な
くとも90チ以下であることが本発明の要件であシ、又
下限は特に規定しないが、10チ以上が望ましい。これ
はこの範囲を満足しなければ、本発明の意義が失われ、
例えば最適なSnメッキ層凹凸分布を得ることが困難と
なるからである。
Shown in Figure 2. Fig. 1 shows a case where a continuous N1 layer is formed on the base steel plate 1, but its distribution is uneven, and in this case, the minimum thickness of the concave portion of the N1 layer is hmin, and the maximum thickness of the convex portion is equal to When set to 8X, it is essential to have the relationship hmaX≧"m1n, and it is necessary to satisfy the range of hmaX≧0.002μm. Furthermore, the Ni plating thickness is 0.0
It is a requirement of the present invention that the area having a diameter of 0.01 μm or more is at least 90 inches or less in terms of area ratio of the surface of the steel sheet, and although the lower limit is not particularly specified, it is preferably 10 inches or more. If this range is not satisfied, the meaning of the present invention will be lost,
This is because, for example, it becomes difficult to obtain an optimal Sn plating layer unevenness distribution.

次に第2図はNi層が完全に不連続とな、9 、Niが
付着せず素地鋼板10表面が部分的に露出している場合
であり、この場合素地鋼板1の露出部には酸化F・皮膜
が存在していても良い。この様にNi層が完全に不連続
な島状を呈する時にもN1が付着している部分の最大N
i厚hm□は0.002μm以上である必要があシ、又
N1の鋼板表面被覆率は鋼板表面面積率として少なくと
も90チ以下であることが好ましい。又下限は特に限定
しないが、10チ以上であることが望ましい。限定理由
は第1図の場合と全く同様である。ここではNiメッキ
層の不均一な島状分布例として以上の2例について述べ
たが、第1図の例と第2図の例が混在する場合等様々な
分布状態が考えられ、一般的な概念である不均一な島状
のN1メッキ分布を持つ場合全てが本発明範囲に含まれ
るものである。なおこのようなN1の不均一な島状分布
状態はEPMA (Electron Probed 
Micr。
Next, Fig. 2 shows a case where the Ni layer is completely discontinuous, 9, and the surface of the base steel plate 10 is partially exposed without any Ni adhering.In this case, the exposed portion of the base steel plate 1 has oxidized F. A film may be present. In this way, even when the Ni layer has a completely discontinuous island shape, the maximum N of the part where N1 is attached is
The i thickness hm□ must be 0.002 μm or more, and the steel plate surface coverage ratio of N1 is preferably at least 90 inches or less as a steel plate surface area ratio. The lower limit is not particularly limited, but is preferably 10 inches or more. The reason for the limitation is exactly the same as in the case of FIG. Here, the above two examples of non-uniform island-like distribution of the Ni plating layer were described, but various distribution states can be considered, such as a case where the example in Figure 1 and the example in Figure 2 coexist. All cases having a conceptually non-uniform island-like N1 plating distribution are included within the scope of the present invention. It should be noted that this non-uniform island-like distribution state of N1 is known as EPMA (Electron Probed
Micr.

Analyser又はAES (Auger Elec
tronSp@ctroscopy )等の手法で確認
できる。そしてこのような不均一な島状Niメッキ分布
とすることで、シーム溶接缶用素材としての薄Snメッ
キ銅板の特性が向上する理由は次のように考えられる。
Analyser or AES (Auger Elec
This can be confirmed using methods such as tronSp@ctroscopy). The reason why such a non-uniform island-like Ni plating distribution improves the properties of the thin Sn-plated copper plate as a material for seam-welded cans is considered as follows.

