JPH04342958A - Negative electrode for battery with non-aqueous electrolyte - Google Patents

Negative electrode for battery with non-aqueous electrolyte

Info

Publication number
JPH04342958A
JPH04342958A JP3146863A JP14686391A JPH04342958A JP H04342958 A JPH04342958 A JP H04342958A JP 3146863 A JP3146863 A JP 3146863A JP 14686391 A JP14686391 A JP 14686391A JP H04342958 A JPH04342958 A JP H04342958A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
electrode
vessel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3146863A
Other languages
Japanese (ja)
Inventor
Masao Ide
井出 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3146863A priority Critical patent/JPH04342958A/en
Publication of JPH04342958A publication Critical patent/JPH04342958A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To construct a negative electrode equipped with a high energy density and high-rate discharging capability, by forming negative electrode from spherical carbon particles of lamellar structure in which carbon molecle chains are overlapped in layers in the C-axis direction. CONSTITUTION:A positive electrode is installed inside a pos. electrode vessel 1 made of stainless steel, and upon this positive electride 2, a separator 3 of non-woven clot and fine porous film, negative electrode 4, and pressing plate 5, are placed one over another. At the opening of this vessel 1, a neg. electrode vessel 7 made of stainless steel is installed through a packing 6, and thereby the positive electrode 2, separator 3, negative electrode 4, and pressing plate 5 are put enclosedly in the vessels 1, 7. In the neg. electrode vessel 7, an electrolyte, which is formed by dissolving LiClO4 in a 3:1 mixed solution of acetonitrile and ethylene carbonate, is contained. The negative electrode 4 is formed from carbon particles of lamellar structure in which carbon molecle chains are overlapped in layers in the C-axis direction, and the paste containing 24 parts by wt. carbon 24 and one part by wt. polytetrafluoroethylene is dried, molded in a net made of stainless steel, enwrapped in the condition as it is, and embodies in a disc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は非水電解液電池用負極に
関し、特に高容量,高エネルギー密度,高率放電が可能
で充放電サイクル特性に優れた新規な非水電解液電池用
負極に関する。
[Field of Industrial Application] The present invention relates to a negative electrode for non-aqueous electrolyte batteries, and more particularly to a new negative electrode for non-aqueous electrolyte batteries that is capable of high capacity, high energy density, high rate discharge, and has excellent charge/discharge cycle characteristics. .

【0002】0002

【従来の技術】従来より、非水電解液電池の負極活物質
として様々な物質が検討されてきたが、高エネルギー密
度が期待されるものとして、リチウム系の負極が注目を
浴びている。特に非水電解液二次電池の負極としてリチ
ウム金属、リチウム合金、リチウムイオンを保持させた
カーボン等が検討されている。
BACKGROUND OF THE INVENTION Various materials have been studied as negative electrode active materials for non-aqueous electrolyte batteries, but lithium-based negative electrodes are attracting attention as they are expected to have high energy density. In particular, lithium metal, lithium alloys, carbon holding lithium ions, and the like are being considered as negative electrodes for non-aqueous electrolyte secondary batteries.

【0003】リチウム金属は高い起電力を有し、高エネ
ルギー密度が期待できるが、その高い反応性のために電
池の安全性に問題があり、充電反応においてデンドライ
トが発生しやすく、内部短絡や充放電効率の低下等が起
こるという大きな問題を抱えている。
Lithium metal has a high electromotive force and can be expected to have a high energy density, but its high reactivity poses problems in battery safety, and dendrites are likely to occur during charging reactions, causing internal short circuits and charging problems. This poses a major problem, such as a decrease in discharge efficiency.

【0004】リチウム合金は、デンドライトの発生を防
止することができるが、特性上合金の電位がリチウム電
位に対して貴方向にシフトし、電圧が低下するという欠
点があった。また成分に金属リチウムを含有しているた
めに、安全性には問題を残していた。
[0004] Lithium alloys can prevent the formation of dendrites, but due to their characteristics, the potential of the alloy shifts in a noble direction with respect to the lithium potential, resulting in a voltage drop. Additionally, because it contains metallic lithium, there were still safety issues.