すなわちこのよりなN1メッキ前処理層分有する薄Sn
メッキ鋼板の製造プロセスを考え、それに伴うメッキ断
面構造の変化をモデル図で示すと第3図に示す如くであ
る。第3図はNiメッキ層が本発明例の不均一島状分布
を呈する場合(この場合第2図で示した例)及び従来の
連続した均一分布を持つ場合両者を比較して示すが、本
発明のようにNiが、不均一な島状に存在する場合は、
Niが厚く存在する部分及びN1が少ないが、もしくは
存在しない部分でのSnメッキ層溶融処理に於けるF・
−Sn合金層(この場合F@−Ni−8n三元合金とな
る)の生成挙動が異なり、N1が厚く存在する部分では
合金化スピードが速く、F・−an合金生成が速いと共
に合金量も多くなるのに対し、Niが少ないか、もしく
は存在しない部分ではFe−Sn合金生成が遅れ、合金
量が少なくなるため結果として生成したFe−Sn合金
層の分布状態は最初にNiが島状に存在した分布状況と
対応した凹凸分布を持つようになる。そして一般に学会
等で公知な如く、Fe−Sn合金上とFe−Sn合金層
が薄いか、もしくは存在しない部分の間で溶融したSn
の濡れ性が異なるため、Snメッキ層溶融加熱処理の初
期の段階で溶融Snの濡れ性の相違に基き、Snメッキ
層も第3図のに示すように、最初にNiが島状に存在し
た分布状況と対応した凹凸分布を安定して持つようにな
るのである。
In other words, this thin Sn layer with a thicker N1 plating pretreatment layer
Considering the manufacturing process of plated steel sheets, the changes in the plated cross-sectional structure accompanying the process are illustrated in a model diagram as shown in FIG. 3. FIG. 3 shows a comparison between a case where the Ni plating layer exhibits a non-uniform island-like distribution according to the present invention (in this case, the example shown in FIG. 2) and a case where the Ni plating layer has a conventional continuous uniform distribution. When Ni exists in a non-uniform island shape as in the invention,
F・ during Sn plating layer melting treatment in areas where Ni is thick and areas where N1 is small or absent.
The formation behavior of the -Sn alloy layer (in this case, it becomes a F@-Ni-8n ternary alloy) is different, and the alloying speed is faster in the part where N1 is thicker, and the F・-an alloy formation is faster and the amount of alloy is also smaller. On the other hand, in areas where there is little or no Ni, Fe-Sn alloy formation is delayed, and the amount of alloy decreases, so the distribution state of the resulting Fe-Sn alloy layer is such that Ni initially forms islands. It comes to have an uneven distribution that corresponds to the existing distribution situation. As is generally known in academic societies, Sn melts between the Fe-Sn alloy and the areas where the Fe-Sn alloy layer is thin or absent.
Due to the difference in the wettability of molten Sn at the initial stage of the Sn plating layer melting heat treatment, the Sn plating layer also initially had Ni present in the form of islands, as shown in Figure 3. This results in a stable unevenness distribution that corresponds to the distribution situation.

これに対し、Niを連続な均一分布となるよう被覆した
場合は鋼板表面で均一にF@−Sn合金が生成し成長す
るため、鋼板表面の局部的な溶融Sn濡れ性の差が小さ
いため、Snメッキ層溶融加熱処理終了後のSnメッキ
層分布状態は基本的に第3図■に示すような均一な分布
を呈し、Snメッキ処理後のフラックス牽伸の変化で、
第3図のに示すような凹凸分布を有するSnメッキ層に
なったシ、又第3図の、■の状態が混存するよりなSn
メッキ層となったりして、結果的にシーム溶接性、耐食
性等特性が不安定になるのである。
On the other hand, when Ni is coated with a continuous and uniform distribution, F@-Sn alloy forms and grows uniformly on the steel plate surface, so the difference in local molten Sn wettability on the steel plate surface is small. The distribution state of the Sn plating layer after the Sn plating layer melting heat treatment basically exhibits a uniform distribution as shown in Figure 3 (■), and due to the change in flux drafting after the Sn plating treatment,
The Sn plating layer has a roughness distribution as shown in Fig. 3, and the Sn plating layer has the unevenness distribution as shown in Fig. 3.
As a result, properties such as seam weldability and corrosion resistance become unstable.

このようにNiメッキ層の分布状態が最終製品としての
F@−Sn合金層、及びSnメッキ層の構造に大きく影
響することが、本発明者の研究によって判明し、Niを
不均一な島状分布とすることで初めて溶接缶用素材とし
ての薄Snメッキ鋼板の特性を安定して向上させること
が可能となったものである。
The inventor's research has revealed that the distribution state of the Ni plating layer greatly affects the structure of the F@-Sn alloy layer and the Sn plating layer as the final product. This distribution makes it possible for the first time to stably improve the properties of a thin Sn-plated steel sheet as a material for welded cans.

引き続き本発明製造方法について限定理由と共にさらに
説明する。本発明は通常の方法で表面清浄化した鋼板を
メッキ原板として使用するが、その使用する原板、又表
面清浄化処理について何ら限定するものでなく、底面清
浄化時に硫酸等の酸洗処理浴、又力性ソーダ等脱脂処理
浴中でIPI極電解する手法も含まれる。引き続き片面
当シ2〜100■/rn  のNiを前述したような不
均一な島状に被覆するが、N1メッキ処理浴としては一
般的なワット浴等の硫酸浴が使用でき、処理浴組成、電
解電流密度等電解条件の調整で本発明のポイントとなる
不均一島状のNiメッキ分布を得ることができる。なお
本発明にはこのようなN1メッキ分布を得られる手法で
あれば、電気メツキ法によらず、無電解メッキ法等の手
法も当然包含されるものであり、又Niメッキ後に陽極
電解処理を施す場合も含まれる。
Subsequently, the manufacturing method of the present invention will be further explained along with the reasons for the limitations. In the present invention, a steel plate whose surface has been cleaned by a conventional method is used as a plating base plate, but there are no limitations on the base plate used or the surface cleaning treatment. It also includes a method of IPI electrode electrolysis in a degreasing treatment bath such as hydric soda. Subsequently, one side is coated with Ni at a rate of 2 to 100 μ/rn in a non-uniform island shape as described above. As the N1 plating bath, a general sulfuric acid bath such as a Watts bath can be used, and the treatment bath composition is By adjusting electrolytic conditions such as electrolytic current density, it is possible to obtain a non-uniform island-like Ni plating distribution, which is the key point of the present invention. Note that the present invention naturally includes methods such as electroless plating other than electroplating as long as such a N1 plating distribution can be obtained, and also includes anodic electrolytic treatment after Ni plating. This also includes cases where it is applied.

また、NIメッキ後加熱処理により鋼中に拡散させても
よい。ここで平均したNiメッキ量を片面当り2〜10
0■/m2と限定したのはNi iがこれ以上に増加す
るとNiメッキ分布分不均−な島状とすることが困難と
なシ、特性が低下するからでち)、又N1量の下限は平
均被覆量として片面当り2my、Zn  とする。これ
はN1メッキ前処理によるFe−4n合金層の緻密化等
耐食性向上効果等を推持するためであシ片面当シ5mg
/m2以上が好ましい。なおNi中にZn、Fe、P、
Bの一種又は二種以上が重量%として20%以下含有し
た場合も本発明に含むものとする。
Alternatively, it may be diffused into steel by heat treatment after NI plating. Here, the average Ni plating amount is 2 to 10 per side.
The reason why it is limited to 0/m2 is because if Ni increases more than this, it becomes difficult to make the Ni plating distribution into an uneven island shape, and the properties deteriorate), and the lower limit of the N1 amount. The average coating amount of Zn is 2 my per side. This is to maintain the effect of improving corrosion resistance such as densification of the Fe-4n alloy layer due to N1 plating pre-treatment.
/m2 or more is preferable. In addition, Zn, Fe, P,
The present invention also includes cases where one or more B types are contained in an amount of 20% or less by weight.

次にSnメッキ被覆を施こすが、手法としては電気メツ
キ法が最も合理的であシ、通常のSnメッキ処理法がそ
のま−ま適用できる。Snメッキ量として片面尚シ20
0〜2000 mg7m2と限定したのはSn量が限定
値以上に増大しても本発明の効果は飽和し、コストアッ
プとなるからであシ、又下限はシーム溶接性、耐食性の
面から片面当シ200■/m2以上とした。なおSnメ
ッキ量は鋼板の表/裏で相違する差厚メッキとしても良
い。
Next, a Sn plating coating is applied, and the most rational method is electroplating, and a normal Sn plating method can be applied as is. The amount of Sn plating is 20 on one side.
The reason why the Sn amount is limited to 0 to 2000 mg7m2 is that even if the Sn amount increases beyond the limit value, the effect of the present invention will be saturated and the cost will increase. 200 μ/m2 or more. Note that the amount of Sn plating may be plated with a different thickness on the front and back sides of the steel plate.