【0005】安全性の問題を改善するために、リチウム
イオンを保持するホスト物質として、カーボン負極が検
討されている。カーボン負極は、結晶格子の層間にリチ
ウムイオンを保持しており、放電反応により容易にリチ
ウムイオンを放出する。カーボン負極は、金属リチウム
を使用しないので安全性に優れ、充放電による劣化も少
なく、長寿命の非水電解液電池が可能となった。このと
きに用いるカーボンに関してはPAN系,ピッチ系ある
いはレーヨン系の炭素繊維,気相成長繊維,特定の高分
子化合物の熱分解による炭素体,熱分解CVD法による
炭素体,活性炭など種々の報告がされている。これらの
うち高容量,高エネルギー密度を有するカーボンの構造
を定めたものはなかった。
[0005] In order to improve safety issues, carbon negative electrodes are being considered as host materials that retain lithium ions. A carbon negative electrode holds lithium ions between layers of a crystal lattice, and easily releases lithium ions through a discharge reaction. Carbon negative electrodes are highly safe because they do not use metallic lithium, and they are less susceptible to deterioration due to charging and discharging, making it possible to create long-life non-aqueous electrolyte batteries. Regarding the carbon used at this time, there are various reports such as PAN-based, pitch-based, or rayon-based carbon fibers, vapor-grown fibers, carbon bodies produced by thermal decomposition of specific polymer compounds, carbon bodies produced by pyrolysis CVD method, and activated carbon. has been done. None of these studies has defined the structure of carbon with high capacity and high energy density.

【0006】[0006]

【発明が解決しようとする課題】従来のカーボン負極は
、放電容量が少なく、電圧平坦性が悪いという欠点があ
った。放電容量は充放電可能なリチウムイオンがカーボ
ンの結晶層間に存在する量により決まる。結晶層間の距
離は極板の放電性能に大きな影響を与える因子であるが
、この距離はX線回折法により求めることができる。
[Problems to be Solved by the Invention] Conventional carbon negative electrodes have the drawbacks of low discharge capacity and poor voltage flatness. The discharge capacity is determined by the amount of chargeable and dischargeable lithium ions present between the carbon crystal layers. The distance between crystal layers is a factor that greatly affects the discharge performance of the electrode plate, and this distance can be determined by X-ray diffraction.

【0007】従来のカーボンは結晶層間の距離が短くな
ると層間にリチウムイオンが入りにくくなり、放電容量
は小さくなる。層間距離が大きくなるとカーボンの結晶
性が低くなり、結晶層に対する非結晶層の割合が増加す
る。非結晶層はリチウムイオンを吸蔵しないので極板の
放電容量は小さくなる。従って、適度な結晶性を保持し
、層間距離の長いカーボンが電極として優れていること
が明らかとなり、種々の研究が行われてきた。
In conventional carbon, when the distance between crystal layers becomes short, it becomes difficult for lithium ions to enter between the layers, and the discharge capacity decreases. As the interlayer distance increases, the crystallinity of carbon decreases, and the ratio of the amorphous layer to the crystal layer increases. Since the amorphous layer does not occlude lithium ions, the discharge capacity of the electrode plate becomes small. Therefore, it has become clear that carbon, which maintains appropriate crystallinity and has a long interlayer distance, is excellent as an electrode, and various studies have been conducted.

【0008】例えば、高い配向性を示すグラファイトは
、層状に結晶構造が発達したもので、層間距離が短く、
進入距離が長くなるためにイオン吸蔵サイトへのイオン
の到達が物理的に難しくなり、充放電量は大きくなかっ
た。PAN系の炭素繊維では、結晶化度を高くするとグ
ラファイトと同様の理由で放電量が低下し、結晶化度を
低くするとカーボン表面の官能基が充放電を阻害するた
めに放電ができなくなる。ピッチ系、気相成長系のカー
ボンは比較的高い充放電容量が取り出せるが、形状は繊
維状のものが多く、繊維の両端部よりイオンが進入する
ので、繊維の深部までイオンが到達することが難しく、
カーボン中のイオン吸蔵サイトを十分利用できなかった
。炭化水素類の熱分解によるカーボンを金属表面に析出
させた電極は極板を厚くすることが難しく、高容量電極
には向かなかった。
For example, graphite that exhibits high orientation has a developed layered crystal structure, with short interlayer distances, and
Due to the longer approach distance, it became physically difficult for ions to reach the ion storage site, and the amount of charge and discharge was not large. In PAN-based carbon fibers, when the degree of crystallinity is increased, the amount of discharge decreases for the same reason as graphite, and when the degree of crystallinity is decreased, the functional groups on the carbon surface inhibit charging and discharging, making it impossible to discharge. Pitch-based and vapor-grown carbon can have a relatively high charge/discharge capacity, but most of them are fibrous in shape, and ions enter from both ends of the fiber, making it difficult for ions to reach deep into the fiber. difficult,
The ion storage sites in carbon could not be fully utilized. Electrodes in which carbon is deposited on the metal surface through thermal decomposition of hydrocarbons are difficult to make thick, and are not suitable for high-capacity electrodes.