本発明はSnメッキ後水洗しそのまま、又は一般に使用
されるフェノールスルフォン酸を主体とするフラックス
又は塩化アルモニウム等塩化物を主体とする7ラツクス
等に浸漬し、乾燥後Snメッキ層溶融加熱処理が施され
る。7ラツクス処理を施すか又は施さず直接Snメッキ
層溶融加熱処理を施すかは状況に応じて適時選択でき、
又フラックス浴濃度を通常のぶシき製造時にt史用され
る濃度の1/2〜1/3に調整して実施することもでき
る。Snメッキ層溶融加熱処理の方法は一般的な抵抗加
熱法、高周波誘導加熱法が利用でき、その雰凹気として
不活性ガス中で実施することもできる。又このSnメッ
キ層溶融加熱時にFe/Sn界面に形成されるFe−S
n合金の平均被覆量は合金中のSn量として被覆する全
Sniの1/3程度以下に抑制することが望ましい。
In the present invention, after Sn plating, the Sn plating layer is washed with water and then immersed in a commonly used flux mainly composed of phenolsulfonic acid or 7 lux mainly composed of chlorides such as aluminum chloride, dried, and then subjected to heat treatment to melt the Sn plating layer. be done. Depending on the situation, you can choose whether to apply the 7lux treatment or not and directly apply the melting heat treatment to the Sn plating layer.
It is also possible to adjust the concentration of the flux bath to 1/2 to 1/3 of the concentration used in the production of ordinary bushings. For the Sn plating layer melting heat treatment, a general resistance heating method or a high frequency induction heating method can be used, and it can also be carried out in an inert gas atmosphere. Also, Fe-S formed at the Fe/Sn interface during melting and heating of this Sn plating layer.
It is desirable that the average coating amount of the n-alloy is suppressed to about 1/3 or less of the total Sn to be coated as the amount of Sn in the alloy.

本発明による不均一島状Niメッキを施し、引き続きS
nメッキ処理、Snメッキ層溶融加熱処理を飾すことで
、薄Snメッキ鋼板のメッキ層状態と溶接缶用素材とし
て最も好ましい状態にコントロールすることが可能とな
シ、本発明者が既に出願した特願昭61−16471号
に示す状態を容易に安定して保つことが可能となる。
Apply non-uniform island-like Ni plating according to the present invention, and then apply S
The present inventor has already filed an application that it is possible to control the state of the plating layer of a thin Sn-plated steel sheet to the most preferable state as a material for welded cans by performing n plating treatment and Sn plating layer melting heat treatment. It becomes possible to easily and stably maintain the state shown in Japanese Patent Application No. 61-16471.

本発明は塗装後使用されることが多く、最表面に不動態
化処理としてクロメート処理2施すが、これはTFS−
CTのクロメート処理として工業的に実施されている方
法で十分であシ、一般にはアニオンを添加しない無水ク
ロム酸浴中、又は硫酸イオン、フッ素イオン等を少量添
加した無水クロム酸浴中等でのカソード還元処理が適用
できる。又本発明に於いても学会等で公知でちるクロメ
ート被覆層中の共析アニオンを低減、除去する各種手法
を適用可能であることは言うまでもない。すなわち本発
明のクロメート被覆はクロム水利酸化物のみで構成され
てもよくまた金属クロムとクロム水利酸化物から構成さ
れてもよい。このクロメート被覆量としては金属クロム
換算で3〜30mg7m2の範囲が好ましい。
The present invention is often used after painting, and chromate treatment 2 is applied to the outermost surface as passivation treatment, but this is TFS-
An industrially practiced method for chromate treatment of CT is sufficient; generally, the cathode is treated in an anhydrous chromic acid bath without the addition of anions, or in an anhydrous chromic acid bath to which a small amount of sulfate ions, fluorine ions, etc. are added. Reduction processing can be applied. It goes without saying that various methods for reducing and removing eutectoid anions in the chromate coating layer, which are known in academic societies, can also be applied to the present invention. That is, the chromate coating of the present invention may be composed only of chromium hydration oxide, or may be composed of metallic chromium and chromium hydration oxide. The amount of chromate coated is preferably in the range of 3 to 30 mg7m2 in terms of metallic chromium.

その理由は、3■/m2以下では耐食性、塗料の密着性
が不十分であり、また3 0 mg7m 以上では溶接
性が低下するからである。
The reason for this is that if it is less than 3 cm/m2, corrosion resistance and paint adhesion will be insufficient, and if it is more than 30 mg/m2, weldability will deteriorate.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例1 通常の条件で表面清浄化した鋼板両面に■に示す処理浴
中で各種条件にて片面当シ平均量として片面当92〜1
20■/m2のNiメッキ処理を施し、処理浴組成、−
1さらに電解電流密度等電解条件を変更することで、N
1メッキ層状態を本発明の不均一島状分布及び比較例と
しての連続な均一分布に作シ分けた。このN1メッキ層
状態はAES 、 EPMAで調査し、第−表にNi分
布状態を不均一島状分布及び連続均一分布と分類し、さ
らにNiメッキ層最大厚、及びN1メッキ厚が0、00
1 Am以上である領域の面積率で示した。
Example 1 An average amount of 92 to 1 per side was applied to both sides of a steel plate whose surface was cleaned under normal conditions under various conditions in the treatment bath shown in (■).
Ni plating treatment was performed at a rate of 20μ/m2, and the treatment bath composition was -
1 Furthermore, by changing electrolytic conditions such as electrolytic current density, N
The state of one plating layer was divided into a non-uniform island-like distribution according to the present invention and a continuous uniform distribution as a comparative example. The state of this N1 plating layer was investigated using AES and EPMA, and the Ni distribution state was classified into non-uniform island-like distribution and continuous uniform distribution in Table 1, and the maximum thickness of the Ni plating layer and the N1 plating thickness were 0 and 0.
It is expressed as the area ratio of the area of 1 Am or more.

なお本発明要件はNiメッキ層最大厚が0.002μm
以上又Niメッキ厚が0.001μm以上である領域が
鋼板表面の面積率として90%以下でおることである。
Note that the present invention requires that the maximum thickness of the Ni plating layer be 0.002 μm.
As mentioned above, the area ratio of the area of the steel sheet surface where the Ni plating thickness is 0.001 μm or more is 90% or less.

引き続き■に示す処理浴中で片面当シ被覆量として80
0及び1000mg/m のSnメッキ処理後■に示し
たフラックス溶液中へ浸漬、乾燥し、抵抗加熱法を用い
て大気雰囲気中でSnメッキ層溶融加熱処理を施した。
Subsequently, in the treatment bath shown in ■, the coating amount per one side was 80%.
After Sn plating at 0 and 1000 mg/m 2 , it was immersed in the flux solution shown in (3), dried, and subjected to a heat treatment for melting the Sn plating layer in the air using a resistance heating method.

Snメッキ層溶融加熱処理条件は、溶融加熱処理時にF
e/Sn界面に形成されるFe −8n合金中のSn量
が全Snメッキ量の1/3となるような条件で実施した
The Sn plating layer melt heat treatment conditions are F during the melt heat treatment.
The test was carried out under conditions such that the amount of Sn in the Fe-8n alloy formed at the e/Sn interface was 1/3 of the total amount of Sn plating.

そして■に示す条件で電解クロメート処理を施し、金属
クロム換算で片面当シ12〜177n9/m2のクロメ
ート被膜層を形成し供試料とした。
Then, electrolytic chromate treatment was performed under the conditions shown in (2) to form a chromate coating layer with a thickness of 12 to 177 n9/m2 on one side in terms of metal chromium, which was used as a sample.

浴温50℃ 浴P)I:1.8〜4.0 陰極電流密度=5〜50A/dm2 浴温:40〜50℃ 陰極電流密度: 20 A/dm2 ■ [フェノールスルフォン酸 = 1〜2 j;l/
l ]浴温45℃ ゛ 浴温:40〜60℃ 陰極電流密度: 5〜9 Q A/dm2実施例2 実施例1に於いてSnメッキ処理浴として■に替え■の
条件とし、又Snメッキ処理後の7ラツクス処理を省略
し、水洗のみとした実施例であり、その他項目は実施例
1と同じ 浴温:40〜50℃ 陰極電流密度: 20〜40 A/dm2比較例 実施例1に於いてNiメッキ処理を全て省略した比較例
でその他項目は実施例1と同じそして本発明実施例及び
比較列は製造チャンスごとの特性のバラツキ範囲を確認
するため、全く同一の製造条件で2回の試作を行ない、
それぞれ特性を同一チャンスで評価し、2回の製造チャ
ンスのバラツキを考慮して総合評価した。
Bath temperature 50°C Bath P) I: 1.8 to 4.0 Cathode current density = 5 to 50 A/dm2 Bath temperature: 40 to 50°C Cathode current density: 20 A/dm2 ■ [phenol sulfonic acid = 1 to 2 j ;l/
l ] Bath temperature: 45°C Bath temperature: 40 to 60°C Cathode current density: 5 to 9 Q A/dm2 Example 2 In Example 1, the Sn plating treatment bath was replaced with ■ and conditions were changed to ■, and Sn plating was also performed. This is an example in which the 7 lux treatment after treatment was omitted and only water washing was performed, and other items were the same as in Example 1. Bath temperature: 40 to 50°C Cathode current density: 20 to 40 A/dm2 Comparative example Example 1 This is a comparative example in which the Ni plating process was completely omitted, and the other items were the same as in Example 1.The inventive example and comparison column were conducted twice under exactly the same manufacturing conditions in order to confirm the range of variation in characteristics for each manufacturing chance. We made a prototype of
The characteristics of each were evaluated in the same chance, and a comprehensive evaluation was made taking into account the dispersion between the two manufacturing chances.