【0009】電圧の平坦性は結晶化度が大きいほど良好
であるが、電圧平坦性の優れたカーボンには上述したよ
うに放電容量の大きなものはなかった。本発明は、放電
容量が大きく、電圧平坦性に優れたカーボンを提供する
ものである。
[0009] Voltage flatness is better as the degree of crystallinity is higher, but carbon with excellent voltage flatness does not have a large discharge capacity as described above. The present invention provides carbon having a large discharge capacity and excellent voltage flatness.

【0010】0010

【課題を解決するための手段】本発明によるカーボン負
極は分子鎖がC軸方向に層状に重なったラメラ構造を有
した球状カーボンであることを特徴とするものである。
[Means for Solving the Problems] The carbon negative electrode according to the present invention is characterized in that it is a spherical carbon having a lamellar structure in which molecular chains are layered in the C-axis direction.

【0011】本発明によるカーボン負極は次のように製
造される。ピッチ類を第一処理温度で熱処理する。その
ときに起こる重合反応により生成した巨大芳香族高分子
が折りたたみにより薄い板状の単結晶、すなわちラメラ
を形成し、それらが積層し構造体を形成する。この構造
体をラメラ構造体と呼ぶ。この構造体は球状の粒子とな
ってピッチ内に析出し、光学的異方性を持つ。有機溶媒
により処理してこのラメラ構造をした球状の高分子化合
物を取り出し、アルゴン等の不活性ガス中、第二処理温
度で熱分解すると、ラメラ構造が保持されたまま球状の
炭素体が製造される。この炭素体が本発明により用いら
れるカーボンである。
The carbon negative electrode according to the present invention is manufactured as follows. The pitches are heat treated at a first treatment temperature. The giant aromatic polymer produced by the polymerization reaction that occurs at that time folds to form thin plate-shaped single crystals, or lamellae, which are stacked to form a structure. This structure is called a lamellar structure. This structure forms spherical particles that precipitate within the pitch and has optical anisotropy. When this spherical polymer compound with a lamellar structure is extracted by treatment with an organic solvent and thermally decomposed at a second treatment temperature in an inert gas such as argon, a spherical carbon body is produced while maintaining the lamellar structure. Ru. This carbon body is the carbon used in the present invention.

【0012】上記の第一処理温度は200 ℃より60
0 ℃、好ましくは350 ℃より400 ℃を採用す
る。また第二処理温度は700 ℃より3000℃、好
ましくは1500℃より2800℃を採用する。このラ
メラ構造をしたカーボンの構造図を図1に示す。このカ
ーボンの粒子径は第一処理温度により1 オングストロ
ームより100 オングストロームの範囲内で自由に変
えることが可能である。また、カーボンの結晶化度を示
すパラメータの一つであるX線回折法による(002)
面の層間距離の平均値は3.35オングストロームより
3.75オングストロームの範囲内に存在し、その値を
変えることは可能である。
[0012] The above first treatment temperature is from 200°C to 60°C.
A temperature of 0°C, preferably 350°C to 400°C is used. The second treatment temperature is 700°C to 3000°C, preferably 1500°C to 2800°C. A structural diagram of carbon having this lamellar structure is shown in FIG. The particle size of this carbon can be freely changed within the range of 1 to 100 angstroms depending on the first treatment temperature. In addition, (002) was determined by X-ray diffraction, which is one of the parameters indicating the crystallinity of carbon.
The average value of the interlayer distance on the surface is within the range of 3.35 angstroms to 3.75 angstroms, and it is possible to change this value.

【0013】このように粒子径と結晶化度を制御できる
ことは種々のドープ、アンドープ物質の特性に対応する
ことが可能で、極めて応用性の高いカーボンであると言
える。
The ability to control the particle size and crystallinity in this way allows carbon to be adapted to the characteristics of various doped and undoped substances, making it an extremely versatile carbon.

【0014】このカーボンの最大の特徴は球状の形状と
ラメラ構造である。
The most important features of this carbon are its spherical shape and lamellar structure.