なお従来例として片面当シのSnメッキ量が2800■
/mのす25ぶシきを同時に評価した。評価試験は下記
の(4)、φ)2項目について実施し、その結果を第1
表に示した。
As a conventional example, the amount of Sn plating on one side is 2800■
/m was evaluated at the same time. The evaluation test was conducted on the following two items (4) and φ), and the results were
Shown in the table.

(4) シーム溶接性テスト 各試片を缶胴に成形した後、製缶用シーム溶接機と使用
して、缶胴接合部のラップ幅0.4調、加圧力45kg
f、製缶速度45 mpmの条件で、溶接2次電流と変
化させることによって調査した。
(4) Seam weldability test After forming each specimen into a can body, use a seam welder for can making to weld the can body joint at a lap width of 0.4 and a pressure of 45 kg.
The investigation was conducted by changing the welding secondary current under the conditions of f and can making speed of 45 mpm.

そして評価は良好な溶接が可能な溶接2次電流範囲で表
示した。
The evaluation was expressed in the welding secondary current range that allowed good welding.

適正溶接2次電流の下限値は溶接部の強度の下限で、又
上限値はスプラ、シュ発生の上限で決定したが溶接部の
強度は衝撃テスト及び溶接部にV形のノツチを入れペン
、チで引きさく引きさきテストにより判定し、シーム溶
接部の外観は目視で散シの有無等よシ判定した。なおシ
ーム溶接性テストに供した試片は全て電気エアーオーブ
ン中で210℃、20分の生焼を行った。
The lower limit value of the appropriate secondary welding current was determined by the lower limit of the strength of the welded part, and the upper limit value was determined by the upper limit of the generation of splash and spark. The appearance of the seam weld was visually determined by checking the presence or absence of scattering. All specimens used in the seam weldability test were baked in an electric air oven at 210°C for 20 minutes.

(B)  耐冷膜下錆性テスト 各試片1/C1R缶用エポキシーフェノール塗料を片面
当F) 55 mg/ dm  ロールコートし、20
5℃で10分間焼付し、さらに190℃で10分間追焼
処理した。そしてカッターナイフを用いて塗膜にスクラ
ッチを入れ、エリクセン試験機で5ヨのエリクセン加工
を施し供試サンプルとした。供試サンプルは5 % N
&Ctを用いた塩水噴霧を1時間行った後25℃、相対
湿度85%の恒温、恒湿試験機中に14日間保定し、ス
クラッチ部から発錆状況を目視評価した。判定は◎糸錆
発生なし、○発生小、Δやや大、X大とした。
(B) Cold film rust resistance test Each specimen was coated with epoxy phenol paint for 1/C1R can on one side at 55 mg/dm, and 20
Baking was performed at 5°C for 10 minutes, and additional baking was performed at 190°C for 10 minutes. Then, a scratch was made on the coating film using a cutter knife, and Erichsen processing of 5 degrees was performed using an Erichsen tester to prepare a test sample. The test sample was 5% N
After spraying salt water using &Ct for 1 hour, it was kept in a constant temperature and humidity tester at 25° C. and 85% relative humidity for 14 days, and the state of rust development was visually evaluated from the scratched portion. The evaluation was as follows: ◎ No thread rust occurred, ○ Small occurrence, Δ Slightly large, and X Large.

以上の試験結果は第1表工り明らかなように本発明実施
例に於いて本発明限定範囲を満足するものは、2回の製
造チャンス共得られた特性は安定しておシ、製造チャン
スごとのバラツキが少ない優れた特性が得られるのに対
し、本発明限定範囲を満足しないもの及び比較例は2回
の製造チャンスのうち少なくとも1回は得られる特性が
不十分であシ、劣っていることが判る。
As is clear from the above test results in the first table work, in the examples of the present invention that satisfy the limited range of the present invention, the characteristics obtained in both the two manufacturing chances are stable. In contrast, the products that do not satisfy the limited range of the present invention and the comparative examples have insufficient properties in at least one of the two manufacturing chances, and are inferior. I know that there is.

〔発明の効果〕〔Effect of the invention〕

本発明は鋼板上にN1メッキ前処理を施した、片面当シ
のSnメッキ量が200〜2000 mg/m2の薄S
nメッキ鋼板の特性を銅板上のN1メッキ層を不均一な
島状分布となすよう施すことで安定かつ優れたものとす
る製造方法を提供するものである。そして本発明によっ
てシーム溶接性等特性を製造チャンスごとのバラツキが
ない安定して優れたものとすることができ、≠25ぶシ
きに替る低コスト、高性能な素材を市場に提供すること
ができる。
The present invention is a thin S plate with a Sn plating amount of 200 to 2000 mg/m2 on one side, which has been subjected to N1 plating pretreatment on a steel plate.
The present invention provides a manufacturing method that makes the characteristics of an N-plated steel sheet stable and excellent by applying an N1 plating layer on a copper plate so as to have a non-uniform island-like distribution. In addition, the present invention makes it possible to make seam weldability and other properties stable and excellent without variations depending on manufacturing opportunities, and to provide the market with a low-cost, high-performance material that can replace ≠25 bushings. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明法による不均−Niメッキ被覆
分布を示す模写図、第3図は本発明及び従来例のメッキ
断面モデル図を示す。 1・・・素地鋼板 第1図 第2図
FIGS. 1 and 2 are schematic diagrams showing the uneven Ni plating coating distribution according to the method of the present invention, and FIG. 3 is a cross-sectional model diagram of the plating according to the present invention and a conventional example. 1...Base steel plate Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 鋼板表面に平均被覆量として片面当り2〜 100mg/m^2で、かつ、不均一な島状のNiメッ
キ被覆を施こし、引き続き片面当り200〜2000m
g/m^2のSnメッキ被覆を施こし、さらにSnメッ
キ層融点以上での加熱処理を施こした後、電解クロメー
ト処理を施こすことを特徴としたシーム溶接性、耐食性
に優れた表面処理鋼板の製造方法。
[Claims] A non-uniform island-shaped Ni plating coating with an average coating amount of 2 to 100 mg/m^2 per side is applied to the surface of a steel plate, followed by a coating of 200 to 2000 m per side.
A surface treatment with excellent seam weldability and corrosion resistance, characterized by applying a Sn plating coating of g/m^2, further performing a heat treatment above the melting point of the Sn plating layer, and then applying electrolytic chromate treatment. Method of manufacturing steel plates.
JP61220521A 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance Granted JPS6376896A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61220521A JPS6376896A (en) 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance
DE87104231T DE3788178T2 (en) 1986-09-18 1987-03-23 Process for the production of a multi-coated steel strip with excellent corrosion resistance and weldability as well as usable for containers.
EP87104231A EP0260374B1 (en) 1986-09-18 1987-03-23 Process for producing a multilayer-coated strip having excellent corrosion resistance and weldability and useful for containers
CA000532926A CA1331962C (en) 1986-09-18 1987-03-25 Process for producing a multilayer-coated steel strip having excellent corrosion resistance and weldability and useful for containers
AU70712/87A AU573122B2 (en) 1986-09-18 1987-03-27 Electroplated tin-nickel on steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220521A JPS6376896A (en) 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS6376896A true JPS6376896A (en) 1988-04-07
JPH0214438B2 JPH0214438B2 (en) 1990-04-09

Family

ID=16752317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220521A Granted JPS6376896A (en) 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance

Country Status (5)