【0015】カーボン層間の入口と電解液との接触面積
が広いほど充放電が容易に進行し、高率放電が可能であ
る。球状のカーボンは円柱状、角柱状、鱗片状のカーボ
ンと比較して極板化したときに電解液の進入する空間が
広いので上述の接触面積が広くなり、他のカーボンより
高率放電に優れ、放電容量も増加する。
[0015] The larger the contact area between the inlet between the carbon layers and the electrolytic solution, the easier charging and discharging will proceed, and high rate discharge will be possible. Compared to cylindrical, prismatic, and scale-shaped carbon, spherical carbon has a wider space for the electrolyte to enter when it is made into a plate, so the contact area mentioned above is wider, and it is better at high rate discharge than other carbons. , the discharge capacity also increases.

【0016】一般のカーボンは結晶化度を大きくすれば
層間距離が短く、結晶子が長くなるので層間にイオンが
入りにくく、結晶化度を小さくすれば、結晶子も短くな
るが、非結晶部分が増加するために放電容量が減少する
ということはすでに述べた。本発明によるラメラ構造の
カーボンは従来のカーボンとは異なり、X線の回折ピー
クがブロードである。これはラメラ構造をしたカーボン
を構成する結晶が落葉を重ねたように層状に重なり、層
間距離が広くなっている部分が存在するためであると考
えられる。これは図2のX線回折図に示すようにラメラ
構造をもつものは(002)面のピークがなだらかであ
ることより推定できる。
In general carbon, if the degree of crystallinity is increased, the interlayer distance becomes shorter and the crystallites become longer, making it difficult for ions to enter between the layers.If the degree of crystallinity is decreased, the crystallites become shorter, but the amorphous portion It has already been mentioned that the discharge capacity decreases due to the increase in . The carbon having a lamellar structure according to the present invention differs from conventional carbon in that it has a broad X-ray diffraction peak. This is thought to be due to the fact that the crystals constituting the carbon having a lamellar structure overlap in layers like fallen leaves, and there are parts where the distance between the layers is wide. This can be estimated from the fact that, as shown in the X-ray diffraction diagram of FIG. 2, those with a lamellar structure have a gentle peak on the (002) plane.

【0017】充電が進むと、層間距離の広くなっている
部分よりイオンがインターカレートし始め、層間距離の
短い部分へイオンが移動する。イオンの移動により層間
距離の短い部分が広げられるが、広げられた距離は層間
距離の長い部分が吸収するので全体として安定にイオン
を保持することができる。放電時も同様にイオンを安定
に放出することができる。それゆえに結晶化度が大きい
にも関わらず放電容量が大きくなり、放電曲線もグラフ
ァイトに近い電圧平坦性を有したものとなる。このカー
ボン負極を用いることにより高エネルギー密度で小型,
軽量,高率放電可能な電池を提供することができた。
As charging progresses, ions begin to intercalate from areas where the interlayer distance is wide, and ions move to areas where the interlayer distance is short. As the ions move, the part with the short interlayer distance is widened, but the widened distance is absorbed by the part with the long interlayer distance, so that the ions can be held stably as a whole. Similarly, ions can be stably emitted during discharge. Therefore, despite the high crystallinity, the discharge capacity is large, and the discharge curve has voltage flatness close to that of graphite. By using this carbon negative electrode, it has a high energy density and is compact.
We were able to provide a lightweight, high-rate discharge battery.

【0018】[0018]

【作用】本発明によれば、負極に用いるカーボンは好ま
しくはX線回折法により結晶面の層間距離(d002 
面) が3.35オングストローム以上3.75オング
ストローム以下であり、外観は好ましくは直径1 μm
より100 μmの真球状でその内部はカーボンの分子
鎖がC軸方向に層状に重なったラメラ構造となっている
ものである。
[Function] According to the present invention, the carbon used for the negative electrode is preferably
surface) is 3.35 angstroms or more and 3.75 angstroms or less, and the appearance is preferably 1 μm in diameter.
It has a true spherical shape with a diameter of 100 μm, and the inside thereof has a lamellar structure in which carbon molecular chains are stacked in layers in the C-axis direction.

【0019】従来のカーボンあるいはグラファイトに比
較してこのラメラ構造を持つカーボンはC軸に垂直な平
面のどの方向からもイオンをインターカレート,デイン
ターカレートすることができ、形状が粒子状であるので
電解液の保液性が良好であると言える。即ち、カーボン
と電解液の接触面にはイオンがインターカレート、デイ
ンターカレートする入口の数が多く、その周囲にはイオ
ンを含む電解液が多量に存在するので容易にイオンをイ
ンターカレート、デインターカレートでき、またカーボ
ンの結晶層間のイオン吸蔵サイトを有効に利用できるの
でカーボンの単位重量あたりの充放電容量が大幅に増え
ることになる。
[0019] Compared to conventional carbon or graphite, carbon with this lamellar structure can intercalate and deintercalate ions from any direction on the plane perpendicular to the C axis, and has a particle-like shape. Therefore, it can be said that the electrolyte retention property is good. In other words, the contact surface between carbon and electrolyte has many entrances where ions intercalate and deintercalate, and since there is a large amount of electrolyte containing ions around these entrances, ions can be easily intercalated. Since carbon can be deintercalated and ion storage sites between carbon crystal layers can be effectively utilized, the charge/discharge capacity per unit weight of carbon can be greatly increased.

【0020】[0020]

【実施例】以下、本発明をボタン型非水溶媒二次電池に
適用した例について図3を参照して詳細に説明する。 [本発明実施例]本実施例で用いたカーボンの粒子径は
20μmおよび40μm、層間距離が3.36オングス
トロームのものを用いた。
EXAMPLES An example in which the present invention is applied to a button type non-aqueous solvent secondary battery will be described in detail below with reference to FIG. [Embodiments of the Present Invention] In this embodiment, carbon particles having particle diameters of 20 μm and 40 μm and an interlayer distance of 3.36 angstroms were used.

【0021】図中の1 は、ステンレス製正極容器であ
り、その内側に正極2 が配置されている。正極2 は
次のように作製される。まず、900 ℃で焼成した 
LiCoO2 粉末100重量部と液状のポリテトラフ
ルオロエチレン5 重量部およびカーボンブラック3重
量部をエチルアルコールを用いてペースト状にする。そ
の後乾燥し、ステンレス製のネットの中で成型しそのま
ま包み込む。このようにして極板の密度が 2.6g/
cm3 の円板状の電極を作製し、これを正極とした。 この正極2 の上には不織布と微多孔膜のセパレータ3
 、負極4 、圧迫板5 が順次配置されている。そし
て、前記正極容器1 の開口部にパッキン6 を介して
ステンレス製負極容器7 を設けることにより正極容器
1 、負極容器7 内に正極2 、セパレータ3 、負
極4 、および圧迫板5 を密閉している。正極容器1
 、負極容器7 内にはアセトニトリルとエチレンカー
ボネートの3:1 混合溶液に LiClO4 を1m
ol/lの濃度で溶解した電解液が収納されている。負
極4 は次のように作製される。本発明の球状カーボン
24重量部と液状のポリテトラフルオロエチレン1 重
量部をエチルアルコールを用いてペースト状にする。そ
の後乾燥し、正極と同様にステンレス製のネットの中で
成型しそのまま包み込む。このようにして密度 1.1
g/cm3 の円板状の電極を作製し、これを負極とし
た。
Reference numeral 1 in the figure indicates a stainless steel cathode container, and a cathode 2 is disposed inside the container. Positive electrode 2 is manufactured as follows. First, it was fired at 900℃.
100 parts by weight of LiCoO2 powder, 5 parts by weight of liquid polytetrafluoroethylene, and 3 parts by weight of carbon black are made into a paste using ethyl alcohol. It is then dried, molded in a stainless steel net, and wrapped as it is. In this way, the density of the electrode plate was reduced to 2.6g/
A cm3 disc-shaped electrode was prepared and used as a positive electrode. On top of this positive electrode 2 is a separator 3 made of nonwoven fabric and a microporous membrane.
, a negative electrode 4 , and a compression plate 5 are arranged in this order. A stainless steel negative electrode container 7 is provided at the opening of the positive electrode container 1 through a packing 6, thereby sealing the positive electrode 2, the separator 3, the negative electrode 4, and the compression plate 5 in the positive electrode container 1 and the negative electrode container 7. There is. Positive electrode container 1
In the negative electrode container 7, 1 m of LiClO4 was added to a 3:1 mixed solution of acetonitrile and ethylene carbonate.
An electrolytic solution dissolved at a concentration of ol/l is stored. Negative electrode 4 is manufactured as follows. 24 parts by weight of the spherical carbon of the present invention and 1 part by weight of liquid polytetrafluoroethylene are made into a paste using ethyl alcohol. It is then dried, molded in a stainless steel net, and wrapped in the same way as the positive electrode. In this way the density 1.1
A disc-shaped electrode of g/cm3 was prepared and used as a negative electrode.

【0022】このようにして作られたボタン型非水溶媒
二次電池の充放電試験を行った。なお、活物質の充填量
は電気化学当量として正極に負極の約3 倍を投入し、
電池容量が負極制限になるようにした。また電池の充電
、放電の電流密度を0.5mA/cm2 とした。サイ
クル試験の結果を図4に、放電曲線を図5に示す。サイ
クル試験は充電終止電圧を4.0V、放電終止電圧を2
.8Vとした。その結果、本実施例による電池では、カ
ーボンの重量当り250mAh/gの放電容量を示した
。 [比較例]比較例1として、結晶層間距離(002面)
 が3.49オングストローム、極板の密度が 1.2
g/cm3 の気相成長系炭素繊維、比較例2として、
結晶層間距離(002面) が3.67オングストロー
ム、極板の密度が 1.5g/cm3 のピッチ系炭素
繊維、比較例3として、結晶層間距離(002面) が
3.36オングストローム、極板の密度が 1.9g/
cm3 のグラファイトをそれぞれカーボン負極に使用
し、他は実施例と同様の方法で電池を作製した。
[0022] The button type non-aqueous solvent secondary battery thus produced was subjected to a charge/discharge test. The amount of active material charged is about three times the electrochemical equivalent of the positive electrode than the negative electrode.
The battery capacity is limited to the negative electrode. Further, the current density for charging and discharging the battery was set to 0.5 mA/cm2. The results of the cycle test are shown in FIG. 4, and the discharge curve is shown in FIG. 5. In the cycle test, the end-of-charge voltage was 4.0V, and the end-of-discharge voltage was 2.
.. It was set to 8V. As a result, the battery according to this example exhibited a discharge capacity of 250 mAh/g per weight of carbon. [Comparative Example] As Comparative Example 1, the crystal interlayer distance (002 plane)
is 3.49 angstroms, and the density of the electrode plate is 1.2
g/cm3 vapor grown carbon fiber, as Comparative Example 2,
Comparative Example 3 is a pitch-based carbon fiber with a crystal interlayer distance (002 plane) of 3.67 angstroms and an electrode plate density of 1.5 g/cm3. Density is 1.9g/
cm 3 of graphite was used for the carbon negative electrode, and batteries were produced in the same manner as in the example except for the following.

【0023】得られた電池について、実施例と同様の条
件でサイクル試験を行った。気相成長系炭素繊維を用い
た比較例1は200mAh/g、ピッチ系炭素繊維を用
いた比較例2は150mAh/g、グラファイトを用い
た比較例3は50mAh/g の初期放電容量を示した
。グラファイトではサイクルの経過と共に容量は減少し
、約30サイクルで容量がなくなった。放電曲線より、
グラファイトには電圧の平坦性が認められるが、気相成
長系炭素繊維とピッチ系炭素繊維にはそれが認められな
かった。
[0023] The obtained battery was subjected to a cycle test under the same conditions as in the example. Comparative Example 1 using vapor-grown carbon fiber showed an initial discharge capacity of 200 mAh/g, Comparative Example 2 using pitch-based carbon fiber 150 mAh/g, and Comparative Example 3 using graphite 50 mAh/g. . In graphite, the capacity decreased as the cycles progressed, and the capacity disappeared after about 30 cycles. From the discharge curve,
Voltage flatness was observed in graphite, but this was not observed in vapor-grown carbon fiber and pitch-based carbon fiber.

【0024】[0024]

【発明の効果】本発明の非水電解液電池用負極は高エネ
ルギー密度、高率放電可能で、電圧平坦性に優れた負極
であり、きわめて有用である。
[Effects of the Invention] The negative electrode for non-aqueous electrolyte batteries of the present invention has a high energy density, is capable of high rate discharge, and has excellent voltage flatness, and is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】カーボン粒子の内部構造図を示した図。FIG. 1 is a diagram showing the internal structure of carbon particles.

【図2】カーボンのX線回折図を示した図。FIG. 2 is a diagram showing an X-ray diffraction diagram of carbon.

【図3】本発明の一実施例を示すボタン型非水溶媒二次
電池の断面図。
FIG. 3 is a cross-sectional view of a button-type non-aqueous solvent secondary battery showing one embodiment of the present invention.

【図4】実施例および比較例のサイクル数と放電容量と
の関係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between cycle number and discharge capacity in Examples and Comparative Examples.

【図5】実施例および比較例の1サイクル目の放電曲線
FIG. 5 shows discharge curves of the first cycle of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1  正極容器 2  正極板 3  セパレーター 4  負極板 5  圧迫板 6  パッキン 7  負極容器 1. Positive electrode container 2 Positive electrode plate 3 Separator 4 Negative electrode plate 5. Compression plate 6 Packing 7 Negative electrode container

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】カーボンの分子鎖がC軸方向に層状に重な
ったラメラ構造を有する球状カーボン粒子を用いたこと
を特徴とする非水電解液電池用負極。
1. A negative electrode for a non-aqueous electrolyte battery, characterized in that it uses spherical carbon particles having a lamellar structure in which carbon molecular chains are layered in the C-axis direction.
JP3146863A 1991-05-21 1991-05-21 Negative electrode for battery with non-aqueous electrolyte Pending JPH04342958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146863A JPH04342958A (en) 1991-05-21 1991-05-21 Negative electrode for battery with non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146863A JPH04342958A (en) 1991-05-21 1991-05-21 Negative electrode for battery with non-aqueous electrolyte

Publications (1)

Publication Number Publication Date
JPH04342958A true JPH04342958A (en) 1992-11-30

Family

ID=15417271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146863A Pending JPH04342958A (en) 1991-05-21 1991-05-21 Negative electrode for battery with non-aqueous electrolyte

Country Status (1)

Country Link
JP (1) JPH04342958A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
JP2001160391A (en) * 1999-12-06 2001-06-12 Sanyo Electronic Components Co Ltd Nonaqueous electrolyte secondary battery
US9423720B2 (en) 2013-03-15 2016-08-23 Ricoh Company, Limited Powder container and image forming apparatus
US9740139B2 (en) 2012-06-03 2017-08-22 Ricoh Company, Ltd. Powder container including a container portion to be engaged with a powder replenishing device
US9857729B2 (en) 2013-02-25 2018-01-02 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US11231661B2 (en) 2011-11-25 2022-01-25 Ricoh Company, Ltd. Powder container including a container body, nozzle receiver, and seal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
JP2001160391A (en) * 1999-12-06 2001-06-12 Sanyo Electronic Components Co Ltd Nonaqueous electrolyte secondary battery
US11231661B2 (en) 2011-11-25 2022-01-25 Ricoh Company, Ltd. Powder container including a container body, nozzle receiver, and seal
US9740139B2 (en) 2012-06-03 2017-08-22 Ricoh Company, Ltd. Powder container including a container portion to be engaged with a powder replenishing device
US9857729B2 (en) 2013-02-25 2018-01-02 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US9423720B2 (en) 2013-03-15 2016-08-23 Ricoh Company, Limited Powder container and image forming apparatus

Similar Documents

Publication Publication Date Title
US6106976A (en) Secondary battery or cell with a non-aqueous electrolyte
CA2423043C (en) Nonaqueous lithium secondary battery
JP6448057B2 (en) Porous silicon-based negative electrode active material, manufacturing method thereof, and lithium secondary battery including the same
JPH087885A (en) Lithium secondary battery
US11223064B2 (en) Multivalent metal ion battery having a cathode layer of protected graphitic carbon and manufacturing method
JP2019067579A (en) Lithium ion secondary battery and negative electrode material for lithium ion secondary battery
JPH0883608A (en) Lithium secondary battery
JPH04342958A (en) Negative electrode for battery with non-aqueous electrolyte
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP3727666B2 (en) Lithium secondary battery
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH07105938A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JP2004296106A (en) Nonaqueous secondary battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
KR20210118684A (en) Sodium metal oxide-coated cathode active material and the sodium secondary battery comprising the same
JP3064662B2 (en) Non-aqueous electrolyte secondary battery
JP3052565B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JPH03245473A (en) Non-aqueous solvent secondary cell
JPH03129664A (en) Nonaqueous electrolyte secondary battery
JPH06150930A (en) Non-aqueous secondary battery
JPH07320783A (en) Nonaqueous electrolytic secondary battery