Country Link
EP (1) EP0260374B1 (en)
JP (1) JPS6376896A (en)
AU (1) AU573122B2 (en)
CA (1) CA1331962C (en)
DE (1) DE3788178T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247393A (en) * 1987-04-01 1988-10-14 Nkk Corp Production of surface treated steel sheet
JPH05177764A (en) * 1991-12-27 1993-07-20 Nkk Corp Laminated steel plate for welded can and production thereof
JP2006274324A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk Method for manufacturing tin coated steel plate for welded can and method for measuring welding characteristic of tin coated steel plate for welded can
CN105177641A (en) * 2015-10-27 2015-12-23 姜少群 Nickel-plated steel shell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877957B2 (en) * 1993-10-22 1999-04-05 東洋鋼鈑株式会社 Surface treated steel sheet for battery case and battery case
CN104790002B (en) * 2015-03-13 2017-04-12 武汉钢铁(集团)公司 Production method of wear-resistant double composite plated tie for packaging hardware products
CN115175466B (en) * 2022-07-04 2023-06-06 江苏富乐华半导体科技股份有限公司 Welding method for improving electroplated tin-nickel alloy on surface of ceramic copper-clad substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142135A (en) * 1978-04-28 1979-11-06 Nippon Kokan Kk <Nkk> Tin-plated steel plate and its manufacture
JPS56130487A (en) * 1980-03-18 1981-10-13 Toyo Kohan Co Ltd After-treatment for extra-thin tin-plated steel sheet for welding
SE451976B (en) * 1980-06-03 1987-11-09 Nippon Steel Corp STRABBAND WITH COATING LAYER AND CONTAINER MANUFACTURED FROM A CLEAR STALBAND
JPS5828356B2 (en) * 1980-12-29 1983-06-15 新日本製鐵株式会社 Chrome-plated steel sheet with excellent weldability
US4442181A (en) * 1981-04-23 1984-04-10 Nippon Steel Corporation Steel strip having differentiated multilayer coatings and being useful for manufacturing of cans
US4511631A (en) * 1984-04-13 1985-04-16 Toyo Kohan Co., Ltd. Metallic chromium-nickel-hydrated chromium oxide-coated tin free steel and process for the production thereof
JPS60258499A (en) * 1984-06-04 1985-12-20 Kawasaki Steel Corp Manufacture of surface-treated steel plate for resistance welding
JPS61130500A (en) * 1984-11-29 1986-06-18 Kawasaki Steel Corp Production of sn/cr two-layered plated steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247393A (en) * 1987-04-01 1988-10-14 Nkk Corp Production of surface treated steel sheet
JPH05177764A (en) * 1991-12-27 1993-07-20 Nkk Corp Laminated steel plate for welded can and production thereof
JP2006274324A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk Method for manufacturing tin coated steel plate for welded can and method for measuring welding characteristic of tin coated steel plate for welded can
CN105177641A (en) * 2015-10-27 2015-12-23 姜少群 Nickel-plated steel shell

Also Published As

Publication number Publication date
AU7071287A (en) 1988-03-24
EP0260374B1 (en) 1993-11-18
JPH0214438B2 (en) 1990-04-09
AU573122B2 (en) 1988-05-26
CA1331962C (en) 1994-09-13
DE3788178D1 (en) 1993-12-23
EP0260374A2 (en) 1988-03-23
DE3788178T2 (en) 1994-03-10
EP0260374A3 (en) 1989-09-06

Similar Documents

Publication Publication Date Title
US4501802A (en) Hydrated chromium oxide-coated steel strip useful for welded cans and other containers
JPH0216397B2 (en)
JPS6376896A (en) Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance
JPH0154437B2 (en)
JPH0246679B2 (en)
JPS60258499A (en) Manufacture of surface-treated steel plate for resistance welding
JPS63277794A (en) Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint
JPH0434636B2 (en)
JPH0243835B2 (en)
JP2827709B2 (en) Surface treated steel sheet with multiple plating layers, excellent in filiform rust resistance, corrosion resistance and weldability
JPS6335718B2 (en)
JPS62139898A (en) Surface treated steel sheet for can making having excellent seam weldability
JPH0368949B2 (en)
JPH0431039B2 (en)
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
CA1179629A (en) Process for producing a chromium-plated steel strip having enhanced weldability
JPS5989784A (en) Manufacture of steel sheet for welded can with superior corrosion resistance after coating
CN111793812A (en) Production process of tinplate with composite coating and tinplate
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH11106954A (en) Surface treated steel sheet for welded can excellent in weldability, corrosion resistance and appearance
JPH0441694A (en) Production of thinly tinned steel sheet having superior weldability
JPS62256992A (en) Production of surface treated steel sheet for welded can
JPS63199896A (en) Production of surface treated steel sheet for welded can having superior weldability, adhesion of paint and corrosion resistance after painting
JPH07166398A (en) Production of steel sheet for welded can excellent in high speed seam weldability, corrosion resistance and coating adhesion
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